Skip to content
2000
image of Revolutionizing Therapeutic Approaches Against Pathophysiology of Alzheimer’s Disease: A Therapeutic Review

Abstract

Alzheimer’s disease (AD) is a multifactorial neuron-degenerative old age illness, which deteriorates the neuronal cells of the brain ultimately leading to dementia, decreased thinking ability and intricacy in performing daily routine activities. In most of the cases, AD is suspected to be caused by a combination of numerous factors, like environmental, genetic and lifestyle affecting the brain functioning. The present permitted treatments include N-methyl-D-aspartate (NMDA) receptor antagonists, cholinesterase inhibitors, and their combinations, which provide only momentary and symptomatic relief. Nowadays, clinical research is interested, in the pathology of Alzheimer’s disease to target the metabolism of abnormal tau protein, removal of beta-amyloid inflammatory response, the cholinergic neuron, and free radical damage, and treatments that can either stop or modify the course, of AD. Globally, efforts are continued to search new targets to invent new options for the treatment of AD. The present review critically discusses about various treatment strategies for the patients presented with AD. Moreover, herbal drug and new drug candidates, along with nanoformulations for the treatments of AD and the role of AI-based technology in searching therapy for AD have been delineated in the present article. We concluded that preventing amyloid-β (Aβ) synthesis, enhancing the removal of Aβ deposition, or preventing Aβ aggregation can suppress AD. Moreover, herbal medicines have become an attractive alternative to cure this disease with numerous beneficial effects with little side effects. Novel approaches using AI are therefore required to create treatments with novel targets that may not only cure symptoms but also prevent disease development at an early stage to improve the quality of patients’ lives.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098376646250715094707
2025-07-31
2025-10-30
Loading full text...

Full text loading...

References

  1. Van Cauwenberghe C. Van Broeckhoven C. Sleegers K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med. 2016 18 5 421 430 10.1038/gim.2015.117 26312828
    [Google Scholar]
  2. Chu L.W. Alzheimer’s disease: Early diagnosis and treatment. Hong Kong Med. J. 2012 18 3 228 237 22665688
    [Google Scholar]
  3. Cervellati C. Wood P.L. Romani A. Oxidative challenge in Alzheimer’s disease: State of knowledge and future needs. J. Investig. Med. 2016 64 1 21 32 10.1136/jim‑2015‑000017 26755810
    [Google Scholar]
  4. Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. (Review) Mol. Med. Rep. 2019 20 2 1479 1487 10.3892/mmr.2019.10374 31257471
    [Google Scholar]
  5. Gillette-Guyonnet S. Andrieu S. Nourhashemi F. Long‐term progression of Alzheimer’s disease in patients under antidementia drugs. Alzheimers Dement. 2011 7 6 579 592 10.1016/j.jalz.2011.02.009 22055975
    [Google Scholar]
  6. Yarns B.C. Holiday K.A. Carlson D.M. Cosgrove C.K. Melrose R.J. Pathophysiology of Alzheimer’s disease. Psychiatr. Clin. North Am. 2022 45 4 663 676 10.1016/j.psc.2022.07.003 36396271
    [Google Scholar]
  7. Tifratene K. Duff F.L. Pradier C. Use of drug treatments for Alzheimer’s disease in France: A study on a national level based on the National Alzheimer’s data bank (Banque Nationale Alzheimer). Pharmacoepidemiol. Drug Saf. 2012 21 9 1005 1012 10.1002/pds.3303 22718684
    [Google Scholar]
  8. Babić Leko M. Hof P.R. Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer’s disease. Prog Brain Res 2021 261 379 421 10.1016/bs.pbr.2020.07.016 33785136
    [Google Scholar]
  9. Basisty N. Holtz A. Schilling B. Accumulation of “old proteins” and the critical need for ms‐based protein turnover measurements in aging and longevity. Proteomics 2020 20 5-6 1800403 10.1002/pmic.201800403 31408259
    [Google Scholar]
