Skip to content
2000
image of Synergistic Enhancement of Anti-aging Effects on Human Umbilical Vein Endothelial Cells Treated With the Combination of Ferulic Acid and 
Rapamycin

Abstract

Introduction

Aging is a complex process involving cellular, genetic, metabolic, and mitochondrial changes. While significant progress has been made in understanding aging mechanisms and developing anti-aging drugs, single-drug treatments have limitations. This paper aims to investigate the synergistic effects of Ferulic acid (FA) and Rapamycin (Rapa) on anti-aging and to elucidate their underlying mechanisms, providing novel strategies for future anti-aging therapies.

Methods

The safe concentration ranges of FA and Rapa for Human umbilical vein endothelial cells (HUVECs) were determined Cell counting kit (CCK-8) and Senescence-associated β-Gal staining, with EC calculated by GraphPad Prism 8.0.2. Effects on cell cycle arrest and ROS in D-gal-induced aging HUVECs were assessed, with synergistic mechanisms explored by Western Blot and RT-qPCR for aging markers, inflammatory factors, and fibrosis genes.

Results

CCK-8 showed that 20-160 μM FA and 50-200 pM Rapa enhanced HUVECs proliferation, with EC of 37.78 μM for FA and 48.32 pM for Rapa. The optimal 1:2 combination ratio demonstrated reduced G0/G1 cells, decreased ROS, and lowered NF-κB p65, p53, , and expression. It also inhibited fibrosis-related gene transcription, downregulating aging markers and maintaining cellular homeostasis.

Discussion

These results align with previous studies highlighting FA’s antioxidant properties and Rapa’s role in mTOR inhibition, suggesting that their combination targets multiple aging pathways simultaneously. The dual approach—reducing oxidative damage while modulating inflammation and fibrosis—may offer superior efficacy compared to single-drug interventions.

Conclusion

In summary, this dual-target strategy presents a promising avenue for developing advanced anti-aging therapies, warranting further investigation in preclinical and clinical settings.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098383170250728163902
2025-08-15
2025-10-30
Loading full text...

Full text loading...

