Skip to content
2000
Volume 22, Issue 11
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative condition marked by progressive cognitive decline and memory impairment, affecting millions worldwide. Despite extensive research, no definitive cure exists, underscoring the need for innovative approaches to drug discovery and development.

Methods

This review focuses on the application of molecular docking techniques in the context of AD drug discovery. The methodology involves the use of computational modeling tools to predict and analyze the interactions between small drug-like molecules and key protein targets implicated in AD pathogenesis, particularly amyloid-beta (Aβ) and tau proteins.

Results

Molecular docking has enabled the virtual screening of large chemical libraries to identify potential inhibitors of Aβ aggregation and tau hyperphosphorylation. Numerous studies have validated docking-predicted interactions with and experiments, resulting in the discovery of novel compounds with promising pharmacological profiles. Docking has also aided in the optimization of ligand binding affinity and selectivity toward AD-relevant targets.

Discussion

The integration of molecular docking with experimental techniques enhances the reliability and efficiency of the drug discovery process. Docking allows for the early identification of bioactive molecules, reducing time and cost compared to traditional methods. However, limitations such as rigid receptor assumptions and scoring function inaccuracies require further refinement.

Conclusion

Molecular docking stands out as a powerful computational tool in the quest for effective AD therapies. Simulating protein-ligand interactions accelerates the identification of potential drug candidates and supports the rational design of targeted interventions, paving the way for future clinical applications in combating Alzheimer’s disease.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050386924250930184405
2025-10-22
2026-01-08
Loading full text...

Full text loading...