  10. Luo F. Sandhu A.F. Rungratanawanich W. Melatonin and autophagy in aging-related neurodegenerative diseases. Int. J. Mol. Sci. 2020 21 19 7174 10.3390/ijms21197174 32998479
    [Google Scholar]
  11. Jo T Nho K Risacher SL Saykin AJ Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics 2020 21 S21): 496.(Suppl. 21 10.1186/s12859‑020‑03848‑0 33371874
    [Google Scholar]
  12. Hampel H. Mesulam M.M. Cuello A.C. Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research. J. Prev. Alzheimers Dis. 2019 6 1 2 15 10.14283/jpad.2018.43 30569080
    [Google Scholar]
  13. Ogbodo J.O. Agbo C.P. Njoku U.O. Alzheimer’s disease: Pathogenesis and therapeutic interventions. Curr. Aging Sci. 2022 15 1 2 25 10.2174/1874609814666210302085232 33653258
    [Google Scholar]
  14. Shevtsova E.F. Maltsev A.V. Vinogradova D.V. Shevtsov P.N. Bachurin S.O. Mitochondria as a promising target for developing novel agents for treating Alzheimer’s disease. Med. Res. Rev. 2021 41 2 803 827 10.1002/med.21715 32687230
    [Google Scholar]
  15. Nho K Kueider-Paisley A MahmoudianDehkordi S Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: Relationship to neuroimaging and CSF biomarkers. Alzheimers Dement. 2019 15 2 232 244 10.1016/j.jalz.2018.08.012 30337152
    [Google Scholar]
  16. Makhaeva G.F. Shevtsova E.F. Boltneva N.P. Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer’s disease. Chem. Biol. Interact. 2019 308 224 234 10.1016/j.cbi.2019.05.020 31100279
    [Google Scholar]
  17. Cho H. Choi J.Y. Lee H.S. Progressive tau accumulation in Alzheimer disease: 2-year follow-up study. J. Nucl. Med. 2019 60 11 1611 1621 10.2967/jnumed.118.221697 30926651
    [Google Scholar]
  18. Reddy P.H. Oliver D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019 8 5 488 10.3390/cells8050488 31121890
    [Google Scholar]
  19. LeBoeuf A.C. Levy S.F. Gaylord M. FTDP-17 mutations in Tau alter the regulation of microtubule dynamics: An “alternative core” model for normal and pathological Tau action. J. Biol. Chem. 2008 283 52 36406 36415 10.1074/jbc.M803519200 18940799
    [Google Scholar]
  20. Bachurin S.O. Gavrilova S.I. Samsonova A. Barreto G.E. Aliev G. Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacol. Res. 2018 129 216 226 10.1016/j.phrs.2017.11.021 29170097
    [Google Scholar]
  21. Delbarba A. Abate G. Prandelli C. Mitochondrial alterations in peripheral mononuclear blood cells from Alzheimer’s disease and mild cognitive impairment patients. Oxid. Med. Cell. Longev. 2016 2016 1 5923938 10.1155/2016/5923938 26881032
    [Google Scholar]
  22. Neth B.J. Craft S. Insulin resistance and Alzheimer’s disease: Bioenergetic linkages. Front. Aging Neurosci. 2017 9 345 10.3389/fnagi.2017.00345 29163128
    [Google Scholar]
  23. Yao J. Irwin R.W. Zhao L. Nilsen J. Hamilton R.T. Brinton R.D. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2009 106 34 14670 14675 10.1073/pnas.0903563106 19667196
    [Google Scholar]
  24. Han J. Lee H.J. Kim K.Y. Tuning structures and properties for developing novel chemical tools toward distinct pathogenic elements in Alzheimer’s disease. ACS Chem. Neurosci. 2018 9 4 800 808 10.1021/acschemneuro.7b00454 29283241
    [Google Scholar]
  25. Sun X. Chen W.D. Wang Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol. 2015 6 221 10.3389/fphar.2015.00221 26483691
    [Google Scholar]
  26. Lipton S.A. Paradigm shift in NMDA receptor antagonist drug development: Molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J. Alzheimers Dis. 2005 6 s6 S61 S74 Suppl. 10.3233/JAD‑2004‑6S610 15665416
    [Google Scholar]
  27. Highlights of Prescribing Information Aduhelmtm (Aducanumab-Avwa) Injection, for Intravenous Use Initial US Approval: 2021. Cambridge, MA, USA Biogen 2021
    [Google Scholar]
  28. Patel S. Bansoad A.V. Singh R. Khatik G.L. BACE1: A key regulator in Alzheimer’s disease progression and current development of its inhibitors. Curr. Neuropharmacol. 2022 20 6 1174 1193 10.2174/1570159X19666211201094031 34852746
    [Google Scholar]
