Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

belongs to the family Cucurbitaceae and is generally known as teasle gourd or spiny gourd. This plant is highly significant for its active phytoconstituents bearing several pharmacological activities.

Objectives

This study aims to evaluate the anthelmintic activity of biosynthesized Silver nanoparticles of fruit extract against .

Methods

silver nanoparticles were prepared by green synthesis and were characterized using spectroscopic methods like UV-visible, FTIR, and Scanning Electron Microscopy (SEM) techniques. The prepared silver nanoparticles were investigated for the targeted activity using Albendazole as standard and normal saline as the control.

Results

The UV-visible spectrophotometer showed absorbance in the range of 424 nm. FTIR revealed the presence of functional groups of both extract and nanoparticles. The spherical shape of the AgNPs and their size ranges below 100 nm by SEM. The anthelmintic activity showed the paralysis and mortality rate of the worms for the fruit extract, and silver nanoparticles were found to be 45.03 ± 0.1, 60.13 ± 0.1, and 12.35 ± 0.04, 22.34 ± 0.02 by One way ANOVA ( <0.0001).

Conclusion

The fruit extract converted to silver nanoparticles had better anthelmintic activity compared to the fruit extract. The paralysis and death time were reduced 4 to 5 times, which showed the improved effect of the silver nanoparticles of extract.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072307303241016053537
2024-10-23
2025-10-21
Loading full text...

Full text loading...

