Skip to content
2000
image of Recent Advances in the Application of Artificial Intelligence in Alzheimer's Disease

Abstract

Artificial intelligence (AI) refers to a system that can simulate and execute the processes of human thinking and learning, and make informed decisions. Fueled by the development of AI, the quality and effectiveness of medical work have gained momentum. AI technology plays an increasingly important role in healthcare, exhibiting substantial potential in clinical practice and decision-making processes. In Alzheimer’s disease (AD), where early diagnosis and treatment remain challenging due to clinical heterogeneity and insidious progression, AI could offer excellent solutions. AI models can integrate multi-modal data to identify pre-symptomatic biomarkers and stratify high-risk cohorts, improving diagnostic accuracy, assisting with personalizing treatment and care. Furthermore, AI can accelerate drug discovery and development through drug-target identification and predictive modeling of compound efficacy. However, data quality, supervision, transparency, privacy, and ethical concerns need to be addressed. By identifying and retrieving studies for the systematic review, this article provides a comprehensive overview of current progress and related AI applications in AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050410489250930175402
2025-10-22
2025-11-06
Loading full text...

Full text loading...

References

  1. Zheng Q. Wang X. Alzheimer’s disease: Insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025 16 2 83 120 10.1093/procel/pwae026 38733347
    [Google Scholar]
  2. Fang M. Hu J. Weiss J. Knopman D.S. Albert M. Windham B.G. Walker K.A. Sharrett A.R. Gottesman R.F. Lutsey P.L. Mosley T. Selvin E. Coresh J. Lifetime risk and projected burden of dementia. Nat. Med. 2025 31 3 772 776 10.1038/s41591‑024‑03340‑9 39806070
    [Google Scholar]
  3. Gaugler, J.; James, B.; Johnson, T.; Raimer, J.; Solis, M.; Weuve, J.; Buckley, R.F.; Hohman, T.J. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022 18 4 700 789 10.1002/alz.12638 35289055
    [Google Scholar]
  4. Ahmadi-Abhari S. Brayne C. Descriptive epidemiology of dementia in the US. BMJ 2025 389 r888 10.1136/bmj.r888 40393744
    [Google Scholar]
  5. Li X. Feng X. Sun X. Hou N. Han F. Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci. 2022 14 937486 10.3389/fnagi.2022.937486 36299608
    [Google Scholar]
  6. Gutiérrez I.L. Dello Russo C. Novellino F. Caso J.R. García-Bueno B. Leza J.C. Madrigal J.L.M. Noradrenaline in Alzheimer’s Disease: A new potential therapeutic target. Int. J. Mol. Sci. 2022 23 11 6143 10.3390/ijms23116143 35682822
    [Google Scholar]
  7. Jack C.R. Jr Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. Liu E. Molinuevo J.L. Montine T. Phelps C. Rankin K.P. Rowe C.C. Scheltens P. Siemers E. Snyder H.M. Sperling R. Elliott C. Masliah E. Ryan L. Silverberg N. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  8. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  9. Briganti G. Le Moine O. Artificial intelligence in medicine: Today and tomorrow. Front. Med. 2020 7 27 10.3389/fmed.2020.00027 32118012
    [Google Scholar]
  10. Erickson B.J. Basic artificial intelligence techniques: Machine learning and deep learning. Radiol. Clin. North Am. 2021 59 6 933 940 10.1016/j.rcl.2021.06.004 34689878
    [Google Scholar]
  11. Silver D. Schrittwieser J. Simonyan K. Antonoglou I. Huang A. Guez A. Hubert T. Baker L. Lai M. Bolton A. Chen Y. Lillicrap T. Hui F. Sifre L. van den Driessche G. Graepel T. Hassabis D. Mastering the game of Go without human knowledge. Nature 2017 550 7676 354 359 10.1038/nature24270 29052630
    [Google Scholar]
  12. Mullard A. What does AlphaFold mean for drug discovery? Nat. Rev. Drug Discov. 2021 20 10 725 727 10.1038/d41573‑021‑00161‑0 34522032
    [Google Scholar]
  13. Kovoor J.G. Gupta A.K. Bacchi S. ChatGPT: Effective writing is succinct. BMJ 2023 381 p1125 10.1136/bmj.p1125 37220943
    [Google Scholar]
  14. Smith J. Daily briefing: The pros and cons of DeepSeek. Nature 2025 ••• 10.1038/d41586‑025‑00330‑w 39890911
    [Google Scholar]
  15. Barragán-Montero A. Javaid U. Valdés G. Nguyen D. Desbordes P. Macq B. Willems S. Vandewinckele L. Holmström M. Löfman F. Michiels S. Souris K. Sterpin E. Lee J.A. Artificial intelligence and machine learning for medical imaging: A technology review. Phys. Med. 2021 83 242 256 10.1016/j.ejmp.2021.04.016 33979715
    [Google Scholar]
  16. Choi R.Y. Coyner A.S. Kalpathy-Cramer J. Chiang M.F. Campbell J.P. Introduction to machine learning, neural networks, and deep learning. Transl. Vis. Sci. Technol. 2020 9 2 14 10.1167/tvst.9.2.14 32704420
    [Google Scholar]
  17. Kalpathy-Cramer J. Patel J.B. Bridge C. Chang K. Basic artificial intelligence techniques: Evaluation of artificial intelligence performance. Radiol. Clin. North Am. 2021 59 6 941 954 10.1016/j.rcl.2021.06.005 34689879
    [Google Scholar]
  18. Attia Z.I. Kapa S. Lopez-Jimenez F. McKie P.M. Ladewig D.J. Satam G. Pellikka P.A. Enriquez-Sarano M. Noseworthy P.A. Munger T.M. Asirvatham S.J. Scott C.G. Carter R.E. Friedman P.A. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 2019 25 1 70 74 10.1038/s41591‑018‑0240‑2 30617318
    [Google Scholar]
  19. de Grey A.D.N.J. Artificial intelligence and medical research: Time to aim higher? Rejuvenation Res. 2016 19 2 105 106 10.1089/rej.2016.1827 26993572
    [Google Scholar]
  20. Patel M.R. Balu S. Pencina M.J. Translating AI for the clinician. JAMA 2024 332 20 1701 1702 10.1001/jama.2024.21772 39405321
    [Google Scholar]
  21. Schor N.F. Equipping AI for unbiased and inclusive neurology. JAMA Neurol. 2024 1701–2 10.1001/jamaneurol.2024.3954 39585712
    [Google Scholar]
  22. Hamet P. Tremblay J. Artificial intelligence in medicine. Metabolism 2017 69 S36 S40 10.1016/j.metabol.2017.01.011 28126242
    [Google Scholar]
  23. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  24. Dorsey E.R. Papapetropoulos S. Xiong M. Kieburtz K. The first frontier: Digital biomarkers for neurodegenerative disorders. Digit. Biomark. 2017 1 1 6 13 10.1159/000477383 32095743
    [Google Scholar]
  25. Piau A. Wild K. Mattek N. Kaye J. Current state of digital biomarker technologies for real-life, home-based monitoring of cognitive function for mild cognitive impairment to mild Alzheimer disease and implications for clinical care: Systematic review. J. Med. Internet Res. 2019 21 8 e12785 10.2196/12785 31471958