References

  1. DeTureM.A. DicksonD.W. The neuropathological diagnosis of Alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑531375134
    [Google Scholar]
  2. López-AntónR. Recent advances in Alzheimer’s disease research: From biomarkers to therapeutic frontiers.Biomedicines20241212281610.3390/biomedicines1212281639767722
    [Google Scholar]
  3. ZhangJ. ZhangY. WangJ. XiaY. ZhangJ. ChenL. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies.Signal Transduct. Target. Ther.20249121110.1038/s41392‑024‑01911‑339174535
    [Google Scholar]
  4. PradeepS. SaiC.M.R. SindhushreeS.R. ReddyP. SushmithaE. PurohitM.N. SureshD. SwamyS.N. SilinaE. ManturovaN. StupinV. KollurS.P. ShivamalluC. AcharR.R. Exploring shared therapeutic targets for Alzheimer’s disease and glioblastoma using network pharmacology and protein-protein interaction approach.Front Chem.202513154918610.3389/fchem.2025.154918640144222
    [Google Scholar]
  5. JakharR. DangiM. KhichiA. ChhillarA.K. Relevance of molecular docking studies in drug designing.Curr. Bioinform.202015427027810.2174/1574893615666191219094216
    [Google Scholar]
  6. SreeR.R. KalyanM. AnandN. ManiS. GorantlaV.R. SakharkarM.K. SongB.J. ChidambaramS.B. Newer therapeutic approaches in treating Alzheimer’s disease: A comprehensive review.ACS Omega20251065148517110.1021/acsomega.4c0552739989768
    [Google Scholar]
  7. CongdonE.E. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.201814739941510.1038/s41582‑018‑0013‑z29895964
    [Google Scholar]
  8. PasseriE. ElkhouryK. MorsinkM. BroersenK. LinderM. TamayolA. MalaplateC. YenF.T. Arab-TehranyE. Alzheimer’s disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms23221395436430432
    [Google Scholar]
  9. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics.Int. J. Nanomed.2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  10. JacobsH.I.L. O’DonnellA. SatizabalC.L. LoisC. KojisD. HanseeuwB.J. ThibaultE. SanchezJ.S. BuckleyR.F. YangQ. DeCarliC. KillianyR. SargurupremrajM. SperlingR.A. JohnsonK.A. BeiserA.S. SeshadriS. Associations between brainstem volume and Alzheimer’s disease pathology in middle-aged individuals of the Framingham Heart Study.J. Alzheimers Dis.20228641603160910.3233/JAD‑21537235213372
    [Google Scholar]
  11. LiuX LiuY. JiS. ScilabraD. NicosiaA. NjavroJ.R. Secretases related to amyloid precursor protein processing.Membranes2021111298310.3390/membranes1112098334940484
    [Google Scholar]
  12. SharmaK PradhanS DuffyLK YeasminS BhattaraiN SchulteMK Role of receptors in relation to plaques and tangles in Alzheimer’s disease pathology.Int. J. Mol. Sci.202122231298710.3390/ijms22231298734884789
    [Google Scholar]
  13. FanL. MaoC. HuX. ZhangS. YangZ. HuZ. SunH. FanY. DongY. YangJ. ShiC. XuY. New insights into the pathogenesis of Alzheimer’s disease.Front. Neurol.202010131210.3389/fneur.2019.0131231998208
    [Google Scholar]
  14. DecourtB. NoordaK. NoordaK. ShiJ. SabbaghM.N. Review of advanced drug trials focusing on the reduction of brain beta-amyloid to prevent and treat dementia.J. Exp. Pharmacol.20221433135210.2147/JEP.S26562636339394
    [Google Scholar]
  15. CondelloC. MerzG.E. AoyagiA. DeGradoW.F. PrusinerS.B. Aβ and Tau prions causing Alzheimer’s disease.Methods Mol. Biol.2023256129333710.1007/978‑1‑0716‑2655‑9_1636399277
    [Google Scholar]
  16. XuX. HuangM. ZouX. Docking-based inverse virtual screening: methods, applications, and challenges.Biophys. Rep.20184111610.1007/s41048‑017‑0045‑829577065
    [Google Scholar]
  17. MaiaE.H.B. AssisL.C. de OliveiraT.A. da SilvaA.M. TarantoA.G. Structure-based virtual screening: from classical to artificial intelligence.Front Chem.2020834310.3389/fchem.2020.0034332411671
    [Google Scholar]
  18. SinghS. GuptaH. SharmaP. SahiS. Advances in Artificial Intelligence (AI)-assisted approaches in drug screening.Artificial Intell. Chem.20242110003910.1016/j.aichem.2023.100039
    [Google Scholar]
  19. GentileF. YaacoubJ.C. GleaveJ. FernandezM. TonA.T. BanF. Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking.Nat. Protoc.202217367269710.1038/s41596‑021‑00659‑235121854
    [Google Scholar]
  20. RathkeF. HansenK. BrefeldU. MüllerK.R. StructRank: A new approach for ligand-based virtual screening.J. Chem. Inf. Model.2011511839210.1021/ci100308f21166393
    [Google Scholar]
