Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

To understand the effectiveness of identified bioactive compounds derived from as antibacterial agents against infections was studied. Antimicrobial resistance (AMR) has put many modern treatments aside and proved ineffective over many human infections. The misuse and inappropriate overuse of antimicrobials in humans have developed drug-resistant pathogens called “superbugs.” Currently, the World is facing a rise in the crisis regarding strategic information and innovation with a novel breakthrough on demand with an efficient, safe, and alternative drug to check severe attacks of AMR. Herbal medicines are now being pipelined with substantial understanding and trials in complete treatment for many AMR infections. This study is an innovative approach that shows constant stability by directly inhibiting the protein involved in cell wall synthesis of the pathogen with the ligand selected on interaction.

Objectives

i) Elucidating the bidirectional approach of bioactive compounds identified from as an alternative drug to control infection caused by AMR . ii) Molecular dynamics simulation analysis to prove its significance in understanding the mechanism of penicillin-binding protein 2a responsible for cell wall synthesis in AMR being inhibited by the bioactive compounds more effectively than FDA-approved drugs. iii) The bioactive compounds selected were studied for antibacterial and anti-inflammatory activities.

Methods

A molecular docking study was performed using AMdock v1.5.2 with the PBP2a from S. SwissADME v2023 and pass online v2.0 were used to understand the drug-likeness prophecies for these compounds. MD simulations identified Beta-Glucogallin (BEG) and Dihydro Dehydro Coniferyl alcohol (DIH) as hit compounds. Using GROMACS v2020.6, BEG and DIH, identified for molecular dynamics simulation studies, indicated maximum hydrogen bonds. All the results of RMSD, RMSF, SASA, RG, H bonding, and MMPBSA were compared and analyzed with FDA-approved drugs. The phytocompounds present in were retrieved from the PubMed database.

Results

Binding affinities for DIH and BEG; -55.202 +/-20.494, and 27.972+/-16.329 with 1MWU respectively. The RMSD (1MWU-APO, 1MWU-MET, 1MWU-BEG and 1MWU-DIH complex proteins were 0.860 +/- 0.04 nm, 0.80 +/- 0.08 nm, 0.56 +/- 0.07 nm, 0.51 +/- 0.10 nm respectively). RMSF (1MWU-APO, 1MWU-MET, 1MWU-BEG and 1MWU-DIH complex proteins were 0.27 +/- 0.14 nm, 0.20 +/- 0.09 nm, 0.29 +/- 0.16 nm, 0.29 +/- 0.14 nm respectively). RG (1MWU-APO, 1MWU-MET, 1MWU-BEG and 1MWU-DIH complex proteins were 3.47 +/- 0.09 nm, 3.45 +/- 0.05, 3.66 +/- 0.04 nm, 3.63 +/- 0.06 nm respectively). SASA (1MWU-APO, 1MWU-MET, 1MWU-BEG and 1MWU-DIH) complex proteins were 312.26 +/- 7.43 nm, 319.68 +/- 4.46, 321.16 +/- 4.85 nm, 338.4 +/- 4.05 nm respectively.

Conclusion

The computational analysis utilized molecular docking and molecular dynamics simulations to evaluate interactions between , Penicillin-binding protein 2a (PBP2a), and phytochemical compounds from . Among the compounds analyzed, Beta-Glucogallin (BEG) and Dihydro Dehydro Coniferyl alcohol (DIH) exhibited stable binding and interactions, demonstrating potential as antimicrobial agents. PASS software analysis further supported their antibacterial and anti-inflammatory activities, indicating the need for subsequent and validation studies. These compounds show promise as leads for drug development efforts to address antimicrobial resistance.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072309616240613071448
2024-06-27
2025-09-12
Loading full text...

Full text loading...