    [Google Scholar]
  26. Vasudevan S. Saha A. Tarver M.E. Patel B. Digital biomarkers: Convergence of digital health technologies and biomarkers. NPJ Digit. Med. 2022 5 1 36 10.1038/s41746‑022‑00583‑z 35338234
    [Google Scholar]
  27. Gao X.R. Chiariglione M. Qin K. Nuytemans K. Scharre D.W. Li Y.J. Martin E.R. Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer’s disease prediction. Sci. Rep. 2023 13 1 450 10.1038/s41598‑023‑27551‑1 36624143
    [Google Scholar]
  28. Allen B. Agarwal S. Coombs L. Wald C. Dreyer K. 2020 ACR data science institute artificial intelligence survey. J. Am. Coll. Radiol. 2021 18 8 1153 1159 10.1016/j.jacr.2021.04.002 33891859
    [Google Scholar]
  29. Li L. Xu W. Tan C.C. Cao X.P. Wei B.Z. Dong C.W. Tan L. A gene-environment interplay between omega-3 supplementation and APOE ε4 provides insights for Alzheimer’s disease precise prevention amongst high-genetic-risk population. Eur. J. Neurol. 2022 29 2 422 431 10.1111/ene.15160 34710256
    [Google Scholar]
  30. Livingston G. Huntley J. Liu K.Y. Costafreda S.G. Selbæk G. Alladi S. Ames D. Banerjee S. Burns A. Brayne C. Fox N.C. Ferri C.P. Gitlin L.N. Howard R. Kales H.C. Kivimäki M. Larson E.B. Nakasujja N. Rockwood K. Samus Q. Shirai K. Singh-Manoux A. Schneider L.S. Walsh S. Yao Y. Sommerlad A. Mukadam N. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024 404 10452 572 628 10.1016/S0140‑6736(24)01296‑0 39096926
    [Google Scholar]
  31. Long J.M. Holtzman D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019 179 2 312 339 10.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  32. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  33. Kunkle B.W. Grenier-Boley B. Sims R. Bis J.C. Damotte V. Naj A.C. Boland A. Vronskaya M. van der Lee S.J. Amlie-Wolf A. Bellenguez C. Frizatti A. Chouraki V. Martin E.R. Sleegers K. Badarinarayan N. Jakobsdottir J. Hamilton-Nelson K.L. Moreno-Grau S. Olaso R. Raybould R. Chen Y. Kuzma A.B. Hiltunen M. Morgan T. Ahmad S. Vardarajan B.N. Epelbaum J. Hoffmann P. Boada M. Beecham G.W. Garnier J.G. Harold D. Fitzpatrick A.L. Valladares O. Moutet M.L. Gerrish A. Smith A.V. Qu L. Bacq D. Denning N. Jian X. Zhao Y. Del Zompo M. Fox N.C. Choi S.H. Mateo I. Hughes J.T. Adams H.H. Malamon J. Sanchez-Garcia F. Patel Y. Brody J.A. Dombroski B.A. Naranjo M.C.D. Daniilidou M. Eiriksdottir G. Mukherjee S. Wallon D. Uphill J. Aspelund T. Cantwell L.B. Garzia F. Galimberti D. Hofer E. Butkiewicz M. Fin B. Scarpini E. Sarnowski C. Bush W.S. Meslage S. Kornhuber J. White C.C. Song Y. Barber R.C. Engelborghs S. Sordon S. Voijnovic D. Adams P.M. Vandenberghe R. Mayhaus M. Cupples L.A. Albert M.S. De Deyn P.P. Gu W. Himali J.J. Beekly D. Squassina A. Hartmann A.M. Orellana A. Blacker D. Rodriguez-Rodriguez E. Lovestone S. Garcia M.E. Doody R.S. Munoz-Fernadez C. Sussams R. Lin H. Fairchild T.J. Benito Y.A. Holmes C. Karamujić-Čomić H. Frosch M.P. Thonberg H. Maier W. Roshchupkin G. Ghetti B. Giedraitis V. Kawalia A. Li S. Huebinger R.M. Kilander L. Moebus S. Hernández I. Kamboh M.I. Brundin R. Turton J. Yang Q. Katz M.J. Concari L. Lord J. Beiser A.S. Keene C.D. Helisalmi S. Kloszewska I. Kukull W.A. Koivisto A.M. Lynch A. Tarraga L. Larson E.B. Haapasalo A. Lawlor B. Mosley T.H. Lipton R.B. Solfrizzi V. Gill M. Longstreth W.T. Jr Montine T.J. Frisardi V. Diez-Fairen M. Rivadeneira F. Petersen R.C. Deramecourt V. Alvarez I. Salani F. Ciaramella A. Boerwinkle E. Reiman E.M. Fievet N. Rotter J.I. Reisch J.S. Hanon O. Cupidi C. Andre Uitterlinden A.G. Royall D.R. Dufouil C. Maletta R.G. de Rojas I. Sano M. Brice A. Cecchetti R. George-Hyslop P.S. Ritchie K. Tsolaki M. Tsuang D.W. Dubois B. Craig D. Wu C.K. Soininen H. Avramidou D. Albin R.L. Fratiglioni L. Germanou A. Apostolova L.G. Keller L. Koutroumani M. Arnold S.E. Panza F. Gkatzima O. Asthana S. Hannequin D. Whitehead P. Atwood C.S. Caffarra P. Hampel H. Quintela I. Carracedo Á. Lannfelt L. Rubinsztein D.C. Barnes L.L. Pasquier F. Frölich L. Barral S. McGuinness B. Beach T.G. Johnston J.A. Becker J.T. Passmore P. Bigio E.H. Schott J.M. Bird T.D. Warren J.D. Boeve B.F. Lupton M.K. Bowen J.D. Proitsi P. Boxer A. Powell J.F. Burke J.R. Kauwe J.S.K. Burns J.M. Mancuso M. Buxbaum J.D. Bonuccelli U. Cairns N.J. McQuillin A. Cao C. Livingston G. Carlson C.S. Bass N.J. Carlsson C.M. Hardy J. Carney R.M. Bras J. Carrasquillo M.M. Guerreiro R. Allen M. Chui H.C. Fisher E. Masullo C. Crocco E.A. DeCarli C. Bisceglio G. Dick M. Ma L. Duara R. Graff-Radford N.R. Evans D.A. Hodges A. Faber K.M. Scherer M. Fallon K.B. Riemenschneider M. Fardo D.W. Heun R. Farlow M.R. Kölsch H. Ferris S. Leber M. Foroud T.M. Heuser I. Galasko D.R. Giegling I. Gearing M. Hüll M. Geschwind D.H. Gilbert J.R. Morris J. Green R.C. Mayo K. Growdon J.H. Feulner T. Hamilton R.L. Harrell L.E. Drichel D. Honig L.S. Cushion T.D. Huentelman M.J. Hollingworth P. Hulette C.M. Hyman B.T. Marshall R. Jarvik G.P. Meggy A. Abner E. Menzies G.E. Jin L.W. Leonenko G. Real L.M. Jun G.R. Baldwin C.T. Grozeva D. Karydas A. Russo G. Kaye J.A. Kim R. Jessen F. Kowall N.W. Vellas B. Kramer J.H. Vardy E. LaFerla F.M. Jöckel K.H. Lah J.J. Dichgans M. Leverenz J.B. Mann D. Levey A.I. Pickering-Brown S. Lieberman A.P. Klopp N. Lunetta K.L. Wichmann H.E. Lyketsos C.G. Morgan K. Marson D.C. Brown K. Martiniuk F. Medway C. Mash D.C. Nöthen M.M. Masliah E. Hooper N.M. McCormick W.C. Daniele A. McCurry S.M. Bayer A. McDavid A.N. Gallacher J. McKee A.C. van den Bussche H. Mesulam M. Brayne C. Miller B.L. Riedel-Heller S. Miller C.A. Miller J.W. Al-Chalabi A. Morris J.C. Shaw C.E. Myers A.J. Wiltfang J. O’Bryant S. Olichney J.M. Alvarez V. Parisi J.E. Singleton A.B. Paulson H.L. Collinge J. Perry W.R. Mead S. Peskind E. Cribbs D.H. Rossor M. Pierce A. Ryan N.S. Poon W.W. Nacmias B. Potter H. Sorbi S. Quinn J.F. Sacchinelli E. Raj A. Spalletta G. Raskind M. Caltagirone C. Bossù P. Orfei M.D. Reisberg B. Clarke R. Reitz C. Smith A.D. Ringman J.M. Warden D. Roberson E.D. Wilcock G. Rogaeva E. Bruni A.C. Rosen H.J. Gallo M. Rosenberg R.N. Ben-Shlomo Y. Sager M.A. Mecocci P. Saykin A.J. Pastor P. Cuccaro M.L. Vance J.M. Schneider J.A. Schneider L.S. Slifer S. Seeley W.W. Smith A.G. Sonnen J.A. Spina S. Stern R.A. Swerdlow R.H. Tang M. Tanzi R.E. Trojanowski J.Q. Troncoso J.C. Van Deerlin V.M. Van Eldik L.J. Vinters H.V. Vonsattel J.P. Weintraub S. Welsh-Bohmer K.A. Wilhelmsen K.C. Williamson J. Wingo T.S. Woltjer R.L. Wright C.B. Yu C.E. Yu L. Saba Y. Pilotto A. Bullido M.J. Peters O. Crane P.K. Bennett D. Bosco P. Coto E. Boccardi V. De Jager P.L. Lleo A. Warner N. Lopez O.L. Ingelsson M. Deloukas P. Cruchaga C. Graff C. Gwilliam R. Fornage M. Goate A.M. Sanchez-Juan P. Kehoe P.G. Amin N. Ertekin-Taner N. Berr C. Debette S. Love S. Launer L.J. Younkin S.G. Dartigues J.F. Corcoran C. Ikram M.A. Dickson D.W. Nicolas G. Campion D. Tschanz J. Schmidt H. Hakonarson H. Clarimon J. Munger R. Schmidt R. Farrer L.A. Van Broeckhoven C. C O’Donovan M. DeStefano A.L. Jones L. Haines J.L. Deleuze J.F. Owen M.J. Gudnason V. Mayeux R. Escott-Price V. Psaty B.M. Ramirez A. Wang L.S. Ruiz A. van Duijn C.M. Holmans P.A. Seshadri S. Williams J. Amouyel P. Schellenberg G.D. Lambert J.C. Pericak-Vance M.A. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019 51 3 414 430 10.1038/s41588‑019‑0358‑2 30820047
    [Google Scholar]
  34. Bellenguez C. Küçükali F. Jansen I.E. Kleineidam L. Moreno-Grau S. Amin N. Naj A.C. Campos-Martin R. Grenier-Boley B. Andrade V. Holmans P.A. Boland A. Damotte V. van der Lee S.J. Costa M.R. Kuulasmaa T. Yang Q. de Rojas I. Bis J.C. Yaqub A. Prokic I. Chapuis J. Ahmad S. Giedraitis V. Aarsland D. Garcia-Gonzalez P. Abdelnour C. Alarcón-Martín E. Alcolea D. Alegret M. Alvarez I. Álvarez V. Armstrong N.J. Tsolaki A. Antúnez C. Appollonio I. Arcaro M. Archetti S. Pastor A.A. Arosio B. Athanasiu L. Bailly H. Banaj N. Baquero M. Barral S. Beiser A. Pastor A.B. Below J.E. Benchek P. Benussi L. Berr C. Besse C. Bessi V. Binetti G. Bizarro A. Blesa R. Boada M. Boerwinkle E. Borroni B. Boschi S. Bossù P. Bråthen G. Bressler J. Bresner C. Brodaty H. Brookes K.J. Brusco L.I. Buiza-Rueda D. Bûrger K. Burholt V. Bush W.S. Calero M. Cantwell L.B. Chene G. Chung J. Cuccaro M.L. Carracedo Á. Cecchetti R. Cervera-Carles L. Charbonnier C. Chen H.H. Chillotti C. Ciccone S. Claassen J.A.H.R. Clark C. Conti E. Corma-Gómez A. Costantini E. Custodero C. Daian D. Dalmasso M.C. Daniele A. Dardiotis E. Dartigues J.F. de Deyn P.P. de Paiva Lopes K. de Witte L.D. Debette S. Deckert J. del Ser T. Denning N. DeStefano A. Dichgans M. Diehl-Schmid J. Diez-Fairen M. Rossi P.D. Djurovic S. Duron E. Düzel E. Dufouil C. Eiriksdottir G. Engelborghs S. Escott-Price V. Espinosa A. Ewers M. Faber K.M. Fabrizio T. Nielsen S.F. Fardo D.W. Farotti L. Fenoglio C. Fernández-Fuertes M. Ferrari R. Ferreira C.B. Ferri E. Fin B. Fischer P. Fladby T. Fließbach K. Fongang B. Fornage M. Fortea J. Foroud T.M. Fostinelli S. Fox N.C. Franco-Macías E. Bullido M.J. Frank-García A. Froelich L. Fulton-Howard B. Galimberti D. García-Alberca J.M. García-González P. Garcia-Madrona S. Garcia-Ribas G. Ghidoni R. Giegling I. Giorgio G. Goate A.M. Goldhardt O. Gomez-Fonseca D. González-Pérez A. Graff C. Grande G. Green E. Grimmer T. Grünblatt E. Grunin M. Gudnason V. Guetta-Baranes T. Haapasalo A. Hadjigeorgiou G. Haines J.L. Hamilton-Nelson K.L. Hampel H. Hanon O. Hardy J. Hartmann A.M. Hausner L. Harwood J. Heilmann-Heimbach S. Helisalmi S. Heneka M.T. Hernández I. Herrmann M.J. Hoffmann P. Holmes C. Holstege H. Vilas R.H. Hulsman M. Humphrey J. Biessels G.J. Jian X. Johansson C. Jun G.R. Kastumata Y. Kauwe J. Kehoe P.G. Kilander L. Ståhlbom A.K. Kivipelto M. Koivisto A. Kornhuber J. Kosmidis M.H. Kukull W.A. Kuksa P.P. Kunkle B.W. Kuzma A.B. Lage C. Laukka E.J. Launer L. Lauria A. Lee C.Y. Lehtisalo J. Lerch O. Lleó A. Longstreth W. Jr Lopez O. de Munain A.L. Love S. Löwemark M. Luckcuck L. Lunetta K.L. Ma Y. Macías J. MacLeod C.A. Maier W. Mangialasche F. Spallazzi M. Marquié M. Marshall R. Martin E.R. Montes A.M. Rodríguez C.M. Masullo C. Mayeux R. Mead S. Mecocci P. Medina M. Meggy A. Mehrabian S. Mendoza S. Menéndez-González M. Mir P. Moebus S. Mol M. Molina-Porcel L. Montrreal L. Morelli L. Moreno F. Morgan K. Mosley T. Nöthen M.M. Muchnik C. Mukherjee S. Nacmias B. Ngandu T. Nicolas G. Nordestgaard B.G. Olaso R. Orellana A. Orsini M. Ortega G. Padovani A. Paolo C. Papenberg G. Parnetti L. Pasquier F. Pastor P. Peloso G. Pérez-Cordón A. Pérez-Tur J. Pericard P. Peters O. Pijnenburg Y.A.L. Pineda J.A. Piñol-Ripoll G. Pisanu C. Polak T. Popp J. Posthuma D. Priller J. Puerta R. Quenez O. Quintela I. Thomassen J.Q. Rábano A. Rainero I. Rajabli F. Ramakers I. Real L.M. Reinders M.J.T. Reitz C. Reyes-Dumeyer D. Ridge P. Riedel-Heller S. Riederer P. Roberto N. Rodriguez-Rodriguez E. Rongve A. Allende I.R. Rosende-Roca M. Royo J.L. Rubino E. Rujescu D. Sáez M.E. Sakka P. Saltvedt I. Sanabria Á. Sánchez-Arjona M.B. Sanchez-Garcia F. Juan P.S. Sánchez-Valle R. Sando S.B. Sarnowski C. Satizabal C.L. Scamosci M. Scarmeas N. Scarpini E. Scheltens P. Scherbaum N. Scherer M. Schmid M. Schneider A. Schott J.M. Selbæk G. Seripa D. Serrano M. Sha J. Shadrin A.A. Skrobot O. Slifer S. Snijders G.J.L. Soininen H. Solfrizzi V. Solomon A. Song Y. Sorbi S. Sotolongo-Grau O. Spalletta G. Spottke A. Squassina A. Stordal E. Tartan J.P. Tárraga L. Tesí N. Thalamuthu A. Thomas T. Tosto G. Traykov L. Tremolizzo L. Tybjærg-Hansen A. Uitterlinden A. Ullgren A. Ulstein I. Valero S. Valladares O. Broeckhoven C.V. Vance J. Vardarajan B.N. van der Lugt A. Dongen J.V. van Rooij J. van Swieten J. Vandenberghe R. Verhey F. Vidal J.S. Vogelgsang J. Vyhnalek M. Wagner M. Wallon D. Wang L.S. Wang R. Weinhold L. Wiltfang J. Windle G. Woods B. Yannakoulia M. Zare H. Zhao Y. Zhang X. Zhu C. Zulaica M. Laczo J. Matoska V. Serpente M. Assogna F. Piras F. Piras F. Ciullo V. Shofany J. Ferrarese C. Andreoni S. Sala G. Zoia C.P. Zompo M.D. Benussi A. Bastiani P. Takalo M. Natunen T. Laatikainen T. Tuomilehto J. Antikainen R. Strandberg T. Lindström J. Peltonen M. Abraham R. Al-Chalabi A. Bass N.J. Brayne C. Brown K.S. Collinge J. Craig D. Deloukas P. Fox N. Gerrish A. Gill M. Gwilliam R. Harold D. Hollingworth P. Johnston J.A. Jones L. Lawlor B. Livingston G. Lovestone S. Lupton M. Lynch A. Mann D. McGuinness B. McQuillin A. O’Donovan M.C. Owen M.J. Passmore P. Powell J.F. Proitsi P. Rossor M. Shaw C.E. Smith A.D. Gurling H. Todd S. Mummery C. Ryan N. Lacidogna G. Adarmes-Gómez A. Mauleón A. Pancho A. Gailhajenet A. Lafuente A. Macias-García D. Martín E. Pelejà E. Carrillo F. Merlín I.S. Garrote-Espina L. Vargas L. Carrion-Claro M. Marín M. Labrador M. Buendia M. Alonso M.D. Guitart M. Moreno M. Ibarria