  21. YasuoN. SekijimaM. Improved method of structure-based virtual screening via interaction-energy-based learning.J. Chem. Inf. Model.20195931050106110.1021/acs.jcim.8b0067330808172
    [Google Scholar]
  22. KimberT.B. ChenY. VolkamerA. Deep learning in virtual screening: Recent applications and developments.Int. J. Mol. Sci.2021229443510.3390/ijms2209443533922714
    [Google Scholar]
  23. StanzioneF. GiangrecoI. ColeJ.C. Use of molecular docking computational tools in drug discovery.Prog. Med. Chem.20216027334310.1016/bs.pmch.2021.01.00434147204
    [Google Scholar]
  24. MiserezA. YuJ. MohammadiP. Protein-based biological materials: Molecular design and artificial production.Chem. Rev.202312352049211110.1021/acs.chemrev.2c0062136692900
    [Google Scholar]
  25. Vénien-BryanC. LiZ. VuillardL. BoutinJ.A. Cryo-electron microscopy and X-ray crystallography: Complementary approaches to structural biology and drug discovery.Acta Crystallogr. F Struct. Biol. Commun.201773417418310.1107/S2053230X1700374028368275
    [Google Scholar]
  26. ZhangS. LiuK. LiuY. HuX. GuX. The role and application of bioinformatics techniques and tools in drug discovery.Front. Pharmacol.202516154713110.3389/fphar.2025.154713140017606
    [Google Scholar]
  27. SahooR.N. PattanaikS. PattnaikG. Review on the use of molecular docking as the first line tool in drug discovery and development.Indian J. Pharm. Sci.20228451334
    [Google Scholar]
  28. YurievE. HolienJ. RamslandP.A. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review.J. Mol. Recognit.2015281058160410.1002/jmr.247125808539
    [Google Scholar]
  29. MohapatraS. SnowD. SheaP. Gálvez-RodríguezA. KumarM. PadhyeL.P. MukherjiS. Photodegradation of a mixture of five pharmaceuticals commonly found in wastewater: Experimental and computational analysis.Environ. Res.2023216Pt 311465910.1016/j.envres.2022.11465936328221
    [Google Scholar]
  30. DashR. SahooR.N. NandiS. SwainR. MallickS. Sustained release bioadhesive suppository formulation for systemic delivery of ornidazole: In-silico docking study.Ind. J. Pharm. Educ. Res.2019534ss580s58610.5530/ijper.53.4s.153
    [Google Scholar]
  31. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  32. PramanikA. SahooR.N. NandaA. PradhanS.K. MallickS. Characterization and molecular docking of kaolin based cellulosic film for extending ophthalmic drug delivery.Indian J. Pharm. Sci.202183479410.36468/pharmaceutical‑sciences.831
    [Google Scholar]
  33. NandaA. SahooR.N. PramanikA. MohapatraR. PradhanS.K. ThirumuruganA. DasD. MallickS. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: Effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization.Colloids Surf. B Biointerfaces201817255556410.1016/j.colsurfb.2018.09.01130218981
    [Google Scholar]
  34. TaoX. HuangY. WangC. ChenF. YangL. LingL. CheZ. ChenX. Recent developments in molecular docking technology applied in food science: A review.Int. J. Food Sci. Technol.2020551334510.1111/ijfs.14325
    [Google Scholar]
  35. Vidal-LimonA. Aguilar-ToaláJ.E. LiceagaA.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides.J. Agric. Food Chem.202270493494310.1021/acs.jafc.1c0611034990125
    [Google Scholar]
  36. HajjoR. SabbahD.A. AbusaraO.H. Al BawabA.Q. A review of the recent advances in Alzheimer’s disease research and the utilization of network biology approaches for prioritizing diagnostics and therapeutics.Diagnostics20221212297510.3390/diagnostics1212297536552984
    [Google Scholar]
  37. ArruéL. Cigna-MéndezA. BarbosaT. Borrego-MuñozP. Struve-VillalobosS. OviedoV. Martínez-GarcíaC. Sepúlveda-LaraA. MillánN. Márquez MontesinosJ.C.E. MuñozJ. SantanaP.A. Peña-VarasC. BarretoG.E. GonzálezJ. RamírezD. New drug design avenues targeting Alzheimer’s disease by pharmacoinformatics-aided tools.Pharmaceutics2022149191410.3390/pharmaceutics1409191436145662
    [Google Scholar]
  38. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  39. AlroujiM. AlhumaydhiF.A. AlsayariA. SharafS.E. ShafiS. AnwarS. ShahwanM. AtiyaA. ShamsiA. Targeting Sirtuin 1 for therapeutic potential: Drug repurposing approach integrating docking and molecular dynamics simulations.PLoS One20231812e029318510.1371/journal.pone.029318538117829
    [Google Scholar]
  40. BurleS.S. GuptaK.R. JibhkateY.J. HemkeA.T. UmekarM.J. Insights into molecular docking: A comprehensive view.Int. J. Pharm. Chem. Anal.202310317518410.18231/j.ijpca.2023.030
    [Google Scholar]