  29. Doggrell S.A. Lessons that can be learnt from the failure of verubecestat in Alzheimer’s disease. Expert Opin. Pharmacother. 2019 20 17 2095 2099 10.1080/14656566.2019.1654998 31423903
    [Google Scholar]
  30. Wessels A.M. Tariot P.N. Zimmer J.A. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease. JAMA Neurol. 2020 77 2 199 209 10.1001/jamaneurol.2019.3988 31764959
    [Google Scholar]
  31. Timmers M. Streffer J.R. Russu A. Pharmacodynamics of atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer’s disease: Randomized, double-blind, placebo-controlled study. Alzheimers Res. Ther. 2018 10 1 85 10.1186/s13195‑018‑0415‑6 30134967
    [Google Scholar]
  32. Neumann U. Ufer M. Jacobson L.H. The BACE ‐1 inhibitor CNP 520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med. 2018 10 11 9316 10.15252/emmm.201809316 30224383
    [Google Scholar]
  33. Roberts C. Kaplow J. Giroux M. Krause S. Kanekiyo M. Amyloid and APOE status of screened subjects in the elenbecestat MissionAD phase 3 program. J. Prev. Alzheimers Dis. 2021 8 2 218 223 10.14283/jpad.2021.4 33569570
    [Google Scholar]
  34. Miranda A. Montiel E. Ulrich H. Paz C. Selective secretase targeting for Alzheimer’s disease therapy. J. Alzheimers Dis. 2021 81 1 1 17 10.3233/JAD‑201027 33749645
    [Google Scholar]
  35. Willis B.A. Zhang W. Ayan-Oshodi M. Semagacestat pharmacokinetics are not significantly affected by formulation, food, or time of dosing in healthy participants. J. Clin. Pharmacol. 2012 52 6 904 913 10.1177/0091270011407195 21724950
    [Google Scholar]
  36. Henley D.B. Sundell K.L. Sethuraman G. Dowsett S.A. May P.C. Safety profile of semagacestat, a gamma-secretase inhibitor: IDENTITY trial findings. Curr. Med. Res. Opin. 2014 30 10 2021 2032 10.1185/03007995.2014.939167 24983746
    [Google Scholar]
  37. Pinheiro L. Faustino C. Therapeutic strategies targeting Amyloid-β in Alzheimer’s disease. Curr. Alzheimer Res. 2019 16 5 418 452 10.2174/1567205016666190321163438 30907320
    [Google Scholar]
  38. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  39. Nicoll J.A.R. Buckland G.R. Harrison C.H. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain 2019 142 7 2113 2126 10.1093/brain/awz142 31157360
    [Google Scholar]
  40. Pride M. Seubert P. Grundman M. Hagen M. Eldridge J. Black R.S. Progress in the active immunotherapeutic approach to Alzheimer’s disease: Clinical investigations into AN1792-associated meningoencephalitis. Neurodegener. Dis. 2008 5 3-4 194 196 10.1159/000113700 18322388
    [Google Scholar]
  41. Pasquier F. Sadowsky C. Holstein A. Two phase 2 multiple ascending–dose studies of vanutide cridificar (ACC-001) and QS-21 adjuvant in mild-to-moderate Alzheimer’s disease. J. Alzheimers Dis. 2016 51 4 1131 1143 10.3233/JAD‑150376 26967206
    [Google Scholar]
  42. Hull M. Sadowsky C. Arai H. Long-term extensions of randomized vaccination trials of ACC-001 and QS-21 in mild to moderate Alzheimer’s disease. Curr. Alzheimer Res. 2017 14 7 696 708 10.2174/1567205014666170117101537 28124589
    [Google Scholar]
  43. Ohtake Y. Kong W. Hussain R. Protein tyrosine phosphatase σ regulates autoimmune encephalomyelitis development. Brain Behav. Immun. 2017 65 111 124 10.1016/j.bbi.2017.05.018 28559011
    [Google Scholar]
  44. Salloway S. Marshall G.A. Lu M. Brashear H.R. Long-term safety and efficacy of bapineuzumab in patients with mild-to-moderate Alzheimer’s disease: A phase 2, open-label extension study. Curr. Alzheimer Res. 2018 15 13 1231 1243 10.2174/1567205015666180821114813 30129411
    [Google Scholar]
  45. Bateman R.J. Cummings J. Schobel S. Gantenerumab: An anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer’s disease. Alzheimers Res. Ther. 2022 14 1 178 10.1186/s13195‑022‑01110‑8 36447240
    [Google Scholar]
  46. Dolton M.J. Chesterman A. Moein A. Safety, tolerability, and pharmacokinetics of high‐volume subcutaneous crenezumab, with and without recombinant human hyaluronidase in healthy volunteers. Clin. Pharmacol. Ther. 2021 110 5 1337 1348 10.1002/cpt.2385 34347883
    [Google Scholar]