M. Periñán M. Aguilera N. Gómez-Garre P. Cañabate P. Escuela R. Pineda-Sánchez R. Vigo-Ortega R. Jesús S. Preckler S. Rodrigo-Herrero S. Diego S. Vacca A. Roveta F. Salvadori N. Chipi E. Boecker H. Laske C. Perneczky R. Anastasiou C. Janowitz D. Malik R. Anastasiou A. Parveen K. Lage C. López-García S. Antonell A. Mihova K.Y. Belezhanska D. Weber H. Kochen S. Solis P. Medel N. Lisso J. Sevillano Z. Politis D.G. Cores V. Cuesta C. Ortiz C. Bacha J.I. Rios M. Saenz A. Abalos M.S. Kohler E. Palacio D.L. Etchepareborda I. Kohler M. Novack G. Prestia F.A. Galeano P. Castaño E.M. Germani S. Toso C.R. Rojo M. Ingino C. Mangone C. Rubinsztein D.C. Teipel S. Fievet N. Deramerourt V. Forsell C. Thonberg H. Bjerke M. Roeck E.D. Martínez-Larrad M.T. Olivar N. Aguilera N. Cano A. Cañabate P. Macias J. Maroñas O. Nuñez-Llaves R. Olivé C. Pelejá E. Adarmes-Gómez A.D. Alonso M.D. Amer-Ferrer G. Antequera M. Burguera J.A. Carrillo F. Carrión-Claro M. Casajeros M.J. Martinez de Pancorbo M. Escuela R. Garrote-Espina L. Gómez-Garre P. Hevilla S. Jesús S. Espinosa M.A.L. Legaz A. López-García S. Macias-García D. Manzanares S. Marín M. Marín-Muñoz J. Marín T. Martínez B. Martínez V. Martínez-Lage Álvarez P. Iriarte M.M. Periñán-Tocino M.T. Pineda-Sánchez R. Real de Asúa D. Rodrigo S. Sastre I. Vicente M.P. Vigo-Ortega R. Vivancos L. Epelbaum J. Hannequin D. campion D. Deramecourt V. Tzourio C. Brice A. Dubois B. Williams A. Thomas C. Davies C. Nash W. Dowzell K. Morales A.C. Bernardo-Harrington M. Turton J. Lord J. Brown K. Vardy E. Fisher E. Warren J.D. Rossor M. Ryan N.S. Guerreiro R. Uphill J. Bass N. Heun R. Kölsch H. Schürmann B. Lacour A. Herold C. Johnston J.A. Passmore P. Powell J. Patel Y. Hodges A. Becker T. Warden D. Wilcock G. Clarke R. Deloukas P. Ben-Shlomo Y. Hooper N.M. Pickering-Brown S. Sussams R. Warner N. Bayer A. Heuser I. Drichel D. Klopp N. Mayhaus M. Riemenschneider M. Pinchler S. Feulner T. Gu W. van den Bussche H. Hüll M. Frölich L. Wichmann H-E. Jöckel K-H. O’Donovan M. Owen M. Bahrami S. Bosnes I. Selnes P. Bergh S. Palotie A. Daly M. Jacob H. Matakidou A. Runz H. John S. Plenge R. McCarthy M. Hunkapiller J. Ehm M. Waterworth D. Fox C. Malarstig A. Klinger K. Call K. Behrens T. Loerch P. Mäkelä T. Kaprio J. Virolainen P. Pulkki K. Kilpi T. Perola M. Partanen J. Pitkäranta A. Kaarteenaho R. Vainio S. Turpeinen M. Serpi R. Laitinen T. Mäkelä J. Kosma V-M. Kujala U. Tuovila O. Hendolin M. Pakkanen R. Waring J. Riley-Gillis B. Liu J. Biswas S. Diogo D. Marshall C. Hu X. Gossel M. Graham R. Cummings B. Ripatti S. Schleutker J. Arvas M. Carpén O. Hinttala R. Kettunen J. Mannermaa A. Laukkanen J. Julkunen V. Remes A. Kälviäinen R. Peltola J. Tienari P. Rinne J. Ziemann A. Waring J. Esmaeeli S. Smaoui N. Lehtonen A. Eaton S. Lahdenperä S. van Adelsberg J. Michon J. Kerchner G. Bowers N. Teng E. Eicher J. Mehta V. Gormley P. Linden K. Whelan C. Xu F. Pulford D. Färkkilä M. Pikkarainen S. Jussila A. Blomster T. Kiviniemi M. Voutilainen M. Georgantas B. Heap G. Rahimov F. Usiskin K. Lu T. Oh D. Kalpala K. Miller M. McCarthy L. Eklund K. Palomäki A. Isomäki P. Pirilä L. Kaipiainen-Seppänen O. Huhtakangas J. Lertratanakul A. Hochfeld M. Bing N. Gordillo J.E. Mars N. Pelkonen M. Kauppi P. Kankaanranta H. Harju T. Close D. Greenberg S. Chen H. Betts J. Ghosh S. Salomaa V. Niiranen T. Juonala M. Metsärinne K. Kähönen M. Junttila J. Laakso M. Pihlajamäki J. Sinisalo J. Taskinen M-R. Tuomi T. Challis B. Peterson A. Chu A. Parkkinen J. Muslin A. Joensuu H. Meretoja T. Aaltonen L. Mattson J. Auranen A. Karihtala P. Kauppila S. Auvinen P. Elenius K. Popovic R. Schutzman J. Loboda A. Chhibber A. Lehtonen H. McDonough S. Crohns M. Kulkarni D. Kaarniranta K. Turunen J.A. Ollila T. Seitsonen S. Uusitalo H. Aaltonen V. Uusitalo-Järvinen H. Luodonpää M. Hautala N. Loomis S. Strauss E. Chen H. Podgornaia A. Hoffman J. Tasanen K. Huilaja L. Hannula-Jouppi K. Salmi T. Peltonen S. Koulu L. Harvima I. Wu Y. Choy D. Pussinen P. Salminen A. Salo T. Rice D. Nieminen P. Palotie U. Siponen M. Suominen L. Mäntylä P. Gursoy U. Anttonen V. Sipilä K. Davis J.W. Quarless D. Petrovski S. Wigmore E. Chen C-Y. Bronson P. Tsai E. Huang Y. Maranville J. Shaikho E. Mohammed E. Wadhawan S. Kvikstad E. Caliskan M. Chang D. Bhangale T. Pendergrass S. Holzinger E. Chen X. Hedman Å. King K.S. Wang C. Xu E. Auge F. Chatelain C. Rajpal D. Liu D. Call K. Xia T. Brauer M. Kurki M. Karjalainen J. Havulinna A. Jalanko A. Palta P. della Briotta Parolo P. Zhou W. Lemmelä S. Rivas M. Harju J. Lehisto A. Ganna A. Llorens V. Laivuori H. Rüeger S. Niemi M.E. Tukiainen T. Reeve M.P. Heyne H. Palin K. Garcia-Tabuenca J. Siirtola H. Kiiskinen T. Lee J. Tsuo K. Elliott A. Kristiansson K. Hyvärinen K. Ritari J. Koskinen M. Pylkäs K. Kalaoja M. Karjalainen M. Mantere T. Kangasniemi E. Heikkinen S. Laakkonen E. Sipeky C. Heron S. Karlsson A. Jambulingam D. Rathinakannan V.S. Kajanne R. Aavikko M. Jiménez M.G. della Briotta Parola P. Lehistö A. Kanai M. Kaunisto M. Kilpeläinen E. Sipilä T.P. Brein G. Awaisa G. Shcherban A. Donner K. Loukola A. Laiho P. Sistonen T. Kaiharju E. Laukkanen M. Järvensivu E. Lähteenmäki S. Männikkö L. Wong R. Mattsson H. Hiekkalinna T. Paajanen T. Pärn K. Gracia-Tabuenca J. Abner E. Adams P.M. Aguirre A. Albert M.S. Albin R.L. Allen M. Alvarez L. Apostolova L.G. Arnold S.E. Asthana S. Atwood C.S. Ayres G. Baldwin C.T. Barber R.C. Barnes L.L. Barral S. Beach T.G. Becker J.T. Beecham G.W. Beekly D. Below J.E. Benchek P. Benitez B.A. Bennett D. Bertelson J. Margaret F.E. Bird T.D. Blacker D. Boeve B.F. Bowen J.D. Boxer A. Brewer J. Burke J.R. Burns J.M. Bush W.S. Buxbaum J.D. Cairns N.J. Cao C. Carlson C.S. Carlsson C.M. Carney R.M. Carrasquillo M.M. Chasse S. Chesselet M-F. Chesi A. Chin N.A. Chui H.C. Chung J. Craft S. Crane P.K. Cribbs D.H. Crocco E.A. Cruchaga C. Cuccaro M.L. Cullum M. Darby E. Davis B. De Jager P.L. DeCarli C. DeToledo J. Dick M. Dickson D.W. Dombroski B.A. Doody R.S. Duara R. Ertekin-Taner N. Evans D.A. Fairchild T.J. Fallon K.B. Farlow M.R. Farrell J.J. Fernandez-Hernandez V. Ferris S. Frosch M.P. Fulton-Howard B. Galasko D.R. Gamboa A. Gearing M. Geschwind D.H. Ghetti B. Gilbert J.R. Grabowski T.J. Graff-Radford N.R. Grant S.F.A. Green R.C. Growdon J.H. Haines J.L. Hakonarson H. Hall J. Hamilton R.L. Harari O. Harrell L.E. Haut J. Head E. Henderson V.W. Hernandez M. Hohman T. Honig L.S. Huebinger R.M. Huentelman