References

  1. HeX. DengH. HwangH. The current application of nanotechnology in food and agriculture.J. Food Drug Anal.,201927112110.1016/j.jfda.2018.12.002 30648562
    [Google Scholar]
  2. DasguptaN. RanjanS. DasguptaN. RanjanS. Nanotechnology in food sector.An Introduction to Food Grade Nanoemulsions. Environmental Chemistry for a Sustainable World.SingaporeSpringer201810.1007/978‑981‑10‑6986‑4_1
    [Google Scholar]
  3. KommareddyS. TiwariS.B. AmijiM.M. Long-circulating polymeric nanovectors for tumor-selective gene delivery.Technol. Cancer Res. Treat.20054661562510.1177/153303460500400605 16292881
    [Google Scholar]
  4. MohajeraniA. BurnettL. SmithJ.V. KurmusH. MilasJ. ArulrajahA. HorpibulsukS. Abdul KadirA. Nanoparticles in construction materials and other applications, and implications of nanoparticle use.Materials (Basel)20191219305210.3390/ma12193052 31547011
    [Google Scholar]
  5. ReverchonE. AdamiR. Nanomaterials and supercritical fluids.J. Supercrit. Fluids200637112210.1016/j.supflu.2005.08.003
    [Google Scholar]
  6. RollandJ.P. MaynorB.W. EulissL.E. ExnerA.E. DenisonG.M. DeSimoneJ.M. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials.J. Am. Chem. Soc.200512728100961010010.1021/ja051977c 16011375
    [Google Scholar]
  7. GurunathanS. ParkJ.H. HanJ.W. KimJ.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy.Int. J. Nanomedicine2015104203422210.2147/IJN.S83953 26170659
    [Google Scholar]
  8. El-NaggarN.E.A. HusseinM.H. Shaaban-DessuukiS.A. DalalS.R. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth.Sci. Rep.2020101301110.1038/s41598‑020‑59945‑w 32080302
    [Google Scholar]
  9. TahseenQ. Helminth parasites: The cause of distress and diseases. In: Infectious Diseases and Your Health;201813518710.1007/978‑981‑13‑1577‑0_8
    [Google Scholar]
  10. FissihaW. KindeM.Z. Anthelmintic resistance and its mechanism: a review.Infect. Drug Resist.2021145403541010.2147/IDR.S332378 34938088
    [Google Scholar]
  11. CoxF.E.G. History of human parasitology.Clin. Microbiol. Rev.200215459561210.1128/CMR.15.4.595‑612.2002 12364371
    [Google Scholar]
  12. Loos-FrankB. GrencisR.K. Parasitic worms.In: The Biology of Parasites;2016
    [Google Scholar]
  13. DuthieJ.F. Flora of the upper Gangatic Plans; Botanical survey of India: Calcutta,1965
    [Google Scholar]
  14. GopalakrishnanT.R. Gopalakrishnan Vegetable Crops.New India Publishing2007
    [Google Scholar]
  15. ChopraR.N. NayarS.L. ChopraZ.C. Glossary of medicinal plants of India.Publication Council of Scientific of Industrial Research New Delhi1956
    [Google Scholar]
  16. KirtikarK.R. BasuB.D. Indian medicinal plants.Int Book Distributors, Dehradun1999211291135
    [Google Scholar]
  17. NadkarniK.M. Medicinal plants of India.IndiaReprint Publication Dehradun2004
    [Google Scholar]
  18. Habeeb RahumanH.B. DhandapaniR. NarayananS. PalanivelV. ParamasivamR. SubbarayaluR. ThangaveluS. MuthupandianS. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications.IET Nanobiotechnol.202216411514410.1049/nbt2.12078 35426251
    [Google Scholar]
  19. MajumdarR. KarP.K. Biosynthesis, characterization and anthelmintic activity of silver nanoparticles of Clerodendrum infortunatum isolate.Sci. Rep.2023131741510.1038/s41598‑023‑34221‑9 37150767
    [Google Scholar]
  20. RehmanA. UllahR. UddinI. ZiaI. RehmanL. AbidiS.M.A. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum.Exp. Parasitol.20191989510410.1016/j.exppara.2019.02.005 30769019
    [Google Scholar]
  21. KumarD.G. AcharR.R. KumarJ.R. AmalaG. GopalakrishnanV.K. PradeepS. ShatiA.A. AlfaifiM.Y. ElbehairiS.E.I. SilinaE. StupinV. ManturovaN. ShivamalluC. KollurS.P. Assessment of antimicrobial and anthelmintic activity of silver nanoparticles bio-synthesized from Viscum orientale leaf extract.BMC Complement. Med. Ther.202323116710.1186/s12906‑023‑03982‑1 37217985
    [Google Scholar]