  47. Landen J.W. Andreasen N. Cronenberger C.L. Ponezumab in mild‐to‐moderate Alzheimer’s disease: Randomized phase II PET‐PIB study. Alzheimers Dement. 2017 3 3 393 401 10.1016/j.trci.2017.05.003 29067345
    [Google Scholar]
  48. Cummings J. Aisen P. Apostolova L.G. Atri A. Salloway S. Weiner M. Aducanumab: Appropriate use recommendations. J. Prev. Alzheimers Dis. 2021 8 4 398 410 10.14283/jpad.2021.41 34585212
    [Google Scholar]
  49. Wegmann S. Biernat J. Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 2021 69 131 138 10.1016/j.conb.2021.03.003 33892381
    [Google Scholar]
  50. Lovestone S. Boada M. Dubois B. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis. 2015 45 1 75 88 10.3233/JAD‑141959 25537011
    [Google Scholar]
  51. Haussmann R. Noppes F. Brandt M.D. Bauer M. Donix M. Minireview: Lithium: A therapeutic option in Alzheimer’s disease and its prodromal stages? Neurosci. Lett. 2021 760 136044 10.1016/j.neulet.2021.136044 34119602
    [Google Scholar]
  52. Muronaga M. Terao T. Kohno K. Hirakawa H. Izumi T. Etoh M. Lithium in drinking water and Alzheimer’s dementia: Epidemiological findings from national data base of Japan. Bipolar Disord. 2022 24 8 788 794 10.1111/bdi.13257 36073313
    [Google Scholar]
  53. Tucker D. Lu Y. Zhang Q. From mitochondrial function to neuroprotection—An emerging role for methylene blue. Mol. Neurobiol. 2018 55 6 5137 5153 10.1007/s12035‑017‑0712‑2 28840449
    [Google Scholar]
  54. Hashweh N.N. Bartochowski Z. Khoury R. Grossberg G.T. An evaluation of hydromethylthionine as a treatment option for Alzheimer’s disease. Expert Opin. Pharmacother. 2020 21 6 619 627 10.1080/14656566.2020.1719066 32037892
    [Google Scholar]
  55. Wischik C.M. Staff R.T. Wischik D.J. Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease. J. Alzheimers Dis. 2015 44 2 705 720 10.3233/JAD‑142874 25550228
    [Google Scholar]
  56. Wilcock G.K. Gauthier S. Frisoni G.B. Potential of low dose leuco-methylthioninium Bis(Hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: Cohort analysis as modified primary outcome in a phase III clinical trial. J. Alzheimers Dis. 2017 61 1 435 457 10.3233/JAD‑170560 29154277
    [Google Scholar]
  57. Gozes I. Shazman S. A novel davunetide (NAPVSIPQ Q to NAPVSIPQ E) point mutation in activity‐dependent neuroprotective protein (ADNP) causes a mild developmental syndrome. Eur. J. Neurosci. 2023 58 2 2641 2652 10.1111/ejn.15920 36669790
    [Google Scholar]
  58. Dale M.L. Brumbach B.H. Boxer A.L. Hiller A.L. Associations between amantadine usage, gait, and cognition in PSP: A post-hoc analysis of the davunetide trial. Front. Neurol. 2020 11 606925 10.3389/fneur.2020.606925 33408688
    [Google Scholar]
  59. Morimoto B.H. Schmechel D. Hirman J. Blackwell A. Keith J. Gold M. A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2013 35 5-6 325 339 10.1159/000348347 23594991
    [Google Scholar]
  60. Ye W. Liu T. Zhang W.M. Zhang W. Li S. The improvement of epothilone D yield by the disruption of epoK gene in sorangium cellulosum using TALEN system. Mol. Biotechnol. 2023 65 2 282 289 10.1007/s12033‑022‑00602‑0 36401710
    [Google Scholar]
  61. Guo B. Huang Y. Gao Q. Zhou Q. Stabilization of microtubules improves cognitive functions and axonal transport of mitochondria in Alzheimer’s disease model mice. Neurobiol. Aging 2020 96 223 232 10.1016/j.neurobiolaging.2020.09.011 33039900
    [Google Scholar]
  62. Konner J. Grisham R.N. Park J. Phase I clinical, pharmacokinetic, and pharmacodynamic study of KOS-862 (Epothilone D) in patients with advanced solid tumors and lymphoma. Invest. New Drugs 2012 30 6 2294 2302 10.1007/s10637‑011‑9765‑7 22072399
    [Google Scholar]
  63. Novak P. Schmidt R. Kontsekova E. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res. Ther. 2018 10 1 108 10.1186/s13195‑018‑0436‑1 30355322
    [Google Scholar]
  64. Theunis C. Crespo-Biel N. Gafner V. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One 2013 8 8 72301 10.1371/journal.pone.0072301 23977276