M.J. Hulette C.M. Hyman B.T. Hynan L.S. Ibanez L. Jarvik G.P. Jayadev S. Jin L-W. Johnson K. Johnson L. Kamboh M.I. Karydas A.M. Katz M.J. Kaye J.A. Keene C.D. Khaleeq A. Kim R. Knebl J. Kowall N.W. Kramer J.H. Kuksa P.P. LaFerla F.M. Lah J.J. Larson E.B. Lee C-Y. Lee E.B. Lerner A. Leung Y.Y. Leverenz J.B. Levey A.I. Li M. Lieberman A.P. Lipton R.B. Logue M. Lyketsos C.G. Malamon J. Mains D. Marson D.C. Martiniuk F. Mash D.C. Masliah E. Massman P. Masurkar A. McCormick W.C. McCurry S.M. McDavid A.N. McDonough S. McKee A.C. Mesulam M. Mez J. Miller B.L. Miller C.A. Miller J.W. Montine T.J. Monuki E.S. Morris J.C. Myers A.J. Nguyen T. O’Bryant S. Olichney J.M. Ory M. Palmer R. Parisi J.E. Paulson H.L. Pavlik V. Paydarfar D. Perez V. Peskind E. Petersen R.C. Phillips-Cremins J.E. Pierce A. Polk M. Poon W.W. Potter H. Qu L. Quiceno M. Quinn J.F. Raj A. Raskind M. Reiman E.M. Reisberg B. Reisch J.S. Ringman J.M. Roberson E.D. Rodriguear M. Rogaeva E. Rosen H.J. Rosenberg R.N. Royall D.R. Sager M.A. Sano M. Saykin A.J. Schneider J.A. Schneider L.S. Seeley W.W. Slifer S.H. Small S. Smith A.G. Smith J.P. Song Y.E. Sonnen J.A. Spina S. George-Hyslop P.S. Stern R.A. Stevens A.B. Strittmatter S.M. Sultzer D. Swerdlow R.H. Tanzi R.E. Tilson J.L. Trojanowski J.Q. Troncoso J.C. Tsuang D.W. Valladares O. Van Deerlin V.M. van Eldik L.J. Vassar R. Vinters H.V. Vonsattel J-P. Weintraub S. Welsh-Bohmer K.A. Whitehead P.L. Wijsman E.M. Wilhelmsen K.C. Williams B. Williamson J. Wilms H. Wingo T.S. Wisniewski T. Woltjer R.L. Woon M. Wright C.B. Wu C-K. Younkin S.G. Yu C-E. Yu L. Zhang Y. Zhao Y. Zhu X. Adams H. Akinyemi R.O. Ali M. Armstrong N. Aparicio H.J. Bahadori M. Becker J.T. Breteler M. Chasman D. Chauhan G. Comic H. Cox S. Cupples A.L. Davies G. DeCarli C.S. Duperron M-G. Dupuis J. Evans T. Fan F. Fitzpatrick A. Fohner A.E. Ganguli M. Geerlings M. Glatt S.J. Gonzalez H.M. Goss M. Grabe H. Habes M. Heckbert S.R. Hofer E. Hong E. Hughes T. Kautz T.F. Knol M. Kremen W. Lacaze P. Lahti J. Grand Q.L. Litkowski E. Li S. Liu D. Liu X. Loitfelder M. Manning A. Maillard P. Marioni R. Mazoyer B. van Lent D.M. Mei H. Mishra A. Nyquist P. O’Connell J. Patel Y. Paus T. Pausova Z. Raikkonen-Talvitie K. Riaz M. Rich S. Rotter J. Romero J. Roshchupkin G. Saba Y. Sargurupremraj M. Schmidt H. Schmidt R. Shulman J.M. Smith J. Sekhar H. Rajula R. Shin J. Simino J. Sliz E. Teumer A. Thomas A. Tin A. Tucker-Drob E. Vojinovic D. Wang Y. Weinstein G. Williams D. Wittfeld K. Yanek L. Yang Y. Farrer L.A. Psaty B.M. Ghanbari M. Raj T. Sachdev P. Mather K. Jessen F. Ikram M.A. de Mendonça A. Hort J. Tsolaki M. Pericak-Vance M.A. Amouyel P. Williams J. Frikke-Schmidt R. Clarimon J. Deleuze J-F. Rossi G. Seshadri S. Andreassen O.A. Ingelsson M. Hiltunen M. Sleegers K. Schellenberg G.D. van Duijn C.M. Sims R. van der Flier W.M. Ruiz A. Ramirez A. Lambert J-C. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022 54 4 412 436 10.1038/s41588‑022‑01024‑z 35379992
    [Google Scholar]
  35. Sierksma A. Escott-Price V. De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science 2020 370 6512 61 66 10.1126/science.abb8575 33004512
    [Google Scholar]
  36. Leonenko G. Baker E. Stevenson-Hoare J. Sierksma A. Fiers M. Williams J. de Strooper B. Escott-Price V. Identifying individuals with high risk of Alzheimer’s disease using polygenic risk scores. Nat. Commun. 2021 12 1 4506 10.1038/s41467‑021‑24082‑z 34301930
    [Google Scholar]
  37. Zhou X. Chen Y. Ip F.C.F. Jiang Y. Cao H. Lv G. Zhong H. Chen J. Ye T. Chen Y. Zhang Y. Ma S. Lo R.M.N. Tong E.P.S. Weiner M.W. Aisen P. Petersen R. Jack C.R. Jagust W. Trojanowski J.Q. Toga A.W. Beckett L. Green R.C. Saykin A.J. Morris J. Shaw L.M. Khachaturian Z. Sorensen G. Kuller L. Raichle M. Paul S. Davies P. Fillit H. Hefti F. Holtzman D. Mesulam M.M. Potter W. Snyder P. Schwartz A. Montine T. Thomas R.G. Donohue M. Walter S. Gessert D. Sather T. Jiminez G. Harvey D. Bernstein M. Thompson P. Schuff N. Borowski B. Gunter J. Senjem M. Vemuri P. Jones D. Kantarci K. Ward C. Koeppe R.A. Foster N. Reiman E.M. Chen K. Mathis C. Landau S. Cairns N.J. Householder E. Taylor-Reinwald L. Lee V. Korecka M. Figurski M. Crawford K. Neu S. Foroud T.M. Potkin S.G. Shen L. Faber K. Kim S. Nho K. Thal L. Buckholtz N. Albert M. Frank R. Hsiao J. Kaye J. Quinn J. Lind B. Carter R. Dolen S. Schneider L.S. Pawluczyk S. Beccera M. Teodoro L. Spann B.M. Brewer J. Vanderswag H. Fleisher A. Heidebrink J.L. Lord J.L. Mason S.S. Albers C.S. Knopman D. Johnson K. Doody R.S. Villanueva-Meyer J. Chowdhury M. Rountree S. Dang M. Stern Y. Honig L.S. Bell K.L. Ances B. Carroll M. Leon S. Mintun M.A. Schneider S. Oliver A. Marson D. Griffith R. Clark D. Geldmacher D. Brockington J. Roberson E. Grossman H. Mitsis E. de Toledo-Morrell L. Shah R.C. Duara R. Varon D. Greig M.T. Roberts P. Onyike C. D’Agostino D. Kielb S. Galvin J.E. Cerbone B. Michel C.A. Rusinek H. de Leon M.J. Glodzik L. De Santi S. Doraiswamy P.M. Petrella J.R. Wong T.Z. Arnold S.E. Karlawish J.H. Wolk D. Smith C.D. Jicha G. Hardy P. Sinha P. Oates E. Conrad G. Lopez O.L. Oakley M.A. Simpson D.M. Porsteinsson A.P. Goldstein B.S. Martin K. Makino K.M. Ismail M.S. Brand C. Mulnard R.A. Thai G. McAdams-Ortiz C. Womack K. Mathews D. Quiceno M. Diaz-Arrastia R. King R. Weiner M. Martin-Cook K. DeVous M. Levey A.I. Lah J.J. Cellar J.S. Burns J.M. Anderson H.S. Swerdlow R.H. Apostolova L. Tingus K. Woo E. Silverman D.H.S. Lu P.H. Bartzokis G. Graff-Radford N.R. Parfitt F. Kendall T. Johnson H. Farlow M.R. Hake A.M. Matthews B.R. Herring S. Hunt C. van Dyck C.H. Carson R.E. MacAvoy M.G. Chertkow H. Bergman H. Hosein C. Hsiung G-Y.R. Feldman H. Mudge B. Assaly M. Bernick C. Munic D. Kertesz A. Rogers J. Trost D. Kerwin D. Lipowski K. Wu C-K. Johnson N. Sadowsky C. Martinez W. Villena T. Turner R.S. Johnson K. Reynolds B. Sperling R.A. Johnson K.A. Marshall G. Frey M. Lane B. Rosen A. Tinklenberg J. Sabbagh M.N. Belden C.M. Jacobson S.A. Sirrel S.A. Kowall N. Killiany R. Budson A.E. Norbash A. Johnson P.L. Allard J. Lerner A. Ogrocki P. Hudson L. Fletcher E. Carmichael O. Olichney J. DeCarli C. Kittur S. Borrie M. Lee T-Y. Bartha R. Johnson S. Asthana S. Carlsson C.M. Preda A. Nguyen D. Tariot P. Reeder S. Bates V. Capote H. Rainka M. Scharre D.W. Kataki M. Adeli A. Zimmerman E.A. Celmins D. Brown A.D. Pearlson G.D. Blank K. Anderson K. Santulli R.B. Kitzmiller T.J. Schwartz E.S. Sink K.M. Williamson J.D. Garg P. Watkins F. Ott B.R. Querfurth H. Tremont G. Salloway S. Malloy P. Correia S. Rosen H.J. Miller B.L. Mintzer J. Spicer K. Bachman D. Pasternak S. Rachinsky I. Drost D. Pomara N. Hernando R. Sarrael A. Schultz S.K. Boles Ponto L.L. Shim H. Smith K.E. Relkin N. Chaing G. Raudin L. Smith A. Fargher K. Raj B.A. Neylan T. Grafman J. Davis M. Morrison R. Hayes J. Finley S. Friedl K. Fleischman D. Arfanakis K. James O. Massoglia D. Fruehling J.J. Harding S. Peskind E.R. Petrie E.C. Li G. Yesavage J.A. Taylor J.L. Furst A.J. Mok V.C.T. Kwok T.C.Y. Guo Q. Mok K.Y. Shoai M. Hardy J. Chen L. Fu A.K.Y. Ip N.Y. Deep learning-based polygenic risk analysis for Alzheimer’s disease prediction. Commun. Med. 2023 3 1 49 10.1038/s43856‑023‑00269‑x 37024668
