Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Biosurfactants are natural products produced by microorganisms. This study examined the antioxidant activity, biosorption of heavy metals, and stability of lipopeptide biosurfactant (BLA 2906) produced by the bacterium YGD-2906.

Methods

Biosurfactant production was determined by using four techniques: hemolytic test, emulsion indices, oil spreading test, and drop collapse test. The biosorption capacity of our biosurfactant to chelate the different heavy metals. The antioxidant activity was evaluated by the reducing power, phosphomolybdate tests, and DPPH•, ABTS•+ radical scavenging assays and in the end, the stability of this biosurfactant was studied.

Results

A negative hemolytic test, emulsion indices of 63.11% with crude oil, 23.66 mm of oil spreading test, and a positive drop collapse test. The lipopeptide biosurfactant BLA 2906 demonstrated its ability to chelate different heavy metals at pH = 7.2, which gave biosorption capacities of Cu (II), Fe (II), Pb (II), Cd (II), and Zn (II) of 43.34, 43.60, 50.00, 20.08 and 22.48 mg /g of BLA 2906, respectively. The total antioxidant capacity of BLA 2906 presented a value of 0.84 mg Eq Trolox / g DM for the reducing power. On the other hand, the result for the phosphomolybdate test showed a value of 1029.00 ± 3.66 μg / mL to cause a 50% reduction of the reducing activity of the phosphomolybdenum for the BLA 2906. The result of ABTS+• scavenging activity was 10.46%. DPPH radical-scavenging effects and BHA at varying concentrations showed that concentrations required to cause 50% inhibition were 705.48 ± 3.89 µg / ml and 7.61 ± 0.11 µg / ml for this biosurfactant and BHA, respectively. The BLA 2906 showed high stability at different temperatures, pH, and salinity in terms of emulsification activity.

Conclusion

The results obtained by the lipopeptide biosurfactant BLA 2906 are attractive to invest in future applications in different fields such as industry, environment and biotechnology.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072291385240523100300
2024-05-31
2025-09-12
Loading full text...

Full text loading...