References

  1. JacobsA. Hospital-acquired methicillin-resistant Staphylococcus aureus: status and trends.Radiol. Technol.201485662364825002642
    [Google Scholar]
  2. PredaM. MihaiM.M. PopaL.I. DițuL.M. HolbanA.M. ManolescuL.S.C. PopaG.L. MunteanA.A. GheorgheI. ChifiriucC.M. PopaM.I. Phenotypic and genotypic virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections.PLoS One2021162e024647810.1371/journal.pone.024647833529240
    [Google Scholar]
  3. CheungG.Y.C. BaeJ.S. OttoM. Pathogenicity and virulence of Staphylococcus aureus.Virulence202112154756910.1080/21505594.2021.187868833522395
    [Google Scholar]
  4. GherardiG. Staphylococcus aureus Infection: Pathogenesis and antimicrobial resistance.Int. J. Mol. Sci.2023249818210.3390/ijms2409818237175886
    [Google Scholar]
  5. NobleW.C. Skin bacteriology and the role of Staphylococcus aureus in infection.Br. J. Dermatol.1998139Suppl. 5391210.1046/j.1365‑2133.1998.1390s3009.x9990407
    [Google Scholar]
  6. LiesenborghsL. VerhammeP. VanasscheT. Staphylococcus aureus, master manipulator of the human hemostatic system.J. Thromb. Haemost.201816344145410.1111/jth.1392829251820
    [Google Scholar]
  7. GordonR.J. LowyF.D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection.Clin Infect Dis.200846Suppl 5S350S35910.1086/533591
    [Google Scholar]
  8. Herman-BausierP. El-Kirat-ChatelS. FosterT.J. GeogheganJ.A. DufrêneY.F. Staphylococcus aureus fibronectin-binding protein a mediates cell-cell adhesion through low-affinity homophilic bonds.MBio201563e00413-1510.1128/mBio.00413‑1526015495
    [Google Scholar]
  9. FudaC.C.S. FisherJ.F. MobasheryS. β-Lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome.Cell. Mol. Life Sci.200562222617263310.1007/s00018‑005‑5148‑616143832
    [Google Scholar]
  10. LowyF.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Invest.200311191265127310.1172/JCI1853512727914
    [Google Scholar]
  11. LaceyK. GeogheganJ. McLoughlinR. The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens.Pathogens2016512210.3390/pathogens501002226901227
    [Google Scholar]
  12. LewisP.O. HeilE.L. CovertK.L. CluckD.B. Treatment strategies for persistent methicillin‐resistant Staphylococcus aureus bacteraemia.J. Clin. Pharm. Ther.201843561462510.1111/jcpt.1274330003555
    [Google Scholar]
  13. HiramatsuK. KatayamaY. YuzawaH. ItoT. Molecular genetics of methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol.20022922677410.1078/1438‑4221‑0019212195737
    [Google Scholar]
  14. OttoM. MRSA virulence and spread.Cell. Microbiol.201214101513152110.1111/j.1462‑5822.2012.01832.x22747834
    [Google Scholar]
  15. TanL. LiS.R. JiangB. HuX.M. LiS. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator agr system.Front. Microbiol.201895510.3389/fmicb.2018.0005529422887
    [Google Scholar]
  16. WuS.C. LiuF. ZhuK. ShenJ.Z. Natural products that target virulence factors in antibiotic-resistant Staphylococcus aureus.J. Agric. Food Chem.20196748131951321110.1021/acs.jafc.9b0559531702908
    [Google Scholar]
  17. McGuinnessW.A. MalachowaN. DeLeoF.R. Vancomycin resistance in Staphylococcus aureus
.Yale J. Biol. Med.201790226928128656013
    [Google Scholar]
  18. KimG.Y. LeeC.H. Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis.J. Periodontal Implant Sci.201545622322810.5051/jpis.2015.45.6.22326734493
    [Google Scholar]
  19. SaberT. SamirM. El-MekkawyR.M. ArinyE. El-SayedS.R. EnanG. AbdelatifS.H. AskoraA. MerwadA.M.A. TartorY.H. Methicillin- and vancomycin-resistant Staphylococcus aureus from humans and ready-to-eat meat: Characterization of antimicrobial resistance and biofilm formation ability.Front. Microbiol.20221273549410.3389/fmicb.2021.73549435211098
    [Google Scholar]