    [Google Scholar]
  38. Wei W. Visweswaran S. Cooper G.F. The application of naive Bayes model averaging to predict Alzheimer’s disease from genome-wide data. J. Am. Med. Inform. Assoc. 2011 18 4 370 375 10.1136/amiajnl‑2011‑000101 21672907
    [Google Scholar]
  39. Lundberg M. Sng L.M.F. Szul P. Dunne R. Bayat A. Burnham S.C. Bauer D.C. Twine N.A. Novel Alzheimer’s disease genes and epistasis identified using machine learning GWAS platform. Sci. Rep. 2023 13 1 17662 10.1038/s41598‑023‑44378‑y 37848535
    [Google Scholar]
  40. Shigemizu D. Akiyama S. Suganuma M. Furutani M. Yamakawa A. Nakano Y. Ozaki K. Niida S. Classification and deep-learning–based prediction of Alzheimer disease subtypes by using genomic data. Transl. Psychiatry 2023 13 1 232 10.1038/s41398‑023‑02531‑1 37386009
    [Google Scholar]
  41. Xie Z. Situ Y. Deng L. Liang M. Ding H. Guo Z. Xu Q. Liang Z. Shao Z. Identification of therapeutic targets for Alzheimer’s Disease Treatment using bioinformatics and machine learning. Sci. Rep. 2025 15 1 3888 10.1038/s41598‑025‑88134‑w 39890844
    [Google Scholar]
  42. Kivimäki M. Livingston G. Singh-Manoux A. Mars N. Lindbohm J.V. Pentti J. Nyberg S.T. Pirinen M. Anderson E.L. Hingorani A.D. Sipilä P.N. Estimating dementia risk using multifactorial prediction models. JAMA Netw. Open 2023 6 6 e2318132 10.1001/jamanetworkopen.2023.18132 37310738
    [Google Scholar]
  43. Ferreira P.C.L. Zhang Y. Snitz B. Chang C.C.H. Bellaver B. Jacobsen E. Kamboh M.I. Zetterberg H. Blennow K. Pascoal T.A. Villemagne V.L. Ganguli M. Karikari T.K. Plasma biomarkers identify older adults at risk of Alzheimer’s disease and related dementias in a real-world population-based cohort. Alzheimers Dement. 2023 19 10 4507 4519 10.1002/alz.12986 36876954
    [Google Scholar]
  44. You J. Zhang Y.R. Wang H.F. Yang M. Feng J.F. Yu J.T. Cheng W. Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study. EClinicalMedicine 2022 53 101665 10.1016/j.eclinm.2022.101665 36187723
    [Google Scholar]
  45. Tang A.S. Rankin K.P. Cerono G. Miramontes S. Mills H. Roger J. Zeng B. Nelson C. Soman K. Woldemariam S. Li Y. Lee A. Bove R. Glymour M. Aghaeepour N. Oskotsky T.T. Miller Z. Allen I.E. Sanders S.J. Baranzini S. Sirota M. Leveraging electronic health records and knowledge networks for Alzheimer’s disease prediction and sex-specific biological insights. Nature Aging 2024 4 3 379 395 10.1038/s43587‑024‑00573‑8 38383858
    [Google Scholar]
  46. Duara R. Barker W. Heterogeneity in Alzheimer’s disease diagnosis and progression rates: Implications for therapeutic trials. Neurotherapeutics 2022 19 1 8 25 10.1007/s13311‑022‑01185‑z 35084721
    [Google Scholar]
  47. Kovacs G.G. Clinical stratification of subtypes of Alzheimer’s disease. Lancet Neurol. 2012 11 10 839 841 10.1016/S1474‑4422(12)70209‑0 22995685
    [Google Scholar]
  48. Patil S. Kukreja S. Early detection of cognitive decline with deep learning and graph-based modeling. MethodsX 2025 14 103405 10.1016/j.mex.2025.103405 40567946
    [Google Scholar]
  49. Topol E. Predicting and preventing Alzheimer’s disease. Science 2025 388 6750 eady3217 10.1126/science.ady3217 40440380
    [Google Scholar]
  50. Saleem T.J. Zahra S.R. Wu F. Alwakeel A. Alwakeel M. Jeribi F. Hijji M. Deep learning-based diagnosis of Alzheimer’s disease. J. Pers. Med. 2022 12 5 815 10.3390/jpm12050815 35629237
    [Google Scholar]
  51. Márquez F. Yassa M.A. Neuroimaging biomarkers for Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 21 10.1186/s13024‑019‑0325‑5 31174557
    [Google Scholar]
  52. Kang J. Caffo B. Liu H. Editorial: Recent advances and challenges on big data analysis in neuroimaging. Front. Neurosci. 2016 10 505 10.3389/fnins.2016.00505 27895547
    [Google Scholar]
  53. Etminani K. Soliman A. Davidsson A. Chang J.R. Martínez-Sanchis B. Byttner S. Camacho V. Bauckneht M. Stegeran R. Ressner M. Agudelo-Cifuentes M. Chincarini A. Brendel M. Rominger A. Bruffaerts R. Vandenberghe R. Kramberger M.G. Trost M. Nicastro N. Frisoni G.B. Lemstra A.W. van Berckel B.N.M. Pilotto A. Padovani A. Morbelli S. Aarsland D. Nobili F. Garibotto V. Ochoa-Figueroa M. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2022 49 2 563 584 10.1007/s00259‑021‑05483‑0 34328531
    [Google Scholar]
  54. Zhu W. Sun L. Huang J. Han L. Zhang D. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans. Med. Imaging 2021 40 9 2354 2366 10.1109/TMI.2021.3077079 33939609
    [Google Scholar]
  55. Hassan N. Miah A.S.M. Suzuki K. Okuyama Y. Shin J. Stacked CNN-based multichannel attention networks for Alzheimer disease detection. Sci. Rep. 2025 15 1 5815 10.1038/s41598‑025‑85703‑x 39962097
    [Google Scholar]
  56. Kim J.S. Han J.W. Bae J.B. Moon D.G. Shin J. Kong J.E. Lee H. Yang H.W. Lim E. Kim J.Y. Sunwoo L. Cho S.J. Lee D. Kim I. Ha S.W. Kang M.J. Suh C.H. Shim W.H. Kim S.J. Kim K.W. Deep learning-based diagnosis of Alzheimer’s disease using brain magnetic resonance images: An empirical study. Sci. Rep. 2022 12 1 18007 10.1038/s41598‑022‑22917‑3 36289390
    [Google Scholar]
  57. de Vries B.M. Golla S.S.V. Ebenau J. Verfaillie S.C.J. Timmers T. Heeman F. Cysouw M.C.F. van Berckel B.N.M. van der Flier W.M. Yaqub M. Boellaard R. Classification of negative and positive 18F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network. Eur. J. Nucl. Med. Mol. Imaging 2021 48 3 721 728 10.1007/s00259‑020‑05006‑3 32875431
    [Google Scholar]
  58. Rakvongthai Y. Patipipittana S. AI-powered FDG-PET radiomics: A door to better Alzheimer’s disease classification? Eur. Radiol. 2025 35 5 2617 2619 10.1007/s00330‑025‑11381‑y 39870903
    [Google Scholar]