References

  1. Aihemaitijiang S. Zhang L. Ye C. Long-term high dietary diversity maintains good physical function in chinese elderly: A cohort study based on CLHLS from 2011 to 2018. Nutrients 2022 14 9 1730 10.3390/nu14091730 35565697
    [Google Scholar]
  2. Ma L. Tu H. Chen T. Postbiotics in human health: A narrative review. Nutrients 2023 15 2 291 10.3390/nu15020291 36678162
    [Google Scholar]
  3. Anik M.I. Mahmud N. Masud A.A. Role of reactive oxygen species in aging and age-Related diseases: A review. ACS Appl. Bio Mater. 2022 5 9 4028 4054 10.1021/acsabm.2c00411 36043942
    [Google Scholar]
  4. Chen K. Zhang Z. Fang Z. Aged-signal-eliciting nanoparticles stimulated macrophage-mediated programmed removal of inflammatory neutrophils. ACS Nano 2023 17 14 13903 13916 10.1021/acsnano.3c03815 37458397
    [Google Scholar]
  5. Wu W. Wu X. Qiu L. Quercetin influences intestinal dysbacteriosis and delays alveolar epithelial cell senescence by regulating PTEN/PI3K/AKT signaling in pulmonary fibrosis. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 7 4809 4822 10.1007/s00210‑023‑02913‑8 38153514
    [Google Scholar]
  6. Pan X. Wu B. Fan X. Xu G. Ou C. Chen M. YAP accelerates vascular senescence via blocking autophagic flux and activating mTOR. J. Cell. Mol. Med. 2021 25 1 170 183 10.1111/jcmm.15902 33314583
    [Google Scholar]
  7. Opresko PL Sanford SL De Rosa M Oxidative stress and DNA damage at telomeres. Cold Spring Harb Perspect Biol 2025 17 6 10.1101/cshperspect.a041707 39929725
    [Google Scholar]
  8. Kim C.K. Ahn J. Yu J. Le D. Han S. Lee M. Analysis of antioxidant constituents from Ilex rotunda and evaluation of their blood–brain barrier permeability. Antioxidants 2022 11 10 1989 10.3390/antiox11101989 36290712
    [Google Scholar]
  9. Huang J. Tang X. Wang J. Liu J. Chen P. Sun Y. A circular RNA, circUSP36, accelerates endothelial cell dysfunction in atherosclerosis by adsorbing miR-637 to enhance WNT4 expression. Bioengineered 2021 12 1 6759 6770 10.1080/21655979.2021.1964891 34519627
    [Google Scholar]
  10. Ou Young T. Wu L.W. Hsiu H. Peng T.C. Chen W.L. Characteristics of sarcopenia subjects in arterial pulse spectrum analysis. Front. Public Health 2022 10 969424 10.3389/fpubh.2022.969424 36148365
    [Google Scholar]
  11. Jin Z. Liang J. Kolattukudy P.E. Tetramethylpyrazine preserves the integrity of blood-brain barrier associated with upregulation of MCPIP1 in a murine model of focal ischemic stroke. Front. Pharmacol. 2021 12 710358 10.3389/fphar.2021.710358 34393790
    [Google Scholar]
  12. Ferreira M. Magalhães M. Oliveira R. Sousa-Lobo J. Almeida I. Trends in the use of botanicals in anti-aging cosmetics. Molecules 2021 26 12 3584 10.3390/molecules26123584 34208257
    [Google Scholar]
  13. Liu F. Peng B. Li M. Targeted disruption of tumor vasculature via polyphenol nanoparticles to improve brain cancer treatment. Cell Rep Phys Sci 2022 3 1 100691 10.1016/j.xcrp.2021.100691 35199059
    [Google Scholar]
  14. Zduńska-Pęciak K. Kołodziejczak A. Rotsztejn H. Two superior antioxidants: Ferulic acid and ascorbic acid in reducing signs of photoaging—A split‐face comparative study. Dermatol. Ther. 2022 35 2 e15254 10.1111/dth.15254 34877760
    [Google Scholar]
  15. Colín-Chávez C. Virgen-Ortiz J.J. Serrano-Rubio L.E. Martínez-Téllez M.A. Astier M. Comparison of nutritional properties and bioactive compounds between industrial and artisan fresh tortillas from maize landraces. Curr Res Food Sci 2020 3 189 194 10.1016/j.crfs.2020.05.004 32914134
    [Google Scholar]
  16. Wang J. Liu C. Wang X. A study on the molecular mechanisms underlying the compatibility of traditional Chinese medicines: Development of ferulic acid-tetramethylpyrazine compound patch. J. Drug Deliv. Sci. Technol. 2022 76 103794 10.1016/j.jddst.2022.103794
    [Google Scholar]
  17. You J. Hsing M. Cherkasov A. Deep modeling of regulating effects of small molecules on longevity-associated genes. Pharmaceuticals 2021 14 10 948 10.3390/ph14100948 34681172
    [Google Scholar]
  18. Nankar R. Prabhakar P.K. Doble M. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine 2017 37 10 13 10.1016/j.phymed.2017.10.015 29126698
    [Google Scholar]
  19. He S. Guo Y. Zhao J. Xu X. Wang N. Liu Q. Ferulic acid ameliorates lipopolysaccharide-induced barrier dysfunction via MicroRNA-200c-3p-mediated activation of PI3K/AKT pathway in Caco-2 cells. Front. Pharmacol. 2020 11 376 10.3389/fphar.2020.00376 32308620
