Skip to content
2000
image of Deciphering the Potential of Bone Morphogenetic Pathway (BMP) in the Pathogenesis of Depression

Abstract

Depression is a prevalent mental health disorder, profoundly impacting individuals and often exacerbated by stressful experiences. Current treatment options have limitations, including reduced efficacy and undesirable side effects. While antidepressant medications target distinct brain regions, their precise mechanisms influencing behavior remain incompletely elucidated. Recent research underscores the significance of the bone morphogenetic protein (BMP) signaling pathway within the hippocampus in mediating the effects of various antidepressants. Notably, these drugs inhibit BMP signaling, thereby augmenting neurogenesis in the hippocampus. Inhibiting BMP signaling specifically in newly generated brain cells elicits antidepressant effects, whereas suppressing these cells impedes such outcomes. This underscores the pivotal role of BMP signaling in the mechanism of antidepressant action. Adult neurogenesis, particularly in the hippocampus, emerges as pivotal for emotional regulation and stress response. Stress reduces the generation of new brain cells, whereas prolonged use of antidepressants promotes neurogenesis, suggesting a link between neurogenesis and depression. Investigating the molecular and cellular mechanisms underlying depression, anxiety, and antidepressant efficacy holds promise for the development of improved treatments characterized by rapid relief and reduced side effects.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098352786250730100521
2025-08-11
2025-10-30
Loading full text...

Full text loading...

References

  1. Doshi G.M. Chaskar P.K. Une H.D. Revelation of β-sitosterol from benincasa hispida seeds, carissa congesta roots and polyalthia longifolia leaves by high performance liquid chromatography. Pharmacogn. J. 2016 8 6 610 613 10.5530/pj.2016.6.15
    [Google Scholar]
  2. Mori M. Murata Y Tsuchihashi M Hanakita N Terasaki F Harada H Kawanabe S Terada K Matsumoto T Ohe K Mine K Enjoji M Continuous psychosocial stress stimulates BMP signaling in dorsal hippocampus concomitant with anxiety-like behavior associated with differential modulation of cell proliferation and neurogenesis. Behav Brain Res. 2020 392 112711 10.1016/j.bbr.2020.112711 32461130
    [Google Scholar]
  3. Zhang J. Li L. BMP signaling and stem cell regulation. Dev. Biol. 2005 284 1 1 11 10.1016/j.ydbio.2005.05.009 15963490
    [Google Scholar]
  4. See J. Zhang X. Eraydin N. Mun S.B. Mamontov P. Golden J.A. Grinspan J.B. Oligodendrocyte maturation is inhibited by bone morphogenetic protein. Mol. Cell. Neurosci. 2004 26 4 481 492 10.1016/j.mcn.2004.04.004 15276151
    [Google Scholar]
  5. Rapoport S.I. Basselin M. Kim H. Rao J.S. Bipolar disorder and mechanisms of action of mood stabilizers. Brain Res Rev. 2009 61 2 185 209 10.1016/j.brainresrev.2009.06.003 19555719
    [Google Scholar]
  6. Tunc-Ozcan E. Brooker S.M. Bonds J.A. Tsai Y.H. Rawat R. McGuire T.L. Peng C.Y. Kessler J.A. Hippocampal BMP signaling as a common pathway for antidepressant action. Cell. Mol. Life Sci. 2021 79 1 31 10.1007/s00018‑021‑04026‑y 34936033
    [Google Scholar]
  7. Hirono M. Kudo M. Yamada M. Yanagawa Y. The modulatory role of bone morphogenetic protein signaling in cerebellar synaptic plasticity. J. Neurochem. 2025 169 1 e16290 10.1111/jnc.16290 39680498