References

  1. MakkarR.S. RockneK.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons.Environ. Toxicol. Chem.200322102280229210.1897/02‑47214551990
    [Google Scholar]
  2. Selva FilhoA.A.P. ConvertiA. Soares da SilvaR.C.F. SarubboL.A. Biosurfactants as Multifunctional Remediation Agents of Environmental Pollutants Generated by the Petroleum Industry.Energies2023163120910.3390/en16031209
    [Google Scholar]
  3. ShavandiM. MohebaliG. HaddadiA. ShakaramiH. NuhiA. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.Colloids Surf. B Biointerfaces201182247748210.1016/j.colsurfb.2010.10.00521030223
    [Google Scholar]
  4. AparnaA. SrinikethanG. HedgeS. Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil.Int. Proc. Chem. Biol. Environ. Eng.201167175
    [Google Scholar]
  5. KhopadeA. BiaoR. LiuX. MahadikK. ZhangL. KokareC. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4.Desalination201228519820410.1016/j.desal.2011.10.002
    [Google Scholar]
  6. RavindranA. SajayanA. PriyadharshiniG.B. SelvinJ. KiranG.S. Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables.Front. Microbiol.20201122210.3389/fmicb.2020.0022232210927
    [Google Scholar]
  7. MulliganC.N. Sustainable remediation of contaminated soil using biosurfactants.Front. Bioeng. Biotechnol.2021963519610.3389/fbioe.2021.63519633791286
    [Google Scholar]
  8. LinH. ZhouM. LiB. DongY. Mechanisms, application advances and future perspectives of microbial-induced heavy metal precipitation: A review.Int. Biodeterior. Biodegradation202317810554410.1016/j.ibiod.2022.105544
    [Google Scholar]
  9. Yalaoui-GuellalD. Fella-TemziS. Djafri-DibS. SahuS.K. IrorereV.U. BanatI.M. MadaniK. The petroleum-degrading bacteria Alcaligenes aquatilis strain YGD 2906 as a potential source of lipopeptide biosurfactant.Fuel202128511911210.1016/j.fuel.2020.119112
    [Google Scholar]
  10. XiangshengZ. DejunX. GuocuiY. HuabinZ. JunhuiL. HojaeS. Isolation and characterization of rhamnolipid producing Pseudomonas aeruginosa strains from waste edible oils.Afr. J. Microbiol. Res.20126714661471http://www.academicjournals.org/AJMR
    [Google Scholar]
  11. YoussefN.H. DuncanK.E. NagleD.P. SavageK.N. KnappR.M. McInerneyM.J. Comparison of methods to detect biosurfactant production by diverse microorganisms.J. Microbiol. Methods200456333934710.1016/j.mimet.2003.11.00114967225
    [Google Scholar]
  12. EmtiaziG. SalehT. HassanshahianM. The effect of bacterial glutathione S‐transferase on morpholine degradation.Biotechnol. J.20094220220510.1002/biot.20080023819194977
    [Google Scholar]
  13. Yalaoui-GuellalD. BrahmiF. TouatiA. De ChampsC. BanatI.M. MadaniK. Production of Biosurfactants by Hydrocarbons degrading bacteria isolated from Soummam watershed Sediments of Bejaia in Algeria.Environ. Prog. Sustain. Energy201837118919510.1002/ep.12653
    [Google Scholar]
  14. HassanshahianM. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).Mar. Pollut. Bull.2014861-236136610.1016/j.marpolbul.2014.06.04325037876
    [Google Scholar]
  15. MorikawaM. HirataY. ImanakaT. A study on the structure–function relationship of lipopeptide biosurfactants.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20001488321121810.1016/S1388‑1981(00)00124‑411082531
    [Google Scholar]
  16. PłazaG.A. ZjawionyI. BanatI.M. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils.J. Petrol. Sci. Eng.2006501717710.1016/j.petrol.2005.10.005
    [Google Scholar]
  17. PeypouxF. BonmatinJ.M. WallachJ. Recent trends in the biochemistry of surfactin.Appl. Microbiol. Biotechnol.199951555356310.1007/s00253005143210390813
    [Google Scholar]
  18. ShuhongY. MeipingZ. HongY. HanW. ShanX. YanL. JihuiW. Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5.Carbohydr. Polym.2014101505610.1016/j.carbpol.2013.09.02124299748
    [Google Scholar]
  19. DebbabiM. NuryT. ZarroukA. MekahliN. BezineM. SghaierR. GrégoireS. MartineL. DurandP. CamusE. VejuxA. JabraneA. BretillonL. ProstM. MoreauT. AmmouS. HammamiM. LizardG. Protective effects of α-tocopherol, γ-tocopherol and oleic acid, three compounds of olive oils, and no effect of trolox, on 7-ketocholesterol-induced mitochondrial and peroxisomal dysfunction in microglial BV-2 cells.Int. J. Mol. Sci.20161712197310.3390/ijms1712197327897980
    [Google Scholar]
  20. BrahmiF. AdjaoudA. MarongiuB. FalconieriD. Yalaoui-GuellalD. MadaniK. ChibaneM. Chemical and biological profiles of essential oils from Mentha spicata L. leaf from Bejaia in Algeria.J. Essent. Oil Res.201628321122010.1080/10412905.2015.1118411
    [Google Scholar]
