Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Autophagy involves breaking down entire cell components, including organelles and macromolecules found in the cytoplasm of eukaryotic cells, especially proteins with extended lifespans. Pharmacological, therapeutic, and herbal methods are crucial throughout this deteriorating phase. Autophagy is a widespread and historically conserved process that occurs in all eukaryotic cells. The significance lies in cell malfunction impacting the autophagy process, which is associated with various significant conditions such as neurological and metabolic disorders in the brain. The role of various autophagic genes is also important in the positive regulation of autophagy. This research will provide a concise summary of various forms of autophagy, their molecular processes, their relationships to neuronal health, and the function of natural chemicals in the enhancement of autophagy. However, the focus of this work is on different ways to encourage autophagy. It is possible to treat metabolic neurodegenerative illnesses by triggering this process with a range of herbal and natural substances. In this article, these topics are explored and debated.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072311552240718112619
2024-08-06
2025-09-02
Loading full text...

Full text loading...

References

  1. MengT. LinS. ZhuangH. HuangH. HeZ. HuY. GongQ. FengD. Recent progress in the role of autophagy in neurological diseases.Cell Stress20193514116110.15698/cst2019.05.186 31225510
    [Google Scholar]
  2. AndreoneB.J. LarhammarM. LewcockJ.W. Cell death and neurodegeneration.Cold Spring Harb. Perspect. Biol.2020122a03643410.1101/cshperspect.a036434 31451511
    [Google Scholar]
  3. LuthraR. RoyA. Role of medicinal plants against neurodegenerative diseases.Curr. Pharm. Biotechnol.202223112313910.2174/1389201022666210211123539 33573549
    [Google Scholar]
  4. Sharifi-RadM. LankatillakeC. DiasD.A. DoceaA.O. MahomoodallyM.F. LobineD. ChazotP.L. KurtB. Boyunegmez TumerT. Catarina MoreiraA. SharopovF. MartorellM. MartinsN. ChoW.C. CalinaD. Sharifi-RadJ. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics.J. Clin. Med.202094106110.3390/jcm9041061 32276438
    [Google Scholar]
  5. GuoF. LiuX. CaiH. LeW. Autophagy in neurodegenerative diseases: Pathogenesis and therapy.Brain Pathol.201828131310.1111/bpa.12545 28703923
    [Google Scholar]
  6. DjajadikertaA. KeshriS. PavelM. PrestilR. RyanL. RubinszteinD.C. Autophagy induction as a therapeutic strategy for neurodegenerative diseases.J. Mol. Biol.202043282799282110.1016/j.jmb.2019.12.035 31887286
    [Google Scholar]
  7. ShaikhS. AhmadK. AhmadS.S. LeeE.J. LimJ.H. BegM.M. VermaA.K. ChoiI. Natural products in therapeutic management of multineurodegenerative disorders by targeting autophagy.Oxid. Med. Cell. Longev.2021202110.1155/2021/6347792
    [Google Scholar]
  8. Fernández-SanzP. Ruiz-GabarreD. García-EscuderoV. Modulating effect of diet on Alzheimer’s disease.Diseases2019711210.3390/diseases7010012 30691140
    [Google Scholar]
  9. StacchiottiA. CorsettiG. Natural compounds and autophagy: Allies against neurodegeneration.Front. Cell Dev. Biol.2020855540910.3389/fcell.2020.555409 33072744
    [Google Scholar]
  10. ZengQ. SiuW. LiL. JinY. LiangS. CaoM. MaM. WuZ. Autophagy in Alzheimer’s disease and promising modulatory effects of herbal medicine.Exp. Gerontol.201911910011010.1016/j.exger.2019.01.027 30710681
    [Google Scholar]