    [Google Scholar]
  65. Qureshi I.A. Tirucherai G. Ahlijanian M.K. Kolaitis G. Bechtold C. Grundman M. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement. 2018 4 1 746 755 10.1016/j.trci.2018.10.007 30581980
    [Google Scholar]
  66. Boxer A.L. Qureshi I. Ahlijanian M. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: A randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 2019 18 6 549 558 10.1016/S1474‑4422(19)30139‑5 31122495
    [Google Scholar]
  67. West T. Hu Y. Verghese P.B. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J. Prev. Alzheimers Dis. 2017 4 4 236 241 10.14283/jpad.2017.36 29181488
    [Google Scholar]
  68. Florian H. Wang D. Arnold S.E. Tilavonemab in early Alzheimer’s disease: Results from a phase 2, randomized, double-blind study. Brain 2023 146 6 2275 2284 10.1093/brain/awad024 36730056
    [Google Scholar]
  69. Alam R Driver D Wu S [O2–14–05]: Preclinical characterization of an antibodY [LY3303560] targeting aggregated tau. 2017 13 7S_Part_11 P592 3 10.1016/j.jalz.2017.07.227
    [Google Scholar]
  70. Teng E. Manser P.T. Pickthorn K. Safety and efficacy of semorinemab in individuals with prodromal to mild Alzheimer disease. JAMA Neurol. 2022 79 8 758 767 10.1001/jamaneurol.2022.1375 35696185
    [Google Scholar]
  71. Ali S.K. Hamed A.R. Soltan M.M. In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of alzheimer disease. BMC Complement. Altern. Med. 2013 13 1 121 10.1186/1472‑6882‑13‑121 23721591
    [Google Scholar]
  72. Abou Baker D.H. Ibrahim B.M.M. Hassan N.S. Yousuf A.F. Gengaihi S.E. Exploiting Citrus aurantium seeds and their secondary metabolites in the management of Alzheimer disease. Toxicol. Rep. 2020 7 723 729 10.1016/j.toxrep.2020.06.001 32551234
    [Google Scholar]
  73. Noetzli M. Eap C.B. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin. Pharmacokinet. 2013 52 4 225 241 10.1007/s40262‑013‑0038‑9 23408070
    [Google Scholar]
  74. Deardorff W.J. Grossberg G. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des. Devel. Ther. 2016 10 3267 3279 10.2147/DDDT.S86463 27757016
    [Google Scholar]
  75. Mak S. Li W. Fu H. Promising tacrine/huperzine A‐based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders: From relieving symptoms to modifying diseases through multitarget. J. Neurochem. 2021 158 6 1381 1393 10.1111/jnc.15379 33930191
    [Google Scholar]
  76. Lo D. Grossberg G.T. Use of memantine for the treatment of dementia. Expert Rev. Neurother. 2011 11 10 1359 1370 10.1586/ern.11.132 21955192
    [Google Scholar]
  77. Cappell J. Herrmann N. Cornish S. Lanctôt K.L. The pharmacoeconomics of cognitive enhancers in moderate to severe Alzheimer’s disease. CNS Drugs 2010 24 11 909 927 10.2165/11539530‑000000000‑00000 20932064
    [Google Scholar]
  78. Orsucci D. Mancuso M. Ienco E.C. LoGerfo A. Siciliano G. Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr. Med. Chem. 2011 18 26 4053 4064 10.2174/092986711796957257 21824087
    [Google Scholar]
  79. Ramsay R.R. Dunford C. Gillman P.K. Methylene blue and serotonin toxicity: Inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. Br. J. Pharmacol. 2007 152 6 946 951 10.1038/sj.bjp.0707430 17721552
    [Google Scholar]
  80. Dumont M. Stack C. Elipenahli C. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum. Mol. Genet. 2012 21 23 5091 5105 10.1093/hmg/dds355 22922230
    [Google Scholar]
  81. Pavlov E. Zakharian E. Bladen C. A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys. J. 2005 88 4 2614 2625 10.1529/biophysj.104.057281 15695627
    [Google Scholar]
  82. Abramov A.Y. Fraley C. Diao C.T. Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc. Natl. Acad. Sci. USA 2007 104 46 18091 18096 10.1073/pnas.0708959104 17986607
    [Google Scholar]
  83. Camilleri A. Zarb C. Caruana M. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim. Biophys. Acta Biomembr. 2013 1828 11 2532 2543 10.1016/j.bbamem.2013.06.026 23817009
    [Google Scholar]
