Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. To develop more effective anti-CRC drugs, this research evaluated the impact of synthesized liposomal daunorubicin on HTC116 colon cancer cell line.

Methods

Liposomal daunorubicin (LDNR) was synthesized by the thin layer hydration method and size was determined by dynamic light diffraction (DLS). MTT assay was used to determine the cytotoxicity and IC of LDNR against the HCT116 CRC cell line. Relative mRNA expression of the NF-κB gene and apoptosis were evaluated in 24 hours treatments of HCT116 cells by qRT-PCR and flow cytometry, resectively.

Results

The hydrodynamic diameter of liposomes containing daunorubicin (DNR) was determined 25.2 nm. MTT assay showed a 38% decrease in HCT116 cells viability after 24-hour treatment with the DNR (0.5 μM). The lowest (0.125 μM) and highest (2 μM) dose of LDNR showed 20.4% and 71.6% cytotoxicity, respectively. LDNR showed dose-dependent cytotoxicity with the IC50 of 0.87 μM. The phase contrast microscope evaluation confirmed the LDNR cytotoxicity. The DNR and LDNR (0.87 μM) decreased relative mRNA levels of NF-κB 63% (= 0.023) and 99.6% (=0.003), resectively. The percentage of apoptotic cells in the DNR and LDNR increased by 27.1% (<0.0001) and 49.7% (<0.0001), resectively.

Conclusion

DNR increases the rate of apoptosis by decreasing the NF-κB gene exression in HCT116 cells. These effects are intensified in the liposomal form. Therefore, the LDNR produced in this research can be considered in the treatment of CRC.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072312484241010124144
2024-10-17
2025-10-13
Loading full text...

Full text loading...