  11. YuL. ChenY. ToozeS.A. Autophagy pathway: Cellular and molecular mechanisms.Autophagy201814220721510.1080/15548627.2017.1378838 28933638
    [Google Scholar]
  12. LitwiniukA. JuszczakG.R. StankiewiczA.M. UrbańskaK. The role of glial autophagy in Alzheimer’s disease.Mol. Psychiatry202328114528453910.1038/s41380‑023‑02242‑5 37679471
    [Google Scholar]
  13. ScrivoA. BourdenxM. PampliegaO. CuervoA.M. Selective autophagy as a potential therapeutic target for neurodegenerative disorders.Lancet Neurol.201817980281510.1016/S1474‑4422(18)30238‑2 30129476
    [Google Scholar]
  14. KandaA. MazumderA. DasS. PrabhakarV. SinghT. KumariS. MishraA. Regulation of autophagy in neurodegenerative diseases: A brief review on autophagy therapy for neurodegenerative diseases.Int. J. Drug Deliv. Technol.202313142343310.25258/ijddt.13.1.68
    [Google Scholar]
  15. ValdorR. Martinez-VicenteM. The role of chaperone-mediated autophagy in tissue homeostasis and disease pathogenesis.Biomedicines202412225710.3390/biomedicines12020257 38397859
    [Google Scholar]
  16. WuJ. HanY. XuH. SunH. WangR. RenH. WangG. Deficient chaperone-mediated autophagy facilitates LPS-induced microglial activation via regulation of the p300/NF-κB/NLRP3 pathway.Sci. Adv.2023940eadi834310.1126/sciadv.adi8343 37801503
    [Google Scholar]
  17. WangL. KlionskyD.J. ShenH.M. The emerging mechanisms and functions of microautophagy.Nat. Rev. Mol. Cell Biol.202324318620310.1038/s41580‑022‑00529‑z 36097284
    [Google Scholar]
  18. LiP. HeJ. YangZ. GeS. ZhangH. ZhongQ. FanX. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression.Autophagy20201671186119910.1080/15548627.2019.1659614 31462126
    [Google Scholar]
  19. FanT. YangW. ZengX. XuX. XuY. FanX. LuoM. TianC. XiaK. ZhangM. A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality.Front. Plant Sci.20201158810.3389/fpls.2020.00588 32582228
    [Google Scholar]
  20. BehrendsC. SowaM.E. GygiS.P. HarperJ.W. Network organization of the human autophagy system.Nature20104667302687610.1038/nature09204 20562859
    [Google Scholar]
  21. UddinM.S. StachowiakA. MamunA.A. TzvetkovN.T. TakedaS. AtanasovA.G. BergantinL.B. Abdel-DaimM.M. StankiewiczA.M. Autophagy and Alzheimer’s disease: From molecular mechanisms to therapeutic implications.Front. Aging Neurosci.201810410.3389/fnagi.2018.00004
    [Google Scholar]
  22. ThemistokleousC. BagnoliE. ParulekarR. MuqitM.M.K. Role of autophagy pathway in Parkinson’s disease and related genetic neurological disorders.J. Mol. Biol.20234351216814410.1016/j.jmb.2023.168144 37182812
    [Google Scholar]
  23. AlhodiebF.S. RahmanM.A. BarkatM.A. AlaneziA.A. BarkatH.A. HadiH.A. HarwanshR.K. MittalV. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer’s disease.Nanomedicine202318214516810.2217/nnm‑2022‑0108 36938800
    [Google Scholar]
  24. SakaiY. OkuM. ATG and ESCRT control multiple modes of microautophagy.FEBS Lett.202359814858 37857501
    [Google Scholar]
  25. PlutaR. The dual role of autophagy in postischemic brain neurodegeneration of Alzheimer’s disease proteinopathy.Int. J. Mol. Sci.202324181379310.3390/ijms241813793 37762096
    [Google Scholar]
  26. ChanY. ChenW. ChenY. LvZ. WanW. LiY. ZhangC. Yi-Zhi-Fang-Dai formula exerts a protective effect on the injury of tight junction scaffold proteins in vitro and in vivo by mediating autophagy through regulation of the RAGE/CaMKKβ/AMPK/mTOR pathway.Biol. Pharm. Bull.202043121847185810.1248/bpb.b20‑00379 33268702
    [Google Scholar]