    [Google Scholar]
  8. Mikulska J. Juszczyk G. Gawrońska-Grzywacz M. Herbet M. HPA axis in the pathomechanism of depression and schizophrenia: New therapeutic strategies based on its participation. Brain Sci. 2021 11 10 1298 10.3390/brainsci11101298 34679364
    [Google Scholar]
  9. Yang T. Nie Z. Shu H. Kuang Y. Chen X. Cheng J. Yu S. Liu H. The role of BDNF on neural plasticity in depression. Front. Cell. Neurosci. 2020 14 82 10.3389/fncel.2020.00082 32351365
    [Google Scholar]
  10. Ting E.Y.C. Yang A.C. Tsai S.J. Role of interleukin-6 in depressive disorder. Int. J. Mol. Sci. 2020 21 6 2194 10.3390/ijms21062194 32235786
    [Google Scholar]
  11. Yang X. Hu D. Cheng R. Bao Q. Jiang H. Zhao B. Zhang Y. Unlocking the neuroprotective secrets of natural products: A focus on the gut-brain axis. Phytochem. Rev. 2025 24 1 44 10.1007/s11101‑025‑10081‑1
    [Google Scholar]
  12. Bahamonde M. E. Lyons K. M. Bmp3: To be or not to be a bmp. J Bone Joint Surg Am. 2001 83 Suppl 1(Pt 1) S56 S62 10.2106/00004623‑200100001‑00008
    [Google Scholar]
  13. Meng X. Chen X. Meng W. Han C. Qian X. Zhang Z. Low concentration of quercetin promotes BDNF expression and osteoblast differentiation during fracture healing via TrkB-ERK1/2 signaling pathway. Exp. Cell Res. 2025 449 1 114569 10.1016/j.yexcr.2025.114569 40334810
    [Google Scholar]
  14. Chassagne F. Samarakoon T. Porras G. Lyles J.T. Dettweiler M. Marquez L. Salam A.M. Shabih S. Farrokhi D.R. Quave C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 2021 11 586548 10.3389/fphar.2020.586548 33488385
    [Google Scholar]
  15. Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin. Neurosci. 2002 4 1 7 20 10.31887/DCNS.2002.4.1/bbondy 22033824
    [Google Scholar]
  16. Mori M. Murata Y. The role of bone morphogenetic protein signalling in functioning and adult neurogenesis of the hippocampus. J. Basic Clin. Pharm. 2022 13 5 192 194 10.37532/0976‑0113.13(5).192.Cite
    [Google Scholar]
  17. Tang H. Zhang X. Xue G. Xu F. Wang Q. Yang P. Hong B. Xu Y. Huang Q. Liu J. Zuo Q. The biology of bone morphogenetic protein signaling pathway in cerebrovascular system. Chin. Neurosurg. J. 2021 7 1 36 10.1186/s41016‑021‑00254‑0 34465399
    [Google Scholar]
  18. Kim M.J. Choe S. BMPs and their clinical potentials. BMB Rep. 2011 44 10 619 634 10.5483/BMBRep.2011.44.10.619 22026995
    [Google Scholar]
  19. Ordway G.A. Szebeni A. Chandley M.J. Stockmeier C.A. Xiang L. Newton S.S. Turecki G. Duffourc M.M. Zhu M.Y. Zhu H. Szebeni K. Low gene expression of bone morphogenetic protein 7 in brainstem astrocytes in major depression. Int. J. Neuropsychopharmacol. 2012 15 7 855 868 10.1017/S1461145711001350 21896235
    [Google Scholar]
  20. Lowery J.W. Rosen V. The BMP pathway and its inhibitors in the skeleton. Physiol. Rev. 2018 98 4 2431 2452 10.1152/physrev.00028.2017 30156494
    [Google Scholar]
  21. Mira H. Andreu Z. Suh H. Lie D.C. Jessberger S. Consiglio A. San Emeterio J. Hortigüela R. Marqués-Torrejón M.Á. Nakashima K. Colak D. Götz M. Fariñas I. Gage F.H. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 2010 7 1 78 89 10.1016/j.stem.2010.04.016 20621052
    [Google Scholar]
  22. Gardier A. Compréhension du mécanisme d ’ action des antidépresseurs anciens ou nouveaux : Apport des modèles de souris génétiquement modifiées en pharmacologie in vivo mechanism of action of antidepressant drugs. Importance of Genetically Modified Mice in the Phar 2024 60 5 3 7 10.2515/therapie:2005067 16433012