    [Google Scholar]
  20. Xie X. Yu T. Hou Y. Ferulic acid ameliorates lipopolysaccharide-induced tracheal injury via cGMP/PKGII signaling pathway. Respir. Res. 2021 22 1 308 10.1186/s12931‑021‑01897‑4 34863181
    [Google Scholar]
  21. Zheng M. Liu Y. Zhang G. Yang Z. Xu W. Chen Q. The antioxidant properties, metabolism, application and mechanism of ferulic acid in medicine, food, cosmetics, livestock and poultry. Antioxidants 2024 13 7 853 10.3390/antiox13070853 39061921
    [Google Scholar]
  22. Shirai A. Kunimi H. Tsuchiya K. Antifungal action of the combination of ferulic acid and ultraviolet-A irradiation against Saccharomyces cerevisiae. J. Appl. Microbiol. 2022 132 4 2957 2967 10.1111/jam.15407 34894031
    [Google Scholar]
  23. Zhang J. Fang L. Huang X. Ding Z. Wang C. Evolution of polyphenolic, anthocyanin, and organic acid components during coinoculation fermentation (simultaneous inoculation of LAB and yeast) and sequential fermentation of blueberry wine. J. Food Sci. 2022 87 11 4878 4891 10.1111/1750‑3841.16328 36258662
    [Google Scholar]
  24. Li H. Yu X. Meng F. Zhao Z. Guan S. Wang L. Ferulic acid supplementation increases lifespan and stress resistance via Insulin/IGF-1 signaling pathway in C. elegans. Int. J. Mol. Sci. 2021 22 8 4279 10.3390/ijms22084279 33924155
    [Google Scholar]
  25. Chung C. Chao T.Y. Chen H.J. Xie G.R. Chiang W. Hsieh S.C. Investigating the impact of extruded dehulled adlay with specific in vitro digestion properties on blood lipids in subjects with mild to moderate dyslipidemia. Foods 2022 11 4 493 10.3390/foods11040493 35205970
    [Google Scholar]
  26. Chowdhury S. Ghosh S. Das A.K. Sil P.C. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front. Pharmacol. 2019 10 27 10.3389/fphar.2019.00027 30804780
    [Google Scholar]
  27. Ruamyod K. Watanapa W.B. Kakhai C. Nambundit P. Treewaree S. Wongsanupa P. Ferulic acid enhances insulin secretion by potentiating L-type Ca2+ channel activation. J. Integr. Med. 2023 21 1 99 105 10.1016/j.joim.2022.11.003 36481247
    [Google Scholar]
  28. Nouri A. Ghatreh-Samani K. Amini-Khoei H. Najafi M. Heidarian E. Ferulic acid exerts a protective effect against cyclosporine‐induced liver injury in rats via activation of the Nrf2/HO‐1 signaling, suppression of oxidative stress, inflammatory response, and halting the apoptotic cell death. J. Biochem. Mol. Toxicol. 2023 37 10 e23427 10.1002/jbt.23427 37354073
    [Google Scholar]
  29. Kim J.K. Shin K.K. Kim H. Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J. Ginseng Res. 2021 45 6 717 725 10.1016/j.jgr.2021.03.009 34764726
    [Google Scholar]
  30. Kuo C.L. Pilling L.C. Atkins J.L. Biological aging predicts vulnerability to COVID-19 severity in UK biobank participants. J. Gerontol. A Biol. Sci. Med. Sci. 2021 76 8 e133 e141 10.1093/gerona/glab060 33684206
    [Google Scholar]
  31. Koval L. Zemskaya N. Aliper A. Zhavoronkov A. Moskalev A. Evaluation of the geroprotective effects of withaferin A in Drosophila melanogaster. Aging 2021 13 2 1817 1841 10.18632/aging.202572 33498013
    [Google Scholar]
  32. Kwon H.S. Kim Y.E. Park H.H. Neuroprotective effects of GV1001 in animal stroke model and neural cells subject to oxygen-Glucose deprivation/reperfusion injury. J. Stroke 2021 23 3 420 436 10.5853/jos.2021.00626 34649386
    [Google Scholar]
  33. Liu H. Aβ-induced damage memory in hCMEC/D3 cells mediated by sirtuin-1. Int. J. Mol. Sci. 2020 21 21 8226 10.3390/ijms21218226 33153131
    [Google Scholar]
  34. Chen W. Xiao W. Liu X. Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioact. Mater. 2022 11 283 299 10.1016/j.bioactmat.2021.09.027 34977432
    [Google Scholar]
  35. Barbut D. Perni M. Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ Aging 2024 10 1 62 10.1038/s41514‑024‑00188‑8 39702521
    [Google Scholar]
  36. Lin A.L. Zheng W. Halloran J.J. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J. Cereb. Blood Flow Metab. 2013 33 9 1412 1421 10.1038/jcbfm.2013.82 23801246
    [Google Scholar]
  37. Yun C.Y. Choi N. Lee J.U. Marliolide derivative induces melanosome degradation via Nrf2/p62-mediated autophagy. Int. J. Mol. Sci. 2021 22 8 3995 10.3390/ijms22083995 33924406
    [Google Scholar]