  84. Valasani K.R. Vangavaragu J.R. Day V.W. Yan S.S. Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors. J. Chem. Inf. Model. 2014 54 3 902 912 10.1021/ci5000196 24555519
    [Google Scholar]
  85. Tarocco A. Caroccia N. Morciano G. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019 10 4 317 10.1038/s41419‑019‑1556‑7 30962427
    [Google Scholar]
  86. Kreisl W.C. Lyoo C.H. McGwier M. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 2013 136 7 2228 2238 10.1093/brain/awt145 23775979
    [Google Scholar]
  87. Lyoo C.H. Ikawa M. Liow J.S. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J. Nucl. Med. 2015 56 5 701 706 10.2967/jnumed.114.146027 25766898
    [Google Scholar]
  88. Voorhees J.R. Remy M.T. Cintrón-Pérez C.J. (−)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol. Psychiatry 2018 84 7 488 498 10.1016/j.biopsych.2017.10.023 29246437
    [Google Scholar]
  89. Pieper A.A. Xie S. Capota E. Discovery of a proneurogenic, neuroprotective chemical. Cell 2010 142 1 39 51 10.1016/j.cell.2010.06.018 20603013
    [Google Scholar]
  90. Gu C. Zhang Y. Hu Q. P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death Dis. 2017 8 6 2858 10.1038/cddis.2017.250 28569794
    [Google Scholar]
  91. Wang T. Zhao L. Liu M. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats. Toxicol. Appl. Pharmacol. 2014 280 1 169 176 10.1016/j.taap.2014.06.011 24967689
    [Google Scholar]
  92. De Jesus-Cortes H. Miller A.D. Britt J.K. Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson’s disease. NPJ Parkinsons Dis. 2015 1 15010 10.1038/npjparkd.2015.10 27158662
    [Google Scholar]
  93. Vázquez-Rosa E. Shin M.K. Dhar M. P7C3-A20 treatment one year after TBI in mice repairs the blood–brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc. Natl. Acad. Sci. USA 2020 117 44 27667 27675 10.1073/pnas.2010430117 33087571
    [Google Scholar]
  94. Kemp S.W.P. Szynkaruk M. Stanoulis K.N. Pharmacologic rescue of motor and sensory function by the neuroprotective compound P7C3 following neonatal nerve injury. Neuroscience 2015 284 202 216 10.1016/j.neuroscience.2014.10.005 25313000
    [Google Scholar]
  95. Walker A.K. Rivera P.D. Wang Q. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol. Psychiatry 2015 20 4 500 508 10.1038/mp.2014.34 24751964
    [Google Scholar]
  96. Amat-Foraster M Leiser SC Herrik KF The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture. Neuropharmacology 2017 113 Pt A 45 59 10.1016/j.neuropharm.2016.09.017 27647493
    [Google Scholar]
  97. Wilkinson D. Windfeld K. Colding-Jørgensen E. Safety and efficacy of idalopirdine, a 5-HT 6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2014 13 11 1092 1099 10.1016/S1474‑4422(14)70198‑X 25297016
    [Google Scholar]
  98. Ivachtchenko A.V. Lavrovsky Y. Okun I. AVN-101: A multi-target drug candidate for the treatment of CNS disorders. J. Alzheimers Dis. 2016 53 2 583 620 10.3233/JAD‑151146 27232215
    [Google Scholar]
  99. Vermersch P. Brieva-Ruiz L. Fox R.J. Efficacy and safety of masitinib in progressive forms of multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022 9 3 1148 10.1212/NXI.0000000000001148 35190477
    [Google Scholar]
  100. Dubois B. López-Arrieta J. Lipschitz S. Masitinib for mild-to-moderate Alzheimer’s disease: Results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimers Res. Ther. 2023 15 1 39 10.1186/s13195‑023‑01169‑x 36849969
    [Google Scholar]
  101. Srivastava S. Ahmad R. Khare S.K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem. 2021 216 113320 10.1016/j.ejmech.2021.113320 33652356
    [Google Scholar]
  102. Melzer D. Personal paper: New drug treatment for Alzheimer’s disease: Lessons for healthcare policy. BMJ 1998 316 7133 762 764 10.1136/bmj.316.7133.762 9529416
    [Google Scholar]
  103. Briggs R. Kennelly S.P. O’Neill D. Drug treatments in Alzheimer’s disease. Clin. Med. 2016 16 3 247 253 10.7861/clinmedicine.16‑3‑247 27251914
    [Google Scholar]
  104. Hassan N.A. Alshamari A.K. Hassan A.A. Advances on therapeutic strategies for Alzheimer’s disease: From medicinal plant to nanotechnology. Molecules 2022 27 15 4839 10.3390/molecules27154839 35956796