  22. SathiyarajS. SuriyakalaG. GandhiA.D. SaranyaS. SanthoshkumarM. KavithaP. BabujanarthanamR. Green biosynthesis of silver nanoparticles using Vallarai chooranam and their potential biomedical applications.J. Inorg. Organomet. Polym. Mater.202030114709471910.1007/s10904‑020‑01683‑7
    [Google Scholar]
  23. BilalM. RasheedT. IqbalH.M.N. HuH. WangW. ZhangX. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.Int. J. Biol. Macromol.201710355457410.1016/j.ijbiomac.2017.05.071 28528940
    [Google Scholar]
  24. MurthyH.C.A. Desalegn ZelekeT. RavikumarC.R. Anil KumarM.R. NagaswarupaH.P. Electrochemical properties of biogenic silver nanoparticles synthesized using Hagenia abyssinica (Brace) JF. Gmel. medicinal plant leaf extract.Mater. Res. Express20207505501610.1088/2053‑1591/ab9252
    [Google Scholar]
  25. GhelaniD. FaisalS. Synthesis and characterization of Aluminium Oxide nanoparticles.Authorea Preprints202210.22541/au.166490972.20428974/v1
    [Google Scholar]
  26. ShereenM.A. AhmadA. KhanH. SattiS.M. KazmiA. BashirN. ShehrozM. HussainS. IlyasM. KhanM.I. NiyaziH.A. ZouidiF. Plant extract preparation and green synthesis of silver nanoparticles using Swertia chirata: Characterization and antimicrobial activity against selected human pathogens.Heliyon2024106e2803810.1016/j.heliyon.2024.e28038 38524534
    [Google Scholar]
  27. AdnanM. AkbarA. MussaratS. MuradW. HameedI. BegumS. NazirR. AliN. AliE.A. BariA. AzizM.A. KhanS.N. Phyto-extract-mediated synthesis of silver nanoparticles (AgNPs) and their biological activities.BioMed Res. Int.20222022111010.1155/2022/9845022 36440367
    [Google Scholar]
  28. JainD. DaimaH.K. KachhwahaS. KothariS.L. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities.Dig. J. Nanomater. Biostruct.200943557563
    [Google Scholar]
  29. RenukaR. DeviK.R. SivakamiM. ThilagavathiT. UthrakumarR. KaviyarasuK. Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application.Biocatal. Agric. Biotechnol.20202410156710.1016/j.bcab.2020.101567
    [Google Scholar]
  30. FolorunsoA. AkinteluS. OyebamijiA.K. AjayiS. AbiolaB. AbdusalamI. MorakinyoA. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata.J. Nanostructure Chem.20199211111710.1007/s40097‑019‑0301‑1
    [Google Scholar]
  31. LabuloA.H. DavidO.A. TernaA.D. Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluation of its antioxidant and antimicrobial activity.Chem. Zvesti202276127313732510.1007/s11696‑022‑02392‑w 35992611
    [Google Scholar]
  32. HaroonM. ZaidiA. AhmedB. RizviA. KhanM.S. MusarratJ. Effective inhibition of phytopathogenic microbes by eco-friendly leaf extract mediated silver nanoparticles (AgNPs).Indian J. Microbiol.201959327328710.1007/s12088‑019‑00801‑5 31388204
    [Google Scholar]
  33. AminuA. OladepoS.A. Fast orange peel-mediated synthesis of silver nanoparticles and use as visual colorimetric sensor in the selective detection of mercury (II) ions.Arab. J. Sci. Eng.20214665477548710.1007/s13369‑020‑05030‑3
    [Google Scholar]
  34. SharmaR. DhillonA. KumarD. Mentha-stabilized silver nanoparticles for high-performance colorimetric detection of Al (III) in aqueous systems.Sci. Rep.201881518910.1038/s41598‑018‑23469‑1 29581515
    [Google Scholar]
  35. MallikarjunaK. NarasimhaG. DillipG.R. PraveenB. ShreedharB. LakshmiC.S. ReddyB.V. RajuB.D. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization.Dig. J. Nanomater. Biostruct.201161181186
    [Google Scholar]
  36. DevarajP. KumariP. AartiC. RenganathanA. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF‐7 cell line.J. Nanotechnol.2013201311510.1155/2013/598328
    [Google Scholar]
  37. AdateP.S. ParmesawaranS. ChauhanY. In vitro anthelmintic activity of stem extracts of Piper betle Linn against Pheritima posthuma.Pharmacogn. J.2012429616510.5530/pj.2012.29.10
    [Google Scholar]
  38. JamkhandeP.G. SuryawanshiV.A. WattamwarA.S. BardeS.R. In vitro anthelmintic efficacy of Borassus flabellifer Linn. (Palmae) against Pheretima posthuma.Asian Pac. J. Trop. Dis.20144S199S20310.1016/S2222‑1808(14)60439‑4