References

  1. HossainM.S. KaruniawatiH. JairounA.A. UrbiZ. OoiD.J. JohnA. LimY.C. KibriaK.M.K. MohiuddinA.K.M. MingL.C. GohK.W. HadiM.A. Colorectal Cancer: A Review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies.Cancers2022147173210.3390/cancers14071732 35406504
    [Google Scholar]
  2. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  3. PatelM. HorganP.G. McMillanD.C. EdwardsJ. NF-κB pathways in the development and progression of colorectal cancer.Transl. Res.2018197435610.1016/j.trsl.2018.02.002 29550444
    [Google Scholar]
  4. Ben-NeriahY. KarinM. Inflammation meets cancer, with NF-κB as the matchmaker.Nat. Immunol.201112871572310.1038/ni.2060 21772280
    [Google Scholar]
  5. RastogiS. AldosaryS. SaeedanA.S. AnsariM.N. SinghM. KaithwasG. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment.Front. Pharmacol.202314110891510.3389/fphar.2023.1108915 36891273
    [Google Scholar]
  6. MorrisonH.A. EdenK. TrusianoB. RothschildD.E. QinY. WadeP.A. RoweA.J. MounzerC. StephensM.C. HansonK.M. BrownS.L. HollE.K. AllenI.C. NF-κB inducing kinase attenuates colorectal cancer by regulating noncanonical NF-κB mediated colonic epithelial cell regeneration.Cell. Mol. Gastroenterol. Hepatol.202418310135610.1016/j.jcmgh.2024.05.004 38750899
    [Google Scholar]
  7. DobreM. TrandafirB. MilanesiE. SalviA. BucuroiuI.A. VasilescuC. NiculaeA.M. HerleaV. HinescuM.E. ConstantinescuG. Molecular profile of the NF‐κB signalling pathway in human colorectal cancer.J. Cell. Mol. Med.202226245966597510.1111/jcmm.17545 36433652
    [Google Scholar]
  8. BerkovichL. GerberM. KatzavA. KidronD. AvitalS. NF-kappa B expression in resected specimen of colonic cancer is higher compared to its expression in inflammatory bowel diseases and polyps.Sci. Rep.20221211664510.1038/s41598‑022‑21078‑7 36198850
    [Google Scholar]
  9. PourmadadiM. GhaemiA. ShamsabadipourA. Rajabzadeh-KhosroshahiM. ShaghaghiM. RahdarA. PandeyS. Nanoparticles loaded with Daunorubicin as an advanced tool for cancer therapy.Eur. J. Med. Chem.202325811554710.1016/j.ejmech.2023.115547 37327678
    [Google Scholar]
  10. Al-AamriH.M. KuH. IrvingH.R. TucciJ. Meehan-AndrewsT. BradleyC. Time dependent response of daunorubicin on cytotoxicity, cell cycle and DNA repair in acute lymphoblastic leukaemia.BMC Cancer201919117910.1186/s12885‑019‑5377‑y 30813936
    [Google Scholar]
  11. TanakaT. HalickaH.D. HuangX. TraganosF. DarzynkiewiczZ. Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants.Cell Cycle20065171940194510.4161/cc.5.17.3191 16940754
    [Google Scholar]
  12. HuT. LiZ. GaoC.Y. ChoC.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies.World J. Gastroenterol.201622306876688910.3748/wjg.v22.i30.6876 27570424
    [Google Scholar]
  13. RyuK.B. SeoJ. LeeK. ChoiJ. YooG. HaJ. AhnM.R. Drug-resistance biomarkers in patient-derived colorectal cancer organoid and fibroblast co-culture system.Curr. Issues Mol. Biol.20244665794581110.3390/cimb46060346 38921017
    [Google Scholar]
  14. Alaa Hadi-al-WardN. EbrahimiM. Zare KariziS. Investigation of the cytotoxic and antiproliferative effects of liposomal daunorubicin on human colorectal cancer (HCT116) cell line.Iran. J. Pharm. Res.2024231e14428710.5812/ijpr‑144287
    [Google Scholar]
  15. MoongkarndiP. KosemN. KaslungkaS. LuanratanaO. PongpanN. NeungtonN. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line.J. Ethnopharmacol.200490116116610.1016/j.jep.2003.09.048 14698525
    [Google Scholar]
  16. BahugunaA. KhanI. BajpaiV.K. KangS.C. MTT assay to evaluate the cytotoxic potential of a drug.Bangladesh J. Pharmacol.201712211511810.3329/bjp.v12i2.30892
    [Google Scholar]
  17. AhaniN. SangtarashM.H. Alipour EskandaniM. HoushmandM. Zataria multiflora Boiss. Essential oil induce apoptosis in two human colon cancer cell lines (HCT116 & SW48).Iran. J. Public Health202049475376210.18502/ijph.v49i4.3183 32548056
    [Google Scholar]
  18. ThanujaB. ParimalavalliR. VijayanandS. AlharbiR.M. Abdel-RaoufN. IbraheemI.B.M. SholkamyE.N. DurairajK. Meansbo HadishK. Anticancer and cytotoxicity activity of native and modified black rice flour on colon cancer cell lines.Evid. Based Complement. Alternat. Med.202220221910.1155/2022/8575026 35237334
    [Google Scholar]
  19. TananuwongK. TewaruthW. Extraction and application of antioxidants from black glutinous rice.Lebensm. Wiss. Technol.201043347648110.1016/j.lwt.2009.09.014
    [Google Scholar]
  20. AykulS. Martinez-HackertE. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.Anal. Biochem.20165089710310.1016/j.ab.2016.06.025 27365221
    [Google Scholar]
  21. ChenQ. BeharK.L. XuT. FanC. HaddadG.G. Expression of Drosophila trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance.J. Biol. Chem.200327849491134911810.1074/jbc.M308652200 13129920
    [Google Scholar]
  22. DiDonatoJ.A. MercurioF. KarinM. NF‐κB and the link between inflammation and cancer.Immunol. Rev.2012246137940010.1111/j.1600‑065X.2012.01099.x 22435567
    [Google Scholar]
  23. MoorchungN. KunwarS. AhmedK. An evaluation of nuclear factor kappa B expression in colorectal carcinoma: An analysis of 50 cases.J. Cancer Res. Ther.201410363163510.4103/0973‑1482.139159 25313751
    [Google Scholar]
  24. BitounisD. FanciullinoR. IliadisA. CiccoliniJ. Optimizing druggability through liposomal formulations: New approaches to an old concept.ISRN Pharm.2012201273843210.5402/2012/738432
    [Google Scholar]
  25. LageH. HelmbachH. DietelM. SchadendorfD. Modulation of DNA topoisomerase II activity and expression in melanoma cells with acquired drug resistance.Br. J. Cancer200082248849110.1054/bjoc.1999.0947 10646909
    [Google Scholar]
  26. ClemoN.K. CollardT.J. SouthernS.L. EdwardsK.D. MoorghenM. PackhamG. HagueA. ParaskevaC. WilliamsA.C. BAG-1 is up-regulated in colorectal tumour progression and promotes colorectal tumour cell survival through increased NF-κB activity.Carcinogenesis200829484985710.1093/carcin/bgn004 18204076
    [Google Scholar]
  27. CaponigroF. LacombeD. TwelvesC. BauerJ. GovaertsA.S. MarréaudS. MilanoA. AnthoneyA. An EORTC phase I study of Bortezomib in combination with oxaliplatin, leucovorin and 5-fluorouracil in patients with advanced colorectal cancer.Eur. J. Cancer2009451485510.1016/j.ejca.2008.08.011 18809314
    [Google Scholar]
  28. Quillet-MaryA. MansatV. DuchayneE. ComeM.G. AlloucheM. BaillyJ.D. BordierC. LaurentG. Daunorubicin-induced internucleosomal DNA fragmentation in acute myeloid cell lines.Leukemia1996103417425 8642856
    [Google Scholar]
  29. TurnbullK.J. BrownB.L. DobsonP.R.M. Caspase-3-like activity is necessary but not sufficient for daunorubicin-induced apoptosis in Jurkat human lymphoblastic leukemia cells.Leukemia19991371056106110.1038/sj.leu.2401438 10400421
    [Google Scholar]
  30. MasquelierM. ZhouQ.F. GruberA. VitolsS. Relationship between daunorubicin concentration and apoptosis induction in leukemic cells.Biochem. Pharmacol.20046761047105610.1016/j.bcp.2003.10.025 15006541
    [Google Scholar]
  31. PeregoP. CornaE. De CesareM. GattiL. PolizziD. PratesiG. SupinoR. ZuninoF. Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines.Curr. Med. Chem.200181313710.2174/0929867013373994 11172690
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072312484241010124144
Loading
/content/journals/cbc/10.2174/0115734072312484241010124144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test