  27. Ou-YangP. CaiZ.Y. ZhangZ.H. Molecular regulation mechanism of microglial autophagy in the pathology of Alzheimer’s disease.Aging Dis.202314410.14336/AD.2023.0106 37163443
    [Google Scholar]
  28. LiD. DingZ. DuK. YeX. ChengS. Reactive oxygen species as a link between antioxidant pathways and autophagy.Oxid. Med. Cell. Longev.2021202111110.1155/2021/5583215 34336103
    [Google Scholar]
  29. ShimS.S. BerglundK. YuS.P. Lithium: An old drug for new therapeutic strategy for Alzheimer’s disease and related dementia.Neurodegener. Dis.2023231-211210.1159/000533797 37666228
    [Google Scholar]
  30. CaiY. LiuJ. WangB. SunM. YangH. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets.Front. Immunol.20221385637610.3389/fimmu.2022.856376 35558075
    [Google Scholar]
  31. LiuC. Cardenas-RiveraA. TeitelbaumS. BirminghamA. AlfadhelM. YaseenM.A. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer’s disease.bioRxiv202310.1101/2023.10.16.562353
    [Google Scholar]
  32. SreenivasmurthyS. LiuJ.Y. SongJ.X. YangC.B. MalampatiS. WangZ.Y. HuangY.Y. LiM. Neurogenic traditional Chinese medicine as a promising strategy for the treatment of Alzheimer’s disease.Int. J. Mol. Sci.201718227210.3390/ijms18020272 28134846
    [Google Scholar]
  33. JiangN. WeiS. ZhangY. HeW. PeiH. HuangH. WangQ. LiuX. Protective effects and mechanism of radix polygalae against neurological diseases as well as effective substance.Front. Psychiatry20211268870310.3389/fpsyt.2021.688703 34975553
    [Google Scholar]
  34. JainN. TambekarO. GoelT. BodhankarS.L. BansodeD.A. A comprehensive mini review on the natural product bacopa monnieri for the management of Alzheimer’s disease.Nat. Prod. J.2024142e26062321828010.2174/2210315514666230626161007
    [Google Scholar]
  35. ShoukatS. ZiaM.A. UzairM. AlsubkiR.A. SajidK. ShoukatS. AttiaK.A. FiazS. AliS. KimikoI. AliG.M. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer’s disease mice model.Mol. Biol. Rep.202350107967797910.1007/s11033‑023‑08674‑0 37535247
    [Google Scholar]
  36. PaulS. ChakrabortyS. AnandU. DeyS. NandyS. GhoraiM. SahaS.C. PatilM.T. KandimallaR. ProćkówJ. DeyA. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects.Biomed. Pharmacother.202114311217510.1016/j.biopha.2021.112175 34649336
    [Google Scholar]
  37. DarN.J. Muzamil Ahmad, Neurodegenerative diseases and Withania somnifera (L.): An update.J. Ethnopharmacol.202025611276910.1016/j.jep.2020.112769 32240781
    [Google Scholar]
  38. DuyuT. KhanalP. DeyY.N. JhaS.K. Network pharmacology of Withania somnifera against stress associated neurodegenerative diseases.Adv. Trad. Med.202121356557810.1007/s13596‑020‑00530‑x
    [Google Scholar]
  39. WidodoA.R. RahmayantiR. ShahabF. Potential asiatic acid in Centella asiatica (L.) urban towards NMDA receptors of alzheimer dementia patients in silico.Ahmad Dahlan Med. J.202342249254
    [Google Scholar]
  40. GunaI.N. YustiantaraP.S. Potensi pegagan (Centella asiatica) sebagai pengobatan AlzheimerProceedings of the National Pharmacy Workshop and Seminar20232277288
    [Google Scholar]
  41. OmosaL.K. MidiwoJ.O. KueteV. Curcuma longa.Medicinal spices and vegetables from Africa.Academic press201742543510.1016/B978‑0‑12‑809286‑6.00019‑4
    [Google Scholar]
  42. VoT.S. VoT.T.B.C. VoT.T.T.N. Lai̇T.N.H. Turmeric (Curcuma longa L.): Chemical components and their effective clinical applications.J. Turk. Chem. Soc. Sect. A: Chem.20218388389810.18596/jotcsa.913136
    [Google Scholar]
