Full text loading...
Alzheimer’s disease (AD) is a debilitating neurodegenerative condition marked by progressive cognitive decline and memory impairment, affecting millions worldwide. Despite extensive research, no definitive cure exists, underscoring the need for innovative approaches to drug discovery and development.
This review focuses on the application of molecular docking techniques in the context of AD drug discovery. The methodology involves the use of computational modeling tools to predict and analyze the interactions between small drug-like molecules and key protein targets implicated in AD pathogenesis, particularly amyloid-beta (Aβ) and tau proteins.
Molecular docking has enabled the virtual screening of large chemical libraries to identify potential inhibitors of Aβ aggregation and tau hyperphosphorylation. Numerous studies have validated docking-predicted interactions with in vitro and in vivo experiments, resulting in the discovery of novel compounds with promising pharmacological profiles. Docking has also aided in the optimization of ligand binding affinity and selectivity toward AD-relevant targets.
The integration of molecular docking with experimental techniques enhances the reliability and efficiency of the drug discovery process. Docking allows for the early identification of bioactive molecules, reducing time and cost compared to traditional methods. However, limitations such as rigid receptor assumptions and scoring function inaccuracies require further refinement.
Molecular docking stands out as a powerful computational tool in the quest for effective AD therapies. Simulating protein-ligand interactions accelerates the identification of potential drug candidates and supports the rational design of targeted interventions, paving the way for future clinical applications in combating Alzheimer’s disease.
Article metrics loading...
Full text loading...
References
Data & Media loading...