    [Google Scholar]
  39. DasN. GoshwamiD. HasanM.S. RaihanS.Z. SubediN.K. Phytochemical screening and in vitro anthelmintic activity of methanol extract of Terminalia citrina leaves.Asian Pac. J. Trop. Dis.20155S166S16810.1016/S2222‑1808(15)60881‑7
    [Google Scholar]
  40. DavuluriT. ChennuruS. PathipatiM. KrovvidiS. RaoG.S. In vitro anthelmintic activity of three tropical plant extracts on Haemonchus contortus.Acta Parasitol.2020651111810.2478/s11686‑019‑00116‑x 31552583
    [Google Scholar]
  41. IshnavaK.B. KonarP.S. In vitro anthelmintic activity and phytochemical characterization of Corallocarpus epigaeus (Rottler) Hook. f. tuber from ethyl acetate extracts.Bull. Natl. Res. Cent.20204413310.1186/s42269‑020‑00286‑z
    [Google Scholar]
  42. MeddaS. HajraA. DeyU. BoseP. MondalN.K. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp.Appl. Nanosci.20155787588010.1007/s13204‑014‑0387‑1
    [Google Scholar]
  43. CamposA. TrocN. CottancinE. PellarinM. WeisskerH.C. LerméJ. KociakM. HillenkampM. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments.Nat. Phys.201915327528010.1038/s41567‑018‑0345‑z
    [Google Scholar]
  44. YangS. LiuP. ZhangY. GuoQ.N. ChenY. Effects of silver nanoparticles size and shape on light scattering.Optik (Stuttg.)2016127145722572810.1016/j.ijleo.2016.03.071
    [Google Scholar]
  45. JeongS.H. ChoiH. KimJ.Y. LeeT.W. Silver‐based nanoparticles for surface plasmon resonance in organic optoelectronics.Part. Part. Syst. Charact.201532216417510.1002/ppsc.201400117
    [Google Scholar]
  46. KrishnarajC. JaganE.G. RajasekarS. SelvakumarP. KalaichelvanP.T. MohanN. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.Colloids Surf. B Biointerfaces2010761505610.1016/j.colsurfb.2009.10.008 19896347
    [Google Scholar]
  47. SmithaS.L. NissamudeenK.M. PhilipD. GopchandranK.G. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.200871118619010.1016/j.saa.2007.12.002 18222106
    [Google Scholar]
  48. YeshchenkoO.A. DmitrukI.M. AlexeenkoA.A. KotkoA.V. VerdalJ. PinchukA.O. Size and temperature effects on the surface plasmon resonance in silver nanoparticles.Plasmonics20127468569410.1007/s11468‑012‑9359‑z
    [Google Scholar]
  49. AwwadA.M. SalemN.M. Green synthesis of silver nanoparticles by Mulberry Leaves Extract.Nanoscience and Nanotechnology.20122412512810.5923/j.nn.20120204.06
    [Google Scholar]
  50. ForoughM. FarhadiK. Biological and green synthesis of silver nanoparticles.Turkish J. Eng. Environ. Sci.201034428128710.3906/muh‑1005‑30
    [Google Scholar]
  51. MelkamuW.W. BitewL.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities.Heliyon2021711e0845910.1016/j.heliyon.2021.e08459 34901505
    [Google Scholar]
  52. BanerjeeP. SatapathyM. MukhopahayayA. DasP. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis.Bioresour. Bioprocess.201411310.1186/s40643‑014‑0003‑y
    [Google Scholar]
  53. KumarB. SmitaK. CumbalL. DebutA. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts.Saudi J. Biol. Sci.201421660560910.1016/j.sjbs.2014.07.004 25473370
    [Google Scholar]
  54. RestrepoC.V. VillaC.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review.Environ. Nanotechnol. Monit. Manag.20211510042810.1016/j.enmm.2021.100428
    [Google Scholar]
  55. ChughD. ViswamalyaV.S. DasB. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process.J. Genet. Eng. Biotechnol.202119112610.1186/s43141‑021‑00228‑w 34427807
    [Google Scholar]
  56. LauB.L.T. HockadayW.C. IkumaK. FurmanO. DechoA.W. A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics.Colloids Surf. A Physicochem. Eng. Asp.2013435222710.1016/j.colsurfa.2012.11.065
    [Google Scholar]
  57. VishwajeetS. AnkitaS. NitinW. Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX.Afr. J. Biotechnol.201514332554256710.5897/AJB2015.14692
    [Google Scholar]