  43. WuP.Q. LiB. YuY.F. SuP.J. LiuX. ZhangZ.P. ZhiD.J. QiF.M. FeiD.Q. ZhangZ.X. Isolation, characterization, and possible anti‐Alzheimer’s disease activities of bisabolane‐type sesquiterpenoid derivatives and phenolics from the rhizomes of Curcuma longa.In: Chem. Biodivers.2020175e200006710.1002/cbdv.202000067 32154990
    [Google Scholar]
  44. ZahraW. BirlaH. SinghS.S. RathoreA.S. DilnashinH. SinghR. KeshriP.K. GautamP. SinghS.P. Neuroprotection by Mucuna pruriens in neurodegenerative diseases.Neurochem. Res.20224771816182910.1007/s11064‑022‑03591‑3 35380400
    [Google Scholar]
  45. KonishiF. FurushoT. SoedaY. YamauchiJ. KobayashiS. ItoM. ArakiT. KogureS. TakashimaA. TakekoshiS. Administration of mucuna beans (Mucuna pruriences (L.) DC. var. utilis) improves cognition and neuropathology of 3 × Tg-AD mice.Sci. Rep.202212199610.1038/s41598‑022‑04777‑z 35046433
    [Google Scholar]
  46. LiJ. HuangQ. ChenJ. QiH. LiuJ. ChenZ. ZhaoD. WangZ. LiX. Neuroprotective potentials of Panax ginseng against Alzheimer’s disease: A review of preclinical and clinical evidences.Front. Pharmacol.20211268849010.3389/fphar.2021.688490 34149431
    [Google Scholar]
  47. ShinS.J. NamY. ParkY.H. KimM.J. LeeE. JeonS.G. BaeB.S. SeoJ. ShimS.L. KimJ.S. HanC.K. KimS. LeeY.Y. MoonM. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease.Free Radic. Biol. Med.202116423324810.1016/j.freeradbiomed.2020.12.454 33422674
    [Google Scholar]
  48. WangY. LiuX. The effective components, core targets, and key pathways of ginseng against Alzheimer’s disease.Evid. Based Complement. Alternat. Med.2023202311210.1155/2023/9935942 36726526
    [Google Scholar]
  49. MzabriI. CharifK. RimaniM. KouddaneN. BoukrouteA. BerrichiA. History, biology and culture of Crocus sativus: Overview and perspectives.Arab. J. Chem. Environ. Res.202181128
    [Google Scholar]
  50. TalebiM. TalebiM. SamarghandianS. Association of Crocus sativus with cognitive dysfunctions and Alzheimer’s disease: A systematic review.Biointerface Res. Appl. Chem.202111174687492
    [Google Scholar]
  51. PatelK.S. DharamsiA. PriyaM. JainS. MandalV. GirmeA. ModiS.J. HingoraniL. Saffron (Crocus sativus L.) extract attenuates chronic scopolamine-induced cognitive impairment, amyloid beta, and neurofibrillary tangles accumulation in rats.J. Ethnopharmacol.202432611789810.1016/j.jep.2024.117898 38341114
    [Google Scholar]
  52. ChauhanA. ChauhanV. Beneficial effects of walnuts on cognition and brain health.Nutrients202012255010.3390/nu12020550 32093220
    [Google Scholar]
  53. KimJ.M. LeeU. KangJ.Y. ParkS.K. ShinE.J. KimH.J. KimC.W. KimM.J. HeoH.J. Anti-amnesic effect of walnut via the regulation of BBB function and neuro-inflammation in Aβ1-42-induced mice.Antioxidants202091097610.3390/antiox9100976 33053754
    [Google Scholar]
  54. RawatH. VermaY. AyeshaN.S. NegiN. PantH.C. MishraA. SinghalM. KhanA. GauravN. Nyctanthes arbor-tristis: A traditional herbal plant with miraculous potential in medicine.Int. J. Bot. Stud.20216427440
    [Google Scholar]
  55. PhanindhraB. RajuA.B. VikasG. AnushaR. DeepikaD. Effect of Nyctanthes arbor-tristis leaf extract against scopolamine-induced cognitive impairment in rats.Herba Pol.2015604344910.1515/hepo‑2015‑0003
    [Google Scholar]
  56. MaitiR. RaghavendraM. KumarS. AcharyaS.B. Role of aqueous extract of Azadirachta indica leaves in an experimental model of Alzheimer′s disease in rats.Int. J. Appl. Basic Med. Res.201331374710.4103/2229‑516X.112239 23776838
    [Google Scholar]