    [Google Scholar]
  23. Mehdipour M. Mehdipour T. Skinner C.M. Wong N. Liu C. Chen C.C. Jeon O.H. Zuo Y. Conboy M.J. Conboy I.M. Plasma dilution improves cognition and attenuates neuroinflammation in old mice. Geroscience 2021 43 1 1 18 10.1007/s11357‑020‑00297‑8 33191466
    [Google Scholar]
  24. Schoenfeld TJ Cameron HA Adult neurogenesis and mental illness. Neuropsychopharmacology 2015 40 1 113 128 10.1038/npp.2014.230 25178407
    [Google Scholar]
  25. Anacker C Hen R Adult hippocampal neurogenesis and cognitive flexibility– linking memory and mood. Nat Rev Neurosci 2017 18 6 335 346 10.1038/nrn.2017.45 28469276
    [Google Scholar]
  26. Briley M. Lépine The increasing burden of depression. Neuropsychiatr. Dis. Treat. 2011 7 Suppl. 1 3 7 10.2147/NDT.S19617 21750622
    [Google Scholar]
  27. Bromet E. Andrade L.H. Hwang I. Sampson N.A. Alonso J. de Girolamo G. de Graaf R. Demyttenaere K. Hu C. Iwata N. Karam A.N. Kaur J. Kostyuchenko S. Lépine J.P. Levinson D. Matschinger H. Mora M.E.M. Browne M.O. Posada-Villa J. Viana M.C. Williams D.R. Kessler R.C. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011 9 1 90 10.1186/1741‑7015‑9‑90 21791035
    [Google Scholar]
  28. Becker M. Pinhasov A. Ornoy A. Animal models of depression: What can they teach us about the human disease? Diagnostics (Basel) 2021 11 1 123 10.3390/diagnostics11010123 33466814
    [Google Scholar]
  29. Albert P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015 40 4 219 221 10.1503/jpn.150205 26107348
    [Google Scholar]
  30. Nogueira D.M.B., De Oliveira Ross M.P., Da Silva Santos P.S. Biological behavior of bioactive glasses SinGlass (45S5) and SinGlass High (F18) in the repair of critical bone defects. Biomolecules 2025 15 1 112 10.3390/biom15010112 39858506
    [Google Scholar]
  31. Parlier D. Moers V. Van Campenhout C. Preillon J. Leclère L. Saulnier A. Sirakov M. Busengdal H. Kricha S. Marine J.C. Rentzsch F. Bellefroid E.J. The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Dev. Biol. 2013 373 1 39 52 10.1016/j.ydbio.2012.10.003 23064029
    [Google Scholar]
  32. Liu M. Goldman G. MacDougall M. Chen S. BMP signaling pathway in dentin development and diseases. Cells 2022 11 14 2216 10.3390/cells11142216 35883659
    [Google Scholar]
  33. Baldassari S. Musante I. Iacomino M. Zara F. Salpietro V. Scudieri P. Brain organoids as model systems for genetic neurodevelopmental disorders. Front. Cell Dev. Biol. 2020 8 590119 10.3389/fcell.2020.590119 33154971
    [Google Scholar]
  34. Sánchez N. Juárez-Balarezo J. Olhaberry M. González-Oneto H. Muzard A. Mardonez M.J. Franco P. Barrera F. Gaete M. Depression and antidepressants during pregnancy: Craniofacial defects due to stem/progenitor cell deregulation mediated by serotonin. Front. Cell Dev. Biol. 2021 9 632766 10.3389/fcell.2021.632766 34476233
    [Google Scholar]
  35. Jensen G.S. Leon-Palmer N.E. Townsend K.L. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021 123 154837 10.1016/j.metabol.2021.154837 34331962
    [Google Scholar]
  36. Manzari-Tavakoli A. Babajani A. Farjoo M.H. Hajinasrollah M. Bahrami S. Niknejad H. The cross-talks among bone morphogenetic protein (bmp) signaling and other prominent pathways involved in neural differentiation. Front. Mol. Neurosci. 2022 15 827275 10.3389/fnmol.2022.827275 35370542
    [Google Scholar]