  20. Ali AlghamdiB. Al-JohaniI. Al-ShamraniJ.M. Musamed AlshamraniH. Al-OtaibiB.G. AlmazmomiK. Yusnoraini YusofN. Antimicrobial resistance in methicillin-resistant staphylococcus aureus.Saudi J. Biol. Sci.202330410360410.1016/j.sjbs.2023.10360436936699
    [Google Scholar]
  21. FishovitzJ. HermosoJ.A. ChangM. MobasheryS. Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus.IUBMB Life201466857257710.1002/iub.128925044998
    [Google Scholar]
  22. AmbadeS.S. GuptaV.K. BholeR.P. KhedekarP.B. ChikhaleR.V. A review on five and six-membered heterocyclic compounds targeting the Penicillin-Binding Protein 2 (PBP2A) of methicillin-resistant Staphylococcus aureus (MRSA).Molecules20232820700810.3390/molecules2820700837894491
    [Google Scholar]
  23. Razique Anwer Identification of small molecule inhibitors of penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus for the therapeutics of bacterial infection.Cell. Mol. Biol.2024703404710.14715/cmb/2024.70.3.638650157
    [Google Scholar]
  24. ShalabyM.A.W. DoklaE.M.E. SeryaR.A.T. AbouzidK.A.M. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective.Eur. J. Med. Chem.202019911231210.1016/j.ejmech.2020.11231232442851
    [Google Scholar]
  25. LadeH. KimJ.S. Bacterial targets of antibiotics in methicillin-resistant Staphylococcus aureus. Antibiotics202110439810.3390/antibiotics1004039833917043
    [Google Scholar]
  26. JaiswalY.S. WilliamsL.L. A glimpse of Ayurveda – The forgotten history and principles of Indian traditional medicine.J. Tradit. Complement. Med.201771505310.1016/j.jtcme.2016.02.00228053888
    [Google Scholar]
  27. YuZ. TangJ. KhareT. KumarV. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue?Fitoterapia202014010443310.1016/j.fitote.2019.10443331760066
    [Google Scholar]
  28. Álvarez-MartínezF.J. Barrajón-CatalánE. EncinarJ.A. Rodríguez-DíazJ.C. MicolV. Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review.Curr. Med. Chem.202027152576260610.2174/092986732566618100811565030295182
    [Google Scholar]
  29. GuzzoF. ScognamiglioM. FiorentinoA. BuomminoE. D’AbroscaB. Plant derived natural products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm activity and molecular mechanisms.Molecules20202521502410.3390/molecules2521502433138250
    [Google Scholar]
  30. QamarM. AkhtarS. IsmailT. WahidM. AbbasM.W. MubarakM.S. YuanY. BarnardR.T. ZioraZ.M. EsatbeyogluT. Phytochemical profile, biological properties, and food applications of the medicinal plant Syzygium cumini. Foods202211337810.3390/foods1103037835159528
    [Google Scholar]
  31. ShidikiA. VyasA. Molecular docking and pharmacokinetic prediction of phytochemicals from Syzygium cumini in interaction with penicillin-binding protein 2a and erythromycin ribosomal methylase of Staphylococcus aureus. Biotechnologia2022103151810.5114/bta.2022.11391036605380
    [Google Scholar]
  32. Cox-GeorgianD. RamadossN. DonaC. BasuC. Therapeutic and medicinal uses of terpenes.Medicinal Plants.Springer201933335910.1007/978‑3‑030‑31269‑5_15
    [Google Scholar]
  33. BagchiA. Molecular modeling techniques and In-Silico drug discovery.Methods Mol. Biol.2024271911110.1007/978‑1‑0716‑3461‑5_137803109
    [Google Scholar]
  34. MorrisG.M. Lim-WilbyM. Molecular Docking.Methods Mol. Biol.200844336538210.1007/978‑1‑59745‑177‑2_1918446297
    [Google Scholar]
  35. AdcockS.A. McCammonJ.A. Molecular dynamics: Survey of methods for simulating the activity of proteins.Chem. Rev.200610651589161510.1021/cr040426m16683746
    [Google Scholar]
  36. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  37. DurrantJ.D. McCammonJ.A. Molecular dynamics simulations and drug discovery.BMC Biol.2011917110.1186/1741‑7007‑9‑7122035460
    [Google Scholar]