  57. SinghD. MishraA. GoelR.K. Effect of saponin fraction from Ficus religiosa on memory deficit, and behavioral and biochemical impairments in pentylenetetrazol kindled mice.Epilepsy Behav.201327120621110.1016/j.yebeh.2012.11.004 23332444
    [Google Scholar]
  58. KumarN. CherukuS.P. ChamallamudiM.R. RamalingayyaG.V. BiswasS. GourishettiK. NandakumarK. DevkarR. MallikS.B. NampoothiriM. Neuroprotective potential of methanolic extract of Saraca asoca bark against doxorubicin-induced neurotoxicity.Pharmacogn. Mag.2019156130931610.4103/pm.pm_79_18
    [Google Scholar]
  59. SinghS.A. VellapandianC. The promising guide to LC–MS analysis and cholinesterase activity of Luffa cylindrica (L.) fruit using in vitro and in-silico analyses.Future Journal of Pharmaceutical Sciences2023913310.1186/s43094‑023‑00478‑0
    [Google Scholar]
  60. AliH.S. Al-OmarM.A. Al-KhalifaA.R.S. AbdullaM.M. EzzeldinE. AmrA.E. Anti-alzheimer activity and structure activity relationship of some synthesized terpinoidal oxaliplatin analogs.Am. J. Sci.201179534542
    [Google Scholar]
  61. KhaliliM. HamzehF. Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer’s disease in male rats.Iran. Biomed. J.2010141-25965 20683499
    [Google Scholar]
  62. LuoH. HuJ. WangY. ChenY. ZhuD. JiangR. QiuZ. In vivo and in vitro neuroprotective effects of Panax ginseng glycoproteins.Int. J. Biol. Macromol.201811360761510.1016/j.ijbiomac.2018.02.015 29408615
    [Google Scholar]
  63. HosseiniM. MohammadpourT. KaramiR. RajaeiZ. Reza SadeghniaH. SoukhtanlooM. Effects of the hydro-alcoholic extract of Nigella sativa on scopolamine-induced spatial memory impairment in rats and its possible mechanism.Chin. J. Integr. Med.201521643844410.1007/s11655‑014‑1742‑5 24584756
    [Google Scholar]
  64. ShariareM.H. RahmanM. LubnaS.R. RoyR.S. AbedinJ. MarzanA.L. AltamimiM.A. AhamadS.R. AhmadA. AlanaziF.K. KaziM. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model.Sci. Rep.2020101693810.1038/s41598‑020‑63894‑9 32332809
    [Google Scholar]
  65. GuptaJ. KulshreshthaM. Pharmacological investigation and unraveling mechanism of action of jasminum sambac flowers for predicated treatment of Alzheimer’s disease.Curr. Nutr. Food Sci.201814212813510.2174/1573401313666170427123623
    [Google Scholar]
  66. KulkarniK. KastureS.B. MengiS.A. Efficacy study of Prunus amygdalus (almond) nuts in scopolamine-induced amnesia in rats.Indian J. Pharmacol.201042316817310.4103/0253‑7613.66841 20871769
    [Google Scholar]
  67. PanahzadehF. MirnasuriR. RahmatiM. Exercise and Syzygium aromaticum reverse memory deficits, apoptosis and mitochondrial dysfunction of the hippocampus in Alzheimer’s disease.J. Ethnopharmacol.202228611487110.1016/j.jep.2021.114871 34856360
    [Google Scholar]
  68. SoniK. ParleM. Trachyspermum ammi seeds supplementation helps reverse scopolamine, alprazolam and electroshock induced amnesia.Neurochem. Res.20174251333134410.1007/s11064‑017‑2177‑0 28097466
    [Google Scholar]
  69. SaleemU. HiraS. AnwarF. ShahM.A. BashirS. BatyR.S. BadrR.H. BlundellR. BatihaG.E.S. AhmadB. Pharmacological screening of Viola odorata L. for memory-enhancing effect via modulation of oxidative stress and inflammatory biomarkers.Front. Pharmacol.20211266483210.3389/fphar.2021.664832 34149418
    [Google Scholar]
  70. RetinasamyT. ShaikhM.F. KumariY. OthmanI. Ethanolic extract of Orthosiphon stamineus improves memory in scopolamine-induced amnesia model.Front. Pharmacol.201910121610.3389/fphar.2019.01216 31736744
    [Google Scholar]