  59. Fan S. Ponisio M.R. Xiao P. Ha S.M. Chakrabarty S. Lee J.J. Flores S. LaMontagne P. Gordon B. Raji C.A. Marcus D.S. Nazeri A. Ances B.M. Bateman R.J. Morris J.C. Benzinger T.L.S. Sotiras A. AmyloidPETNet: Classification of amyloid positivity in brain PET imaging using end-to-end deep learning. Radiology 2024 311 3 e231442 10.1148/radiol.231442 38860897
    [Google Scholar]
  60. Ye B. Chu C.H. Bayat S. Babineau J. How T.V. Mihailidis A. Researched apps used in dementia care for people living with dementia and their informal caregivers: Systematic review on app features, security, and usability. J. Med. Internet Res. 2023 25 e46188 10.2196/46188 37824187
    [Google Scholar]
  61. El-Sappagh S. Alonso J.M. Islam S.M.R. Sultan A.M. Kwak K.S. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Sci. Rep. 2021 11 1 2660 10.1038/s41598‑021‑82098‑3 33514817
    [Google Scholar]
  62. Bucholc M. Ding X. Wang H. Glass D.H. Wang H. Prasad G. Maguire L.P. Bjourson A.J. McClean P.L. Todd S. Finn D.P. Wong-Lin K. A practical computerized decision support system for predicting the severity of Alzheimer’s disease of an individual. Expert Syst. Appl. 2019 130 157 171 10.1016/j.eswa.2019.04.022 31402810
    [Google Scholar]
  63. Lin W. Gao Q. Yuan J. Chen Z. Feng C. Chen W. Du M. Tong T. Predicting Alzheimer’s disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data. Front. Aging Neurosci. 2020 12 77 10.3389/fnagi.2020.00077 32296326
    [Google Scholar]
  64. Buchman A.S. Bennett D.A. Loss of motor function in preclinical Alzheimer’s disease. Expert Rev. Neurother. 2011 11 5 665 676 10.1586/ern.11.57 21539487
    [Google Scholar]
  65. Yan J.H. Rountree S. Massman P. Doody R.S. Li H. Alzheimer’s disease and mild cognitive impairment deteriorate fine movement control. J. Psychiatr. Res. 2008 42 14 1203 1212 10.1016/j.jpsychires.2008.01.006 18280503
    [Google Scholar]
  66. Qi Y. Zhu X. Xiong X. Yang X. Ding N. Wu H. Xu K. Zhu J. Zhang J. Wang Y. Human motor cortex encodes complex handwriting through a sequence of stable neural states. Nat. Hum. Behav. 2025 9 6 1260 1271 10.1038/s41562‑025‑02157‑x 40175631
    [Google Scholar]
  67. Sweidan J. El-Yacoubi M.A. Rigaud A.S. Explainability of CNN-based Alzheimer’s disease detection from online handwriting. Sci. Rep. 2024 14 1 22108 10.1038/s41598‑024‑72650‑2 39333681
    [Google Scholar]
  68. Nardone E. De Stefano C. Cilia N.D. Fontanella F. Handwriting strokes as biomarkers for Alzheimer’s disease prediction: A novel machine learning approach. Comput. Biol. Med. 2025 190 110039 10.1016/j.compbiomed.2025.110039 40158458
    [Google Scholar]
  69. Hao J. Kwapong W.R. Shen T. Fu H. Xu Y. Lu Q. Liu S. Zhang J. Liu Y. Zhao Y. Zheng Y. Frangi A.F. Zhang S. Qi H. Zhao Y. Early detection of dementia through retinal imaging and trustworthy AI. NPJ Digit. Med. 2024 7 1 294 10.1038/s41746‑024‑01292‑5 39428420
    [Google Scholar]
  70. Cheung C.Y. Ran A.R. Wang S. Chan V.T.T. Sham K. Hilal S. Venketasubramanian N. Cheng C.Y. Sabanayagam C. Tham Y.C. Schmetterer L. McKay G.J. Williams M.A. Wong A. Au L.W.C. Lu Z. Yam J.C. Tham C.C. Chen J.J. Dumitrascu O.M. Heng P.A. Kwok T.C.Y. Mok V.C.T. Milea D. Chen C.L.H. Wong T.Y. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit. Health 2022 4 11 e806 e815 10.1016/S2589‑7500(22)00169‑8 36192349
    [Google Scholar]
  71. Acharya M. Deo R.C. Tao X. Barua P.D. Devi A. Atmakuru A. Tan R.S. Deep learning techniques for automated Alzheimer’s and mild cognitive impairment disease using EEG signals: A comprehensive review of the last decade (2013 - 2024). Comput. Methods Programs Biomed. 2025 259 108506 10.1016/j.cmpb.2024.108506 39581069
    [Google Scholar]
  72. Tröger J. Linz N. König A. Robert P. Alexandersson J. Peter J. Kray J. Exploitation vs. exploration - computational temporal and semantic analysis explains semantic verbal fluency impairment in Alzheimer’s disease. Neuropsychologia 2019 131 53 61 10.1016/j.neuropsychologia.2019.05.007 31121184
    [Google Scholar]
  73. Chimamiwa G. Giaretta A. Alirezaie M. Pecora F. Loutfi A. Are smart homes adequate for older adults with dementia? Sensors 2022 22 11 4254 10.3390/s22114254 35684874
    [Google Scholar]
  74. Possin K.L. Burns J.M. Forester B.P. Collaborative dementia care during the new therapeutic era. JAMA Neurol. 2024 81 12 1241 1242 10.1001/jamaneurol.2024.3379 39401023
    [Google Scholar]
  75. Shu S. Woo B.K.P. Use of technology and social media in dementia care: Current and future directions. World J. Psychiatry 2021 11 4 109 123 10.5498/wjp.v11.i4.109 33889536
    [Google Scholar]
  76. Moon S. Park K. The effect of digital reminiscence therapy on people with dementia: A pilot randomized controlled trial. BMC Geriatr. 2020 20 1 166 10.1186/s12877‑020‑01563‑2 32375661
    [Google Scholar]
  77. Hussain M. Ali T. Khan W.A. Afzal M. Lee S. Latif K. Recommendations service for chronic disease patient in multimodel sensors home environment. Telemed. J. E Health 2015 21 3 185 199 10.1089/tmj.2014.0028 25559934
    [Google Scholar]
  78. Thyrian J.R. Hertel J. Wucherer D. Eichler T. Michalowsky B. Dreier-Wolfgramm A. Zwingmann I. Kilimann I. Teipel S. Hoffmann W. Effectiveness and safety of dementia care management in primary care. JAMA Psychiatry 2017 74 10 996 1004 10.1001/jamapsychiatry.2017.2124 28746708
    [Google Scholar]
  79. Hasan W.U. Zaman K.T. Wang X. Li J. Xie B. Tao C. Empowering Alzheimer’s caregivers with conversational AI: A novel approach for enhanced communication and personalized support. npj Biomed. Innov. 2024 1 1 3 10.1038/s44385‑024‑00004‑8
    [Google Scholar]
  80. Vatansever S. Schlessinger A. Wacker D. Kaniskan H.Ü. Jin J. Zhou M.M. Zhang B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 2021 41 3 1427 1473 10.1002/med.21764 33295676
    [Google Scholar]
  81. Tsuji S. Hase T. Yachie-Kinoshita A. Nishino T. Ghosh S. Kikuchi M. Shimokawa K. Aburatani H. Kitano H. Tanaka H. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer’s disease. Alzheimers Res. Ther. 2021 13 1 92 10.1186/s13195‑021‑00826‑3 33941241
    [Google Scholar]
  82. Wu T. Lin R. Cui P. Yong J. Yu H. Li Z. Deep learning-based drug screening for the discovery of potential therapeutic agents for Alzheimer’s disease. J. Pharm. Anal. 2024 14 10 101022 10.1016/j.jpha.2024.101022 39850238
    [Google Scholar]