  37. Chai S. Wan L. Wang J.L. Huang J.C. Huang H.X. Gushukang inhibits osteocyte apoptosis and enhances BMP-2/Smads signaling pathway in ovariectomized rats. Phytomedicine 2019 64 153063 10.1016/j.phymed.2019.153063 31419728
    [Google Scholar]
  38. Wu M. Chen G. Li Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016 4 1 16009 10.1038/boneres.2016.9 27563484
    [Google Scholar]
  39. Cagdas D. Halacli S.O. Tan C. Esenboga S. Karaatmaca B. Cetinkaya P.G. Balcı-Hayta B. Ayhan A. Uner A. Orhan D. Boztug K. Ozen S. Topaloglu R. Sanal O. Tezcan I. Diversity in serine/threonine protein kinase-4 deficiency and review of the literature. J. Allergy Clin. Immunol. Pract. 2021 9 10 3752 3766.e4 10.1016/j.jaip.2021.05.032 34146746
    [Google Scholar]
  40. He F. Xiong W. Wang Y. Matsui M. Yu X. Chai Y. Klingensmith J. Chen Y. Chen Y. Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis. Dev. Biol. 2010 347 1 109 121 10.1016/j.ydbio.2010.08.014 20727875
    [Google Scholar]
  41. Costamagna D. Mommaerts H. Sampaolesi M. Tylzanowski P. Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo. Sci. Rep. 2016 6 1 31949 10.1038/srep31949 27573479
    [Google Scholar]
  42. Liu L. Zhang Z. Liu H. Zhu S. Zhou T. Wang C. Hu M. Identification and characterisation of the haemozoin of Haemonchus contortus. Parasit. Vectors 2023 16 1 88 10.1186/s13071‑023‑05714‑3 36879311
    [Google Scholar]
  43. Seki Y. Takebe H. Nakao Y. Sato K. Mizoguchi T. Nakamura H. Iijima M. Hosoya A. Osteoblast differentiation of Gli1+ cells via Wnt and BMP signaling pathways during orthodontic tooth movement. J. Oral Biosci./ JAOB, Jpn. Assoc. Oral Biol. 2024 66 2 373 380 10.1016/j.job.2024.03.004 38499228
    [Google Scholar]
  44. Pervan C.L. Smad-independent TGF-β2 signaling pathways in human trabecular meshwork cells. Exp. Eye Res. 2017 158 137 145 10.1016/j.exer.2016.07.012 27453344
    [Google Scholar]
  45. Bandyopadhyay A. Yadav P.S. Prashar P. BMP signaling in development and diseases: A pharmacological perspective. Biochem. Pharmacol. 2013 85 7 857 864 10.1016/j.bcp.2013.01.004 23333766
    [Google Scholar]
  46. Wang R.N. Green J. Wang Z. Deng Y. Qiao M. Peabody M. Zhang Q. Ye J. Yan Z. Denduluri S. Idowu O. Li M. Shen C. Hu A. Haydon R.C. Kang R. Mok J. Lee M.J. Luu H.L. Shi L.L. Bone morphogenetic protein (bmp) signaling in development and human diseases. Genes Dis. 2014 1 1 87 105 10.1016/j.gendis.2014.07.005 25401122
    [Google Scholar]
  47. Zeng L. Gu R. Li W. Shao Y. Zhu Y. Xie Z. Liu H. Zhou Y. Ataluren prevented bone loss induced by ovariectomy and aging in mice through the BMP-SMAD signaling pathway. Biomed. Pharmacother. 2023 166 115332 10.1016/j.biopha.2023.115332 37597324
    [Google Scholar]
  48. Eixarch H. Calvo-Barreiro L. Costa C. Reverter-Vives G. Castillo M. Gil V. Del Río J.A. Montalban X. Espejo C. Inhibition of the BMP signaling pathway ameliorated established clinical symptoms of experimental autoimmune encephalomyelitis. Neurotherapeutics 2020 17 4 1988 2003 10.1007/s13311‑020‑00885‑8 32681355
    [Google Scholar]
  49. Blank U. Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011 25 9 1379 1388 10.1038/leu.2011.95 21566654
    [Google Scholar]
  50. Lim D.A. Tramontin A.D. Trevejo J.M. Herrera D.G. García-Verdugo J.M. Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000 28 3 713 726 10.1016/S0896‑6273(00)00148‑3 11163261
    [Google Scholar]