  71. KumarM.H.V. GuptaY.K. Antioxidant property of Celastrus paniculatus Willd.: A possible mechanism in enhancing cognition.Phytomedicine20029430231110.1078/0944‑7113‑00136 12120811
    [Google Scholar]
  72. NaseemS. IsmailH. In vitro and in vivo evaluations of antioxidative, anti-Alzheimer, antidiabetic and anticancer potentials of hydroponically and soil grown Lactuca sativa.BMC Complement. Med. Ther.20222213010.1186/s12906‑022‑03520‑5 35101010
    [Google Scholar]
  73. AhmadS.S. KhanM.B. AhmadK. LimJ.H. ShaikhS. LeeE.J. ChoiI. Biocomputational screening of natural compounds against acetylcholinesterase.Molecules2021269264110.3390/molecules26092641 33946559
    [Google Scholar]
  74. HussainG. RasulA. AnwarH. AzizN. RazzaqA. WeiW. AliM. LiJ. LiX. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders.Int. J. Biol. Sci.201814334135710.7150/ijbs.23247 29559851
    [Google Scholar]
  75. VrabecR. BlundenG. CahlíkováL. Natural alkaloids as multi-target compounds towards factors implicated in Alzheimer’s disease.Int. J. Mol. Sci.2023245439910.3390/ijms24054399 36901826
    [Google Scholar]
  76. PotìF. SartiD. SpaggiariG. ZimettiF. ZanottiI. Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis.Int. J. Mol. Sci.20192035110.3390/ijms20020351
    [Google Scholar]
  77. DrygalskiK. FereniecE. KorycińskiK. ChomentowskiA. KiełczewskaA. OdrzygóźdźC. ModzelewskaB. Resveratrol and Alzheimer’s disease. From molecular pathophysiology to clinical trials.Exp. Gerontol.2018113364710.1016/j.exger.2018.09.019 30266470
    [Google Scholar]
  78. Abdul ManapA.S. VijayabalanS. MadhavanP. ChiaY.Y. AryaA. WongE.H. RizwanF. BindalU. KoshyS. Bacopa monnieri, a neuroprotective lead in alzheimer disease: A review on its properties, mechanisms of action, and preclinical and clinical studies.Drug Target Insights20191310.1177/1177392819866412 31391778
    [Google Scholar]
  79. KuangL. CaoX. LuZ. Baicalein protects against rotenone-induced neurotoxicity through induction of autophagy.Biol. Pharm. Bull.20174091537154310.1248/bpb.b17‑00392 28659545
    [Google Scholar]
  80. TikhonovaM.A. TikhonovaN.G. TenditnikM.V. OvsyukovaM.V. AkopyanA.A. DubrovinaN.I. AmstislavskayaT.G. KhlestkinaE.K. Effects of grape polyphenols on the life span and neuroinflammatory alterations related to neurodegenerative Parkinson disease-like disturbances in mice.Molecules20202522533910.3390/molecules25225339 33207644
    [Google Scholar]
  81. MinochaT. BirlaH. ObaidA.A. RaiV. SushmaP. ShivamalluC. MoustafaM. Al-ShehriM. Al-EmamA. TikhonovaM.A. YadavS.K. PoeggelerB. SinghD. SinghS.K. Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimer’s disease.Oxid. Med. Cell. Longev.2022202211310.1155/2022/6038996 36071869
    [Google Scholar]
  82. AlolgaR.N. Nuer-AllornuvorG.F. KuugbeeE.D. YinX. MaG. Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: A review of scientific findings and call for further research.Pharmacol. Res.202015210463010.1016/j.phrs.2020.104630 31911245
    [Google Scholar]
  83. ZhangR. ZengM. ZhangX. ZhengY. LvN. WangL. GanJ. LiY. JiangX. YangL. Therapeutic candidates for Alzheimer’s disease.Saponins. Int. J. Mol. Sci.202324131050510.3390/ijms241310505 37445682
    [Google Scholar]
  84. KhanM.I. KhanM.Z. ShinJ.H. ShinT.S. LeeY.B. KimM.Y. KimJ.D. Neuroprotective effects of green tea seed isolated saponin due to the amelioration of tauopathy and alleviation of neuroinflammation: A therapeutic approach to Alzheimer’s disease.Molecules2022277207910.3390/molecules27072079 35408478
    [Google Scholar]