  38. Ferreira de FreitasR. SchapiraM. A systematic analysis of atomic protein–ligand interactions in the PDB.MedChemComm20178101970198110.1039/C7MD00381A29308120
    [Google Scholar]
  39. MohanrajK. KarthikeyanB.S. Vivek-AnanthR.P. ChandR.P.B. AparnaS.R. MangalapandiP. SamalA. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics.Sci. Rep.201881432910.1038/s41598‑018‑22631‑z29531263
    [Google Scholar]
  40. SinghJ.P. KaurA. SinghN. NimL. ShevkaniK. KaurH. AroraD.S. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols.Food Sci. Technol.2016651025103010.1016/j.lwt.2015.09.038
    [Google Scholar]
  41. MorrisGM HueyR OlsonAJ Using AutoDock for ligand-receptor docking.John Wiley and Sons, Inc.200810.1002/0471250953.bi0814s24
    [Google Scholar]
  42. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  43. LeachA.R. ShoichetB.K. PeishoffC.E. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps.J. Med. Chem.200649205851585510.1021/jm060999m17004700
    [Google Scholar]
  44. Anvita ManjunathG.V. Antimicrobial activity of Geranyl acetate against cell wall synthesis proteins of P. aeruginosa and S. aureus using molecular docking and simulation.J. Biomole. Struct. Dyn.20234263030305010.1080/07391102.2023.2212060
    [Google Scholar]
  45. SystèmesD. BIOVIA Discovery Studio Modeling Environment.Dassault SystèmesBiovia2016
    [Google Scholar]
  46. MahalA. Al-JanabiM. EyüpoğluV. AlkhouriA. ChtitaS. KadhimM.M. ObaidullahA.J. AlotaibiJ.M. WeiX. PratamaM.R.F. Molecular docking, drug-likeness and DFT study of some modified tetrahydrocurcumins as potential anticancer agents.Saudi Pharm. J.202432110188910.1016/j.jsps.2023.10188938090737
    [Google Scholar]
  47. SoutoE.B. FangueiroJ.F. FernandesA.R. CanoA. Sanchez-LopezE. GarciaM.L. SeverinoP. PaganelliM.O. ChaudM.V. SilvaA.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery.Heliyon202282e0893810.1016/j.heliyon.2022.e0893835198788
    [Google Scholar]
  48. DmitrievA.V. FilimonovD.A. RudikA.V. PogodinP.V. KarasevD.A. LaguninA.A. PoroikovV.V. Drug-drug interaction prediction using PASS.SAR QSAR Environ. Res.201930965566410.1080/1062936X.2019.165396631482727
    [Google Scholar]
  49. MuniaN.S. AlanaziM.M. El BakriY. AlanaziA.S. MukhrishY.E. HasanI. KawsarS.M.A. Uridine derivatives: Synthesis, biological evaluation, and in silico studies as antimicrobial and anticancer agents.Medicina2023596110710.3390/medicina5906110737374310
    [Google Scholar]
  50. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑633421024
    [Google Scholar]
  51. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4.Biol. Direct20201511210.1186/s13062‑020‑00267‑232938494
    [Google Scholar]
  52. RoseY. DuarteJ.M. LoweR. SeguraJ. BiC. BhikadiyaC. ChenL. RoseA.S. BittrichS. BurleyS.K. WestbrookJ.D. RCSB protein data bank: Architectural advances towards integrated searching and efficient access to macromolecular structure data from the PDB Archive.J. Mol. Biol.20214331116670410.1016/j.jmb.2020.11.00333186584
    [Google Scholar]
  53. SchrodingerL. DeLanoW. Introducing PyMOL 3.0.2020Available from:http://www.pymol.org/(accessed on 10-6-2024)
  54. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  55. HopkinsA.L. KeserüG.M. LeesonP.D. ReesD.C. ReynoldsC.H. The role of ligand efficiency metrics in drug discovery.Nat. Rev. Drug Discov.201413210512110.1038/nrd416324481311
    [Google Scholar]
  56. LagardeN. ZaguryJ.F. MontesM. Benchmarking data sets for the evaluation of virtual ligand screening methods: review and perspectives.J. Chem. Inf. Model.20155571297130710.1021/acs.jcim.5b0009026038804
    [Google Scholar]
  57. PatodiaS. BagariaA. ChopraD. Molecular dynamics simulation of proteins: A brief overview.J. Phys. Chem. Biophys.20144610.4172/2161‑0398.1000166