  58. Escárcega-GonzálezC.E. Garza-CervantesJ.A. Vazquez-RodríguezA. Montelongo-PeraltaL.Z. Treviño-GonzalezM.T. Díaz Barriga CastroE. Saucedo-SalazarE.M. Chávez MoralesR.M. Regalado-SotoD.I. Treviño-GonzálezF.M. Carrazco RosalesJ.L. Villalobos CruzR. Morones-RamírezJ.R. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent.Int. J. Nanomedicine2018132349236310.2147/IJN.S160605 29713166
    [Google Scholar]
  59. SeoudiR. ShabakaA. El SayedZ.A. AnisB. Effect of stabilizing agent on the morphology and optical properties of silver nanoparticles.Physica E201144244044710.1016/j.physe.2011.09.018
    [Google Scholar]
  60. RashidM.M.O. FerdousJ. BanikS. IslamM.R. UddinA.H.M.M. RobelF.N. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract.BMC Complement. Altern. Med.201616124210.1186/s12906‑016‑1219‑5 27457362
    [Google Scholar]
  61. DibrovP. DziobaJ. GosinkK.K. HäseC.C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae.Antimicrob. Agents Chemother.20024682668267010.1128/AAC.46.8.2668‑2670.2002 12121953
    [Google Scholar]
  62. BondarenkoO. IvaskA. KäkinenA. KurvetI. KahruA. Particle-cell contact enhances antibacterial activity of silver nanoparticles.PLoS One201385e6406010.1371/journal.pone.0064060 23737965
    [Google Scholar]
  63. FranciG. FalangaA. GaldieroS. PalombaL. RaiM. MorelliG. GaldieroM. Silver nanoparticles as potential antibacterial agents.Molecules20152058856887410.3390/molecules20058856 25993417
    [Google Scholar]
  64. MikhailovaE.O. Silver nanoparticles: Mechanism of action and probable bio-application.J. Funct. Biomater.20201148410.3390/jfb11040084 33255874
    [Google Scholar]
  65. JooS.H. AggarwalS. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge.J. Environ. Manage.2018225627410.1016/j.jenvman.2018.07.084 30071367
    [Google Scholar]
  66. MurongaM. QuispeC. TshikhudoP.P. MsagatiT.A.M. MudauF.N. MartorellM. SalehiB. Abdull RazisA.F. SunusiU. KamalR.M. Sharifi-RadJ. Three selected edible crops of the genus Momordica as potential sources of phytochemicals: biochemical, nutritional, and medicinal values.Front. Pharmacol.20211262554610.3389/fphar.2021.625546 34054516
    [Google Scholar]
  67. BeheraT.K. JohnK.J. BharathiL.K. KaruppaiyanR. Momordica.Wild Crop Relatives: Genomic and Breeding Resources.Berlin, HeidelbergSpringer201110.1007/978‑3‑642‑20450‑0_10
    [Google Scholar]
  68. HassanM.M. UddinS. BhowmikA. AshrafA. IslamM.M. RokeyaB. Phytochemical screening and antidiabetic effects of fruit rind of Momordica dioica roxb. on streptozocin induced type 2 diabetic rats.Heliyon202281e0877110.1016/j.heliyon.2022.e08771 35128091
    [Google Scholar]
  69. TalukdarS.N. HossainM.N. Phytochemical, phytotherapeutical and pharmacological study of Momordica dioica.Evid. Based Complement. Alternat. Med.20142014180608210.1155/2014/806082 25197312
    [Google Scholar]
  70. HamoudaT. MycA. DonovanB. ShihA.Y. ReuterJ.D. BakerJ.R. Jr A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi.Microbiol. Res.200115611710.1078/0944‑5013‑00069 11372645
    [Google Scholar]
  71. MukherjeeN. MukherjeeS. SainiP. RoyP. BabuS.P. Phenolics and terpenoids; The promising new search for anthelmintics: A Critical Review.Mini Rev. Med. Chem.201616171415144110.2174/1389557516666151120121036 26586122
    [Google Scholar]
  72. HrckovaG. VelebnyS. HrckovaG. VelebnyS. Parasitic helminths of humans and animals: Health impact and control.Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. SpringerBriefs in Pharmaceutical Science & Drug Development.ViennaSpringer201310.1007/978‑3‑7091‑1325‑7_2
    [Google Scholar]
  73. LedererS. DijkstraT.M.H. HeskesT. Additive dose response models: explicit formulation and the loewe additivity consistency condition.Front. Pharmacol.201893110.3389/fphar.2018.00031 29467650
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072307303241016053537
Loading
/content/journals/cbc/10.2174/0115734072307303241016053537
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AgNPs; anthelmintic activity; FTIR; in-vitro studies; Momordica dioica; SEM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test