  38. Nascimbeni A.C. Fanin M. Masiero E. Angelini C. Sandri M. The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII). Cell Death Differ. 2012 19 10 1698 1708 10.1038/cdd.2012.52 22595755
    [Google Scholar]
  39. Jang Y. Lee B. Kim H. Trpm2 Ablation accelerates protein aggregation by impaired ADPR and autophagic clearance in the brain. Mol. Neurobiol. 2019 56 5 3819 3832 10.1007/s12035‑018‑1309‑0 30215158
    [Google Scholar]
  40. Horvath S. Zoller J.A. Haghani A. DNA methylation age analysis of rapamycin in common marmosets. Geroscience 2021 43 5 2413 2425 10.1007/s11357‑021‑00438‑7 34482522
    [Google Scholar]
  41. Wang K. Li K. Chen Y. Computational network pharmacology–based strategy to capture key functional components and decode the mechanism of Chai-Hu-Shu-Gan-San in treating depression. Front. Pharmacol. 2021 12 782060 10.3389/fphar.2021.782060 34867413
    [Google Scholar]
  42. Guo W. Liu S. Zheng X. Network pharmacology/metabolomics‐based validation of AMPK and PI3K/AKT signaling pathway as a central role of shengqi fuzheng injection regulation of mitochondrial dysfunction in cancer‐related fatigue. Oxid. Med. Cell. Longev. 2021 2021 1 5556212 10.1155/2021/5556212 34326918
    [Google Scholar]
  43. Zhao L. Zhang H. Li N. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  44. Barrera-Vázquez O.S. Montenegro-Herrera S.A. Martínez-Enríquez M.E. Selection of mexican medicinal plants by identification of potential phytochemicals with anti-aging, anti-inflammatory, and anti-oxidant properties through network analysis and chemoinformatic screening. Biomolecules 2023 13 11 1673 10.3390/biom13111673
    [Google Scholar]
  45. Roell K.R. Reif D.M. Motsinger-Reif A.A. An introduction to terminology and methodology of chemical synergy—Perspectives from across disciplines. Front. Pharmacol. 2017 8 158 10.3389/fphar.2017.00158 28473769
    [Google Scholar]
  46. Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010 70 2 440 446 10.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  47. Hou J. Ma R. Zhu S. Wang Y. Revealing the therapeutic targets and mechanism of ginsenoside Rg1 for liver damage related to anti-oxidative stress using proteomic analysis. Int. J. Mol. Sci. 2022 23 17 10045 10.3390/ijms231710045 36077440
    [Google Scholar]
  48. Yin L. Xu L. Chen B. SRT1720 plays a role in oxidative stress and the senescence of human trophoblast HTR8/SVneo cells induced by D-galactose through the SIRT1/FOXO3a/ROS signalling pathway. Reprod. Toxicol. 2022 111 1 10 10.1016/j.reprotox.2022.05.001 35562067
    [Google Scholar]
  49. SubramanianBalachandar VA Extracellular matrix composition alters endothelial force transmission. Res Sq [Preprint] 2023 rs.3.rs-2499973 10.21203/rs.3.rs‑2499973/v1
    [Google Scholar]
  50. Haam S. Han J.H. Lee H.W. Koh Y.W. Tumor nonimmune-microenvironment-related gene expression signature predicts brain metastasis in lung adenocarcinoma patients after surgery: A machine learning approach using gene expression profiling. Cancers 2021 13 17 4468 10.3390/cancers13174468 34503278
    [Google Scholar]
  51. Han J. Deng H. Lyu Y. Identification of N-Glycoproteins of knee cartilage from adult osteoarthritis and kashin-beck disease based on quantitative glycoproteomics, compared with normal control cartilage. Cells 2022 11 16 2513 10.3390/cells11162513 36010590
    [Google Scholar]
  52. Zhang W. Zhang Y. Li X. Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Mater. Today Bio 2022 14 100251 10.1016/j.mtbio.2022.100251 35469254
    [Google Scholar]
  53. Syed M.A. Bhat B. Wali A. Epithelial to mesenchymal transition in mammary gland tissue fibrosis and insights into drug therapeutics. PeerJ 2023 11 e15207 10.7717/peerj.15207 37187521
    [Google Scholar]
  54. Wang M. Li Y. Li S. Lv J. Endothelial dysfunction and diabetic cardiomyopathy. Front. Endocrinol. 2022 13 851941 10.3389/fendo.2022.851941 35464057
    [Google Scholar]
  55. Mimouni M. Lajoix A.D. Desmetz C. Experimental models to study endothelial to mesenchymal transition in myocardial fibrosis and cardiovascular diseases. Int. J. Mol. Sci. 2023 25 1 382 10.3390/ijms25010382 38203553
    [Google Scholar]
  56. Peng Q. Shan D. Cui K. The role of endothelial-to-mesenchymal transition in cardiovascular disease. Cells 2022 11 11 1834 10.3390/cells11111834 35681530
    [Google Scholar]