  83. Das B. Mathew A.T. Baidya A.T.K. Devi B. Salmon R.R. Kumar R. Artificial intelligence assisted identification of potential tau aggregation inhibitors: Ligand- and structure-based virtual screening, in silico ADME, and molecular dynamics study. Mol. Divers. 2024 28 4 2013 2031 10.1007/s11030‑023‑10645‑3 37022608
    [Google Scholar]
  84. Xie C. Zhuang X.X. Niu Z. Ai R. Lautrup S. Zheng S. Jiang Y. Han R. Gupta T.S. Cao S. Lagartos-Donate M.J. Cai C.Z. Xie L.M. Caponio D. Wang W.W. Schmauck-Medina T. Zhang J. Wang H. Lou G. Xiao X. Zheng W. Palikaras K. Yang G. Caldwell K.A. Caldwell G.A. Shen H.M. Nilsen H. Lu J.H. Fang E.F. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat. Biomed. Eng. 2022 6 1 76 93 10.1038/s41551‑021‑00819‑5 34992270
    [Google Scholar]
  85. Vaghari D. Mohankumar G. Tan K. Lowe A. Shering C. Tino P. Kourtzi Z. AI-guided patient stratification improves outcomes and efficiency in the AMARANTH Alzheimer’s Disease clinical trial. Nat. Commun. 2025 16 1 6244 10.1038/s41467‑025‑61355‑3 40675957
    [Google Scholar]
  86. Zulhafiz N.A. Teoh T.C. Chin A.V. Chang S.W. Drug repurposing using artificial intelligence, molecular docking, and hybrid approaches: A comprehensive review in general diseases vs Alzheimer’s disease. Comput. Methods Programs Biomed. 2025 261 108604 10.1016/j.cmpb.2025.108604 39826482
    [Google Scholar]
  87. Yan C. Grabowska M.E. Dickson A.L. Li B. Wen Z. Roden D.M. Michael Stein C. Embí P.J. Peterson J.F. Feng Q. Malin B.A. Wei W.Q. Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer’s disease with real-world clinical validation. NPJ Digit. Med. 2024 7 1 46 10.1038/s41746‑024‑01038‑3 38409350
    [Google Scholar]
  88. Grabowska M.E. Huang A. Wen Z. Li B. Wei W.Q. Drug repurposing for Alzheimer’s disease from 2012–2022 - A 10-year literature review. Front. Pharmacol. 2023 14 1257700 10.3389/fphar.2023.1257700 37745051
    [Google Scholar]
  89. Pushpakom S. Iorio F. Eyers P.A. Escott K.J. Hopper S. Wells A. Doig A. Guilliams T. Latimer J. McNamee C. Norris A. Sanseau P. Cavalla D. Pirmohamed M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019 18 1 41 58 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  90. Fang J. Zhang P. Wang Q. Chiang C.W. Zhou Y. Hou Y. Xu J. Chen R. Zhang B. Lewis S.J. Leverenz J.B. Pieper A.A. Li B. Li L. Cummings J. Cheng F. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer’s disease. Alzheimers Res. Ther. 2022 14 1 7 10.1186/s13195‑021‑00951‑z 35012639
    [Google Scholar]
  91. Qiu Y. Cheng F. Artificial intelligence for drug discovery and development in Alzheimer’s disease. Curr. Opin. Struct. Biol. 2024 85 102776 10.1016/j.sbi.2024.102776 38335558
    [Google Scholar]
  92. Withers C.A. Rufai A.M. Venkatesan A. Tirunagari S. Lobentanzer S. Harrison M. Zdrazil B. Natural language processing in drug discovery: Bridging the gap between text and therapeutics with artificial intelligence. Expert Opin. Drug Discov. 2025 20 6 765 783 10.1080/17460441.2025.2490835 40298230
    [Google Scholar]
  93. AI’s potential to accelerate drug discovery needs a reality check. Nature 2023 622 7982 217 10.1038/d41586‑023‑03172‑6 37817040
    [Google Scholar]
  94. Li Z. Jiang X. Wang Y. Kim Y. Applied machine learning in Alzheimer’s disease research: Omics, imaging, and clinical data. Emerg. Top. Life Sci. 2021 5 6 765 777 10.1042/ETLS20210249 34881778
    [Google Scholar]
  95. Beheshti I. Albensi B.C. Freitas A. Ghafourian T. Advancements and challenges in using AI for biomarker detection in early Alzheimer’s disease. Drug Discov. Today 2025 30 7 104415 10.1016/j.drudis.2025.104415 40545029
    [Google Scholar]
  96. van der Flier W.M. de Vugt M.E. Smets E.M.A. Blom M. Teunissen C.E. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia. Nature Aging 2023 3 5 494 505 10.1038/s43587‑023‑00404‑2 37202515
    [Google Scholar]
  97. Weiner M.W. Veitch D.P. Aisen P.S. Beckett L.A. Cairns N.J. Green R.C. Harvey D. Jack C.R. Jr Jagust W. Morris J.C. Petersen R.C. Salazar J. Saykin A.J. Shaw L.M. Toga A.W. Trojanowski J.Q. The Alzheimer’s disease neuroimaging initiative 3: Continued innovation for clinical trial improvement. Alzheimers Dement. 2017 13 5 561 571 10.1016/j.jalz.2016.10.006 27931796
    [Google Scholar]
  98. Qi W. Zhu X. He D. Wang B. Cao S. Dong C. Li Y. Chen Y. Wang B. Shi Y. Jiang G. Liu F. Boots L.M.M. Li J. Lou X. Yao J. Lu X. Kang J. Mapping knowledge landscapes and emerging trends in AI for dementia biomarkers: Bibliometric and visualization analysis. J. Med. Internet Res. 2024 26 e57830 10.2196/57830 39116438
    [Google Scholar]
  99. Finlayson S.G. Subbaswamy A. Singh K. Bowers J. Kupke A. Zittrain J. Kohane I.S. Saria S. The clinician and dataset shift in artificial intelligence. N. Engl. J. Med. 2021 385 3 283 286 10.1056/NEJMc2104626 34260843
    [Google Scholar]
  100. Lyall D.M. Kormilitzin A. Lancaster C. Sousa J. Petermann-Rocha F. Buckley C. Harshfield E.L. Iveson M.H. Madan C.R. McArdle R. Newby D. Orgeta V. Tang E. Tamburin S. Thakur L.S. Lourida I. Llewellyn D.J. Ranson J.M. Artificial intelligence for dementia - Applied models and digital health. Alzheimers Dement. 2023 19 12 5872 5884 10.1002/alz.13391 37496259
    [Google Scholar]
  101. Li Q. Yang M.Q. Comparison of machine learning approaches for enhancing Alzheimer’s disease classification. PeerJ 2021 9 e10549 10.7717/peerj.10549 33665002
    [Google Scholar]
  102. Khera R. Butte A.J. Berkwits M. Hswen Y. Flanagin A. Park H. Curfman G. Bibbins-Domingo K. AI in medicine-JAMA's focus on clinical outcomes, patient-centered care, quality, and equity. JAMA 2023 330 9 818 820 10.1001/jama.2023.15481 37566406
    [Google Scholar]
  103. Bengio Y. Hinton G. Yao A. Song D. Abbeel P. Darrell T. Harari Y.N. Zhang Y.Q. Xue L. Shalev-Shwartz S. Hadfield G. Clune J. Maharaj T. Hutter F. Baydin A.G. McIlraith S. Gao Q. Acharya A. Krueger D. Dragan A. Torr P. Russell S. Kahneman D. Brauner J. Mindermann S. Managing extreme AI risks amid rapid progress. Science 2024 384 6698 842 845 10.1126/science.adn0117 38768279
    [Google Scholar]
  104. Khalid N. Qayyum A. Bilal M. Al-Fuqaha A. Qadir J. Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Comput. Biol. Med. 2023 158 106848 10.1016/j.compbiomed.2023.106848 37044052
    [Google Scholar]
/content/journals/car/10.2174/0115672050410489250930175402
Loading
/content/journals/car/10.2174/0115672050410489250930175402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test