  51. Kashima R. Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim. Biophys. Sin. (Shanghai) 2018 50 1 106 120 10.1093/abbs/gmx124 29190314
    [Google Scholar]
  52. Sarkar K.K. Rahman M.M. Shahriar A.A.E. Mitra T. Golder M. Zilani M.N.H. Biswas B. Comparative neuropharmacological and cytotoxic profiles of alstonia scholaris (L.) and mimusops elengi (L.) leaves. Advances in Traditional Medicine 2021 21 3 499 506 10.1007/s13596‑020‑00463‑5
    [Google Scholar]
  53. Beederman M. Lamplot J.D. Nan G. Wang J. Liu X. Yin L. Li R. Shui W. Zhang H. Kim S.H. Zhang W. Zhang J. Kong Y. Denduluri S. Rogers M.R. Pratt A. Haydon R.C. Luu H.H. Angeles J. Shi L.L. He T.C. BMP signaling in mesenchymal stem cell differentiation and bone formation. J. Biomed. Sci. Eng. 2013 6 8 32 52 10.4236/jbise.2013.68A1004 26819651
    [Google Scholar]
  54. Derynck R. Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003 425 6958 577 584 10.1038/nature02006 14534577
    [Google Scholar]
  55. Liao X. Cao S. Li T. Shao Y. Zhang L-y. Lu L. Zhang R. Hou S. Luo X. Regulation of bone phosphorus retention and bone development possibly by BMP and MAPK signaling pathways in broilers. J. Integr. Agric. 2022 21 10 3017 3025 10.1016/j.jia.2022.07.037
    [Google Scholar]
  56. Bond A.M. Bhalala O.G. Kessler J.A. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation BMP ligands and their receptors. Dev. Neurobiol. 2024 ••• 1 28 10.1002/dneu.22022 22489086
    [Google Scholar]
  57. Vilkaite A. Nguyen X.P. Güzel C.T. Gottschlich L. Bender U. Dietrich J.E. Hinderhofer K. Strowitzki T. Rehnitz J. Beyond Repetition: The role of gray zone alleles in the upregulation of fmr1-binding mir-323a-3p and the modification of bmp/smad-pathway gene expression in human granulosa cells. Int. J. Mol. Sci. 2025 26 7 3192 10.3390/ijms26073192 40244008
    [Google Scholar]
  58. Díaz-Moreno M. Armenteros T. Gradari S. Hortigüela R. García-Corzo L. Fontán-Lozano Á. Trejo J.L. Mira H. Noggin rescues age-related stem cell loss in the brain of senescent mice with neurodegenerative pathology. Proc. Natl. Acad. Sci. USA 2018 115 45 11625 11630 10.1073/pnas.1813205115 30352848
    [Google Scholar]
  59. Bernatik O. Radaszkiewicz T. Behal M. Dave Z. Witte F. Mahl A. Cernohorsky N.H. Krejci P. Stricker S. Bryja V. A novel role for the BMP antagonist Noggin in sensitizing cells to non-canonical Wnt-5a/Ror2/disheveled pathway activation. Front. Cell Dev. Biol. 2017 5 MAY 47 10.3389/fcell.2017.00047 28523267
    [Google Scholar]
  60. Vogt J. Traynor R. Sapkota G.P. The specificities of small molecule inhibitors of the TGFß and BMP pathways. Cell. Signal. 2011 23 11 1831 1842 10.1016/j.cellsig.2011.06.019 21740966
    [Google Scholar]
  61. Correns A. Zimmermann L.M.A. Baldock C. Sengle G. BMP antagonists in tissue development and disease. Matrix Biol. Plus 2021 11 100071 10.1016/j.mbplus.2021.100071 34435185
    [Google Scholar]
  62. Reddi H.A. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res. 2001 3 1 1 5 10.1186/ar133 11178121
    [Google Scholar]
  63. Chi L. Saarela U. Railo A. Prunskaite-Hyyryläinen R. Skovorodkin I. “A secreted BMP antagonist,” Cer1. Fine Tunes Spat. Organ. 2011 6 11 e27676 10.1371/journal.pone.0027676 22114682
    [Google Scholar]
/content/journals/cas/10.2174/0118746098352786250730100521
Loading
/content/journals/cas/10.2174/0118746098352786250730100521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test