  57. Wang B. Ge Z. Wu Y. MFGE8 is down‐regulated in cardiac fibrosis and attenuates endothelial‐mesenchymal transition through Smad2/3‐Snail signalling pathway. J. Cell. Mol. Med. 2020 24 21 12799 12812 10.1111/jcmm.15871 32945126
    [Google Scholar]
  58. Cardoso-Lezama I. Ramos-Tovar E. Arellanes-Robledo J. Serum α-SMA is a potential noninvasive biomarker of liver fibrosis. Toxicol. Mech. Methods 2024 34 1 13 19 10.1080/15376516.2023.2244061 37528633
    [Google Scholar]
  59. Chen X.K. Yi Z.N. Wong G.T.C. Is exercise a senolytic medicine? A systematic review. Aging Cell 2021 20 1 e13294 10.1111/acel.13294 33378138
    [Google Scholar]
  60. Saito Y. Miyajima M. Yamamoto S. Accumulation of senescent neural cells in murine lupus with depression-like behavior. Front. Immunol. 2021 12 692321 10.3389/fimmu.2021.692321 34804003
    [Google Scholar]
  61. Mikuła-Pietrasik J. Niklas A. Uruski P. Tykarski A. Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell. Mol. Life Sci. 2020 77 2 213 229 10.1007/s00018‑019‑03261‑8 31414165
    [Google Scholar]
  62. Shahini A. Rajabian N. Choudhury D. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. Sci. Adv. 2021 7 36 eabe5671 10.1126/sciadv.abe5671 34516892
    [Google Scholar]
  63. Wu H. Ma H. Wang L. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int. J. Biol. Sci. 2022 18 2 661 674 10.7150/ijbs.65861 35002516
    [Google Scholar]
  64. Lehmann J. Narcisi R. Franceschini N. WNT/beta-catenin signalling interrupts a senescence-induction cascade in human mesenchymal stem cells that restricts their expansion. Cell. Mol. Life Sci. 2022 79 2 82 10.1007/s00018‑021‑04035‑x 35048158
    [Google Scholar]
  65. Rysanek D. Vasicova P. Kolla J.N. Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging 2022 14 16 6381 6414 10.18632/aging.204207 35951353
    [Google Scholar]
  66. Nojima I. Hosoda R. Toda Y. Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in mouse embryonic fibroblasts. Aging 2022 14 7 2966 2988 10.18632/aging.203999 35378512
    [Google Scholar]
  67. Qiang Q. Manalo J.M. Sun H. Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biol. 2021 19 6 e3001239 10.1371/journal.pbio.3001239 34138843
    [Google Scholar]
  68. Schwartz R.E. Shokhirev M.N. Andrade L.R. Gutkind J.S. Iglesias-Bartolome R. Shadel G.S. Insights into epithelial cell senescence from transcriptome and secretome analysis of human oral keratinocytes. Aging 2021 13 4 4747 4777 10.18632/aging.202658 33601339
    [Google Scholar]
  69. Lin M.H.C. Chang L.C. Chung C.Y. Photochemical internalization of etoposide using dendrimer nanospheres loaded with etoposide and protoporphyrin IX on a glioblastoma cell line. Pharmaceutics 2021 13 11 1877 10.3390/pharmaceutics13111877 34834292
    [Google Scholar]
  70. Mast F.D. Fridy P.C. Ketaren N.E. Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. eLife 2021 10 e73027 10.7554/eLife.73027 34874007
    [Google Scholar]
  71. Zhao Y. Roy S. Wang C. Goel A. A combined treatment with berberine and andrographis exhibits enhanced anti-cancer activity through suppression of DNA replication in colorectal cancer. Pharmaceuticals 2022 15 3 262 10.3390/ph15030262 35337060
    [Google Scholar]
  72. Xiong W. Chen S. Xiang H. S1PR1 attenuates pulmonary fibrosis by inhibiting EndMT and improving endothelial barrier function. Pulm. Pharmacol. Ther. 2023 81 102228 10.1016/j.pupt.2023.102228 37295666
    [Google Scholar]
  73. Wang Y. Gong J. Wang A. Disitamab vedotin (RC48) plus toripalimab for HER2-expressing advanced gastric or gastroesophageal junction and other solid tumours: A multicentre, open label, dose escalation and expansion phase 1 trial. EClinicalMedicine 2024 68 102415 10.1016/j.eclinm.2023.102415 38235421
    [Google Scholar]
  74. Karimzadeh M.R. Masoudi Chelegahi A. Shahbazi S. Reiisi S. Co-treatment of silymarin and cisplatin inhibited cell proliferation, induced apoptosis in ovarian cancer. Mol. Biol. Rep. 2024 51 1 118 10.1007/s11033‑023‑09026‑8 38227082
    [Google Scholar]
  75. Lelarge V. Capelle R. Oger F. Mathieu T. Le Calvé B. Senolytics: From pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. NPJ Aging 2024 10 1 12 10.1038/s41514‑024‑00138‑4 38321020
    [Google Scholar]
/content/journals/cas/10.2174/0118746098383170250728163902
Loading
/content/journals/cas/10.2174/0118746098383170250728163902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test