  85. LaiShi Min S.; Liew, S.Y.; Chear, N.J.Y.; Goh, B.H.; Tan, W.N.; Khaw, K.Y. Plant terpenoids as the promising source of cholinesterase inhibitors for anti-AD therapy.Biology 202211230710.3390/biology11020307 35205173
    [Google Scholar]
  86. ChoK.S. ShinM. KimS. LeeS.B. Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative diseases.Oxid. Med. Cell. Longev.2018201811310.1155/2018/4120458 29849893
    [Google Scholar]
  87. TianJ. LiuY. ChenK. Ginkgo biloba extract in vascular protection: Molecular mechanisms and clinical applications.Curr. Vasc. Pharmacol.201715653254810.2174/1570161115666170713095545 28707602
    [Google Scholar]
  88. MihardjaM. RoyJ. WongK.Y. AquiliL. HengB.C. ChanY.S. FungM.L. LimL.W. Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer’s disease.Ann. N. Y. Acad. Sci.202014781436210.1111/nyas.14436 32700392
    [Google Scholar]
  89. RoyJ. TsuiK.C. NgJ. FungM.L. LimL.W. Regulation of melatonin and neurotransmission in Alzheimer’s disease.Int. J. Mol. Sci.20212213684110.3390/ijms22136841 34202125
    [Google Scholar]
  90. MatsubaraE. Bryant-ThomasT. Pacheco QuintoJ. HenryT.L. PoeggelerB. HerbertD. Cruz-SanchezF. ChyanY.J. SmithM.A. PerryG. ShojiM. AbeK. LeoneA. Grundke-IkbalI. WilsonG.L. GhisoJ. WilliamsC. RefoloL.M. PappollaM.A. ChainD.G. NeriaE. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease.J. Neurochem.20038551101110810.1046/j.1471‑4159.2003.01654.x 12753069
    [Google Scholar]
  91. OlceseJ.M. CaoC. MoriT. MamcarzM.B. MaxwellA. RunfeldtM.J. WangL. ZhangC. LinX. ZhangG. ArendashG.W. Protection against cognitive deficits and markers of neurodegeneration by long‐term oral administration of melatonin in a transgenic model of Alzheimer disease.J. Pineal Res.2009471829610.1111/j.1600‑079X.2009.00692.x 19538338
    [Google Scholar]
  92. García-MesaY. Giménez-LlortL. LópezL.C. VenegasC. CristòfolR. EscamesG. Acuña-CastroviejoD. SanfeliuC. Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse.Neurobiol. Aging20123361124.e131124.e2910.1016/j.neurobiolaging.2011.11.016 22177720
    [Google Scholar]
  93. LabbanS. AlghamdiB.S. AlshehriF.S. KurdiM. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease.Behav. Brain Res.202140211310010.1016/j.bbr.2020.113100 33417994
    [Google Scholar]
  94. XuL. YuH. SunH. HuB. GengY. Dietary melatonin therapy alleviates the lamina cribrosa damages in patients with mild cognitive impairments: A double-blinded, randomized controlled study.Med. Sci. Monit.202026e923232e110.12659/MSM.923232 32376818
    [Google Scholar]
  95. FengZ. QinC. ChangY. ZhangJ. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease.Free Radic. Biol. Med.200640110110910.1016/j.freeradbiomed.2005.08.014 16337883
    [Google Scholar]
  96. Clapp-LillyK.L. SmithM.A. PerryG. DuffyL.K. Melatonin reduces interleukin secretion in amyloid-β stressed mouse brain slices.Chem. Biol. Interact.2001134110110710.1016/S0009‑2797(00)00319‑7
    [Google Scholar]
  97. DasR. BalmikA.A. ChinnathambiS. Effect of Melatonin on Tau aggregation and Tau-mediated cell surface morphology.Int. J. Biol. Macromol.2020152303910.1016/j.ijbiomac.2020.01.296 32044365
    [Google Scholar]
  98. HeP. OuyangX. ZhouS. YinW. TangC. LaudonM. TianS. A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer’ disease.Horm. Behav.20136411710.1016/j.yhbeh.2013.04.009 23651610
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072311552240718112619
Loading
/content/journals/cbc/10.2174/0115734072311552240718112619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test