    [Google Scholar]
  105. Taliyan R. Kakoty V. Sarathlal K.C. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J. Control. Release 2022 343 528 550 10.1016/j.jconrel.2022.01.044 35114208
    [Google Scholar]
  106. Karthivashan G. Ganesan P. Park S.Y. Kim J.S. Choi D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018 25 1 307 320 10.1080/10717544.2018.1428243 29350055
    [Google Scholar]
  107. Gonzalez-Carter D. Liu X. Tockary T.A. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium. Proc. Natl. Acad. Sci. USA 2020 117 32 19141 19150 10.1073/pnas.2002016117 32703811
    [Google Scholar]
  108. Perche F. Uchida S. Akiba H. Improved brain expression of anti-amyloid β scFv by complexation of mRNA including a secretion sequence with PEG-based block catiomer. Curr. Alzheimer Res. 2017 14 3 295 302 10.2174/1567205013666161108110031 27829339
    [Google Scholar]
  109. McGeer P.L. Rogers J. McGeer E.G. Inflammation, antiinflammatory agents, and Alzheimer’s disease: The last 22 years. J. Alzheimers Dis. 2016 54 3 853 857 10.3233/JAD‑160488 27716676
    [Google Scholar]
  110. Cummings J. Lee G. Ritter A. Sabbagh M. Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019 5 1 272 293 10.1016/j.trci.2019.05.008 31334330
    [Google Scholar]
  111. Kellar D. Register T. Lockhart S.N. Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A randomized trial. Sci. Rep. 2022 12 1 1346 10.1038/s41598‑022‑05165‑3 35079029
    [Google Scholar]
  112. de la Rubia Ortí J.E. García-Pardo M.P. Iranzo C.C. Does music therapy improve anxiety and depression in Alzheimer’s patients? J. Altern. Complement. Med. 2018 24 1 33 36 10.1089/acm.2016.0346 28714736
    [Google Scholar]
  113. Peng Y. Jin H. Xue Y. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Front. Aging Neurosci. 2023 15 1206572 10.3389/fnagi.2023.1206572 37600514
    [Google Scholar]
  114. Kumar GP Anilakumar KR Naveen S Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn J 2015 7 1 01 17 10.5530/pj.2015.1.1
    [Google Scholar]
  115. Gorantla N.V. Das R. Mulani F.A. Thulasiram H.V. Chinnathambi S. Neem derivatives inhibits tau aggregation1. J. Alzheimers Dis. Rep. 2019 3 1 169 178 10.3233/ADR‑190118 31259310
    [Google Scholar]
  116. Cuya T. Baptista L. Celmar Costa França T. A molecular dynamics study of components of the ginger (Zingiber officinale) extract inside human acetylcholinesterase: Implications for Alzheimer disease. J. Biomol. Struct. Dyn. 2018 36 14 3843 3855 10.1080/07391102.2017.1401004 29096599
    [Google Scholar]
  117. Sehgal N. Gupta A. Valli R.K. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA 2012 109 9 3510 3515 10.1073/pnas.1112209109 22308347
    [Google Scholar]
  118. Rai K.S. Murthy K.D. Karanth K.S. Nalini K. Rao M.S. Srinivasan K.K. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia 2002 73 7-8 685 689 10.1016/S0367‑326X(02)00249‑6 12490229
    [Google Scholar]
  119. Soodi M. Naghdi N. Hajimehdipoor H. Choopani S. Sahraei E. Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. Res. Pharm. Sci. 2014 9 2 107 114 25657779
    [Google Scholar]
  120. Rubio J. Dang H. Gong M. Liu X. Chen S. Gonzales G.F. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem. Toxicol. 2007 45 10 1882 1890 10.1016/j.fct.2007.04.002 17543435
    [Google Scholar]
  121. Budzynska B. Boguszewska-Czubara A. Kruk-Slomka M. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 2015 232 5 931 942 10.1007/s00213‑014‑3728‑6 25189792
    [Google Scholar]
  122. Amalraj A. Pius A. Gopi S. Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med. 2017 7 2 205 233 10.1016/j.jtcme.2016.05.005 28417091
    [Google Scholar]
  123. Chaudhari K.S. Tiwari N.R. Tiwari R.R. Sharma R.S. Neurocognitive effect of nootropic drug brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann. Neurosci. 2017 24 2 111 122 10.1159/000475900 28588366
    [Google Scholar]