  21. Yalaoui-GuellalD. Fella-TemziS. Djafri-DibS. BrahmiF. BanatI.M. MadaniK. Biodegradation potential of crude petroleum by hydrocarbonoclastic bacteria isolated from Soummam wadi sediment and chemical-biological proprieties of their biosurfactants.J. Petrol. Sci. Eng.202018410655410.1016/j.petrol.2019.106554
    [Google Scholar]
  22. De MarcoE. SavareseM. PaduanoA. SacchiR. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters.Food Chem.2007104285886710.1016/j.foodchem.2006.10.005
    [Google Scholar]
  23. ManeeratS. PhetrongK. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant.Songklanakarin J. Sci. Technol.2007293781791
    [Google Scholar]
  24. MaalejH. HmidetN. BoissetC. BaymaE. HeyraudA. NasriM. Rheological and emulsifying properties of a gel-like exopolysaccharide produced by Pseudomonas stutzeri AS22.Food Hydrocoll.20165263464710.1016/j.foodhyd.2015.07.010
    [Google Scholar]
  25. KuyukinaM.S. IvshinaI.B. Rhodococcus biosurfactants: biosynthesis, properties, and potential applications.Biology of Rhodococcus.2010291313p10.1007/978‑3‑642‑12937‑7_11
    [Google Scholar]
  26. YonebayashiH. YoshidaS. OnoK. EnomotoH. Screening of microorganisms for microbial enhanced oil recovery processes.J. Jpn. Petrol. Inst.2000431596910.1627/jpi1958.43.59
    [Google Scholar]
  27. CarrilloP.G. MardarazC. Pitta-AlvarezS.I. GiuliettiA.M. Isolation and selection of biosurfactant-producing bacteria.World J. Microbiol. Biotechnol.1996121828410.1007/BF0032780724415095
    [Google Scholar]
  28. JainD.K. Collins-ThompsonD.L. LeeH. TrevorsJ.T. A drop-collapsing test for screening surfactant-producing microorganisms.J. Microbiol. Methods199113427127910.1016/0167‑7012(91)90064‑W
    [Google Scholar]
  29. BanatI.M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review.Bioresour. Technol.199551111210.1016/0960‑8524(94)00101‑6
    [Google Scholar]
  30. HentatiD. ChebbiA. MahmoudiA. HadrichF. CheffiM. FrikhaI. SayadiS. ChamkhaM. Biodegradation of hydrocarbons and biosurfactants production by a newly halotolerant Pseudomonas sp. strain isolated from contaminated seawater.Biochem. Eng. J.202116610786110.1016/j.bej.2020.107861
    [Google Scholar]
  31. PrasherS.O. BeaugeardM. HawariJ. BeraP. PatelR.M. KimS.H. Biosorption of heavy metals by red algae (Palmaria palmata).Environ. Technol.200425101097110610.1080/0959333250861837815551823
    [Google Scholar]
  32. SarubboL.A. RochaR.B.Jr LunaJ.M. RufinoR.D. SantosV.A. BanatI.M. Some aspects of heavy metals contamination remediation and role of biosurfactants.Chem. Ecol.201531870772310.1080/02757540.2015.1095293
    [Google Scholar]
  33. QiH. ZhaoT. ZhangQ. LiZ. ZhaoZ. XingR. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta).J. Appl. Phycol.200517652753410.1007/s10811‑005‑9003‑9
    [Google Scholar]
  34. LalS. RatnaS. SaidO.B. KumarR. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: An advancement in metal phytoremediation technology.Environmental Technology & Innovation20181024326310.1016/j.eti.2018.02.011
    [Google Scholar]
  35. AkbariS. AbdurahmanN.H. YunusR.M. FayazF. AlaraO.R. Biosurfactants—a new frontier for social and environmental safety: a mini review.Biotechnology Research and Innovation201821819010.1016/j.biori.2018.09.001
    [Google Scholar]
  36. GuanR. YuanX. WuZ. WangH. JiangL. LiY. ZengG. Functionality of surfactants in waste-activated sludge treatment: A review.Sci. Total Environ.20176091433144210.1016/j.scitotenv.2017.07.18928800686
    [Google Scholar]
  37. MouafoH.T. MbawalaA. SomashekarD. TchougangH.M. HarohallyN.V. NdjouenkeuR. Biological properties and structural characterization of a novel rhamnolipid like‐biosurfactants produced by Lactobacillus casei subsp. casei TM1B.Biotechnol. Appl. Biochem.202168358559610.1002/bab.196632497351
    [Google Scholar]
  38. BhosaleH.J. KadamT.A. PhulariS. Evaluation of antimicrobial activity and radical scavenging potential of lipopeptide biosurfactant from Klebsiella pneumoniae MSO-32.J. Pharm. Res.201482139143
    [Google Scholar]
  39. de SousaT. BhosleS. Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB.MJ10 isolated from a mangrove ecosystem.Bioresour. Technol.201212325626210.1016/j.biortech.2012.07.05622940327
    [Google Scholar]
  40. KiranG.S. SabuA. SelvinJ. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19.J. Biotechnol.2010148422122510.1016/j.jbiotec.2010.06.01220600381
    [Google Scholar]
  41. AbouseoudM. MaachiR. AmraneA. BouderguaS. NabiA. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination20082231-314315110.1016/j.desal.2007.01.198
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072291385240523100300
Loading
/content/journals/cbc/10.2174/0115734072291385240523100300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test