    [Google Scholar]
  58. DuanY. WuC. ChowdhuryS. LeeM.C. XiongG. ZhangW. YangR. CieplakP. LuoR. LeeT. CaldwellJ. WangJ. KollmanP. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations.J. Comput. Chem.200324161999201210.1002/jcc.1034914531054
    [Google Scholar]
  59. ChenD. OezguenN. UrvilP. FergusonC. DannS.M. SavidgeT.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing.Sci. Adv.201623e150124010.1126/sciadv.150124027051863
    [Google Scholar]
  60. AhmadS. AbbasiH.W. ShahidS. GulS. AbbasiS.W. Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment.J. Biomol. Struct. Dyn.202139124225423310.1080/07391102.2020.177512932462996
    [Google Scholar]
  61. WatkinsR.R. DavidM.Z. SalataR.A. Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. J. Med. Microbiol.20126191179119310.1099/jmm.0.043513‑022745137
    [Google Scholar]
  62. NguyenH.T.T. NguyenT.H. OttoM. The staphylococcal exopolysaccharide PIA – Biosynthesis and role in biofilm formation, colonization, and infection.Comput. Struct. Biotechnol. J.2020183324333410.1016/j.csbj.2020.10.02733240473
    [Google Scholar]
  63. MahadyG. Medicinal plants for the prevention and treatment of bacterial infections.Curr. Pharm. Des.200511192405242710.2174/138161205436748116026296
    [Google Scholar]
  64. DorchehF.A. BalmehN. SanjariS. In-silico investigation of antibacterial herbal compounds in order to find new antibiotic against Staphylococcus aureus and its resistant subtypes.Inform. Med. Unlocked20222810084310.1016/j.imu.2021.100843
    [Google Scholar]
  65. LlorC. BjerrumL. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem.Ther. Adv. Drug Saf.20145622924110.1177/204209861455491925436105
    [Google Scholar]
  66. RochaJ. KondoW. BaptistaM. CunhaC. MartinsL. Uncommon vancomycin: induced side effects.The Brazilian j. infect. dis.20026196200
    [Google Scholar]
  67. PonnusamyKannan Antibacterial activity of Terminalia chebula Retz fruit extract.Afr. J. Microbiol. Res.20093180184
    [Google Scholar]
  68. Hassan BulbulM.R. Uddin ChowdhuryM.N. NaimaT.A. SamiS.A. ImtiajM.S. HudaN. UddinM.G. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz.Heliyon202288e1022010.1016/j.heliyon.2022.e1022036051270
    [Google Scholar]
  69. KhanB.A. YehA.J. CheungG.Y. OttoM. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections.Expert Opin. Investig. Drugs201524568970410.1517/13543784.2015.101906225704585
    [Google Scholar]
  70. AnzaM. TadesseS. HaileE. MammoF. EndaleM. A coniferyl alcohol derivative from the roots of Zanthoxylum chalybeum.J. Coast. Life Med.2014210.12980/JCLM.2.201414J56
    [Google Scholar]
  71. FershtA.R. ShiJ.P. Knill-JonesJ. LoweD.M. WilkinsonA.J. BlowD.M. BrickP. CarterP. WayeM.M.Y. WinterG. Hydrogen bonding and biological specificity analysed by protein engineering.Nature1985314600823523810.1038/314235a03845322
    [Google Scholar]
  72. VermaA.K. AhmedS.F. HossainM.S. BhojiyaA.A. MathurA. UpadhyayS.K. SrivastavaA.K. VishvakarmaN.K. BarikM. RahamanM.M. BahadurN.M. Molecular docking and simulation studies of flavonoid compounds against PBP-2a of methicillin‐resistant Staphylococcus aureus.J. Biomol. Struct. Dyn.20224021105611057710.1080/07391102.2021.194491134243699
    [Google Scholar]
  73. MasumiM. Methicillin-resistant staphylococcus aureus: docking-based virtual screening and molecular dynamics simulations to identify potential penicillin-binding protein 2a inhibitors from natural flavonoids.Int. J. Microbiol.20222022913070010.1155/2022/9130700
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072309616240613071448
Loading
/content/journals/cbc/10.2174/0115734072309616240613071448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test