  124. Agarwal A. Malini S. Bairy K.L. Rao M.S.R. Effect of Tinospora cardifolia on learning and memory in normal and memory deficit rats. Indian J. Pharmacol. 2002 34 339 349
    [Google Scholar]
  125. Patel S.S. Gupta S. Udayabanu M. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice. Metab. Brain Dis. 2016 31 3 601 611 10.1007/s11011‑016‑9791‑4 26767366
    [Google Scholar]
  126. Jayaprakasam B. Padmanabhan K. Nair M.G. Withanamides in Withania somnifera fruit protect PC‐12 cells from β‐amyloid responsible for Alzheimer’s disease. Phytother. Res. 2010 24 6 859 863 10.1002/ptr.3033 19957250
    [Google Scholar]
  127. Sallam A. Mira A. Ashour A. Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine 2016 23 10 1005 1011 10.1016/j.phymed.2016.06.014 27444345
    [Google Scholar]
  128. Misra BB Dey S TLC-bioautographic evaluation of in vitro antityrosinase and anti-cholinesterase potentials of sandalwood oil. Nat Prod Commun 2013 8 2 1934578X1300800231 10.1177/1934578X1300800231 23513742
    [Google Scholar]
  129. Ohba T. Yoshino Y. Ishisaka M. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci. Biotechnol. Biochem. 2015 79 11 1838 1844 10.1080/09168451.2015.1052773 26059088
    [Google Scholar]
  130. Joshi H. Parle M. Nardostachys jatamansi improves learning and memory in mice. J. Med. Food 2006 9 1 113 118 10.1089/jmf.2006.9.113 16579738
    [Google Scholar]
  131. Ozarowski M. Mikolajczak P.L. Bogacz A. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 2013 91 261 271 10.1016/j.fitote.2013.09.012 24080468
    [Google Scholar]
  132. Alama B. Haque E. Anti-Alzheimer antioxidant activity of celastrus paniculatus seed. Iran J Pharm Sci 2011 7 49 56
    [Google Scholar]
  133. Lee J.W. Lee Y.K. Lee B.J. Inhibitory effect of ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol. Biochem. Behav. 2010 95 1 31 40 10.1016/j.pbb.2009.12.003 20004682
    [Google Scholar]
  134. Yassin N.A.Z. El-Shenawy S.A. Mahdy K. Effect of Boswellia serrata on Alzheimer′s disease induced in rats. J. Arab Soc. Med. Res. 2013 8 1 1 11 10.4103/1687‑4293.132766
    [Google Scholar]
  135. Saxena G. Singh S.P. Pal R. Singh S. Pratap R. Nath C. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol. Biochem. Behav. 2007 86 4 797 805 10.1016/j.pbb.2007.03.010 17477963
    [Google Scholar]
  136. Kim H.J. Jung S.W. Kim S.Y. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J. Ginseng Res. 2018 42 4 401 411 10.1016/j.jgr.2017.12.008 30337800
    [Google Scholar]
  137. Mokhtarian A. Esfandiari E. Ghanadian M. Rashidi B. Vatankhah A. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int. J. Prev. Med. 2018 9 1 85 10.4103/ijpvm.IJPVM_75_18 30450168
    [Google Scholar]
  138. Tedeschi P. Nigro M. Travagli A. Therapeutic potential of allicin and aged garlic extract in Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 13 6950 10.3390/ijms23136950 35805955
    [Google Scholar]
  139. Cummings J. Zhou Y. Lee G. Zhong K. Fonseca J. Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 2023 9 2 12385 10.1002/trc2.12385 37251912
    [Google Scholar]
  140. Fang J. Pieper A.A. Nussinov R. Harnessing endophenotypes and network medicine for Alzheimer’s drug repurposing. Med. Res. Rev. 2020 40 6 2386 2426 10.1002/med.21709 32656864
    [Google Scholar]
  141. Sierksma A. Escott-Price V. De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science 2020 370 6512 61 66 10.1126/science.abb8575 33004512
    [Google Scholar]
  142. Qiu Y. Cheng F. Artificial intelligence for drug discovery and development in Alzheimer’s disease. Curr. Opin. Struct. Biol. 2024 85 102776 10.1016/j.sbi.2024.102776 38335558
    [Google Scholar]
  143. Schreiner T.G. Croitoru C.G. Hodorog D.N. Cuciureanu D.I. Passive anti-amyloid beta immunotherapies in Alzheimer’s disease: From Mechanisms to Therapeutic Impact. Biomedicines 2024 12 5 1096 10.3390/biomedicines12051096 38791059
    [Google Scholar]
/content/journals/cas/10.2174/0118746098376646250715094707
Loading
/content/journals/cas/10.2174/0118746098376646250715094707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test