  41. PantsarT. PosoA. Binding affinity via docking: Fact and fiction.Molecules2018238189910.3390/molecules23081899
    [Google Scholar]
  42. FerreiraL.G. Dos SantosR.N. OlivaG. AndricopuloA.D. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules20071338426205061
    [Google Scholar]
  43. GagliardiL. RocchiaW. SiteFerret: Beyond simple pocket identification in proteins.J. Chem. Theory Comput.202319155242525910.1021/acs.jctc.2c0130637470784
    [Google Scholar]
  44. HossainM.S. HussainM.H. Multi-target drug design in Alzheimer’s Disease treatment: Emerging technologies, advantages, challenges, and limitations.Pharmacol. Res. Perspect.2025134e7013110.1002/prp2.7013140531439
    [Google Scholar]
  45. SiddappajiK.K. GopalS. Molecular mechanisms in Alzheimer’s disease and the impact of physical exercise with advancements in therapeutic approaches.AIMS Neurosci.20218335738910.3934/Neuroscience.202102034183987
    [Google Scholar]
  46. Andrade-GuerreroJ. Santiago-BalmasedaA. Jeronimo-AguilarP. Vargas-RodríguezI. Cadena-SuárezA.R. Sánchez-GaribayC. Pozo-MolinaG. Méndez-CataláC.F. Cardenas-AguayoM.C. Diaz-CintraS. Pacheco-HerreroM. Luna-MuñozJ. Soto-RojasL.O. Alzheimer’s disease: An updated overview of its genetics.Int. J. Mol. Sci.2023244375410.3390/ijms2404375436835161
    [Google Scholar]
  47. FrançoisM. KarpeA.V. LiuJ.W. BealeD.J. HorM. HeckerJ. FauntJ. MaddisonJ. JohnsS. DoeckeJ.D. RoseS. LeifertW.R. Multi-Omics, an integrated approach to identify novel blood biomarkers of Alzheimer’s disease.Metabolites2022121094910.3390/metabo1210094936295851
    [Google Scholar]
  48. KimJ. JeongM. StilesW.R. ChoiH.S. Neuroimaging modalities in Alzheimer’s Disease: Diagnosis and clinical features.Int. J. Mol. Sci.20222311607910.3390/ijms2311607935682758
    [Google Scholar]
  49. GaoW. YangG. LiuX. HuK. PanJ. WangX. ZhaoY. XuY. Network pharmacology and experimental verification to investigate the mechanism of isoliquiritigenin for the treatment of Alzheimer’s disease.Sci. Rep.2025151437910.1038/s41598‑025‑88542‑y39910202
    [Google Scholar]
  50. MullaneK. WilliamsM. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery?Biochem. Pharmacol.202017711394510.1016/j.bcp.2020.11394532247851
    [Google Scholar]
  51. CummingsJ. New approaches to symptomatic treatments for Alzheimer’s disease.Mol. Neurodegener.202116111333413517
    [Google Scholar]
  52. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  53. HuangL.K. ChaoS.P. HuC.J. Clinical trials of new drugs for Alzheimer disease.J. Biomed. Sci.20202711810.1186/s12929‑019‑0609‑731906949
    [Google Scholar]
  54. XuM. WongA.H.C. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia.Acta Pharmacol. Sin.201839573375310.1038/aps.2017.17229565038
    [Google Scholar]
  55. BäckströmT. TurkmenS. DasR. DoverskogM. BlackburnT.P. The GABA system, a new target for medications against cognitive impairment - Associated with neuroactive steroids.J. Intern. Med.2023294328129410.1111/joim.1370537518841
    [Google Scholar]
  56. Calvo-Flores GuzmánB. VinnakotaC. GovindpaniK. WaldvogelH.J. FaullR.L.M. KwakowskyA. The GABAergic system as a therapeutic target for Alzheimer’s disease.J. Neurochem.2018146664966910.1111/jnc.1434529645219
    [Google Scholar]
  57. StiedlO. PappaE. Konradsson-GeukenÃ. ÃgrenS.O. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory.Front. Pharmacol.2015616210.3389/fphar.2015.0016226300776
    [Google Scholar]
  58. Bacqué-cazenaveJ. BharatiyaR. BarrièreG. DelbecqueJ.P. BouguiyoudN. Di GiovanniG. Serotonin in animal cognition and behavior.Int. J. Mol. Sci.2020215164910.3390/ijms2105164932121267
    [Google Scholar]
  59. GrillJ.D. CummingsJ.L. Novel targets for Alzheimer’s disease treatment.Expert Rev. Neurother.201010571110.1586/ern.10.2920420492
    [Google Scholar]
  60. CorayR. QuednowB.B. The role of serotonin in declarative memory: A systematic review of animal and human research.Neurosci. Biobehav. Rev.202213910472910.1016/j.neubiorev.2022.10472935691469
    [Google Scholar]
  61. AgrawalP. SinghH. SrivastavaH.K. SinghS. KishoreG. RaghavaG.P.S. Benchmarking of different molecular docking methods for protein-peptide docking.BMC Bioinformatics201919S1342610.1186/s12859‑018‑2449‑y30717654
    [Google Scholar]
  62. DarA.M. MirS. Molecular docking: Approaches, types, applications and basic challenges.J. Anal. Bioanal. Tech.2017821310.4172/2155‑9872.1000356
    [Google Scholar]
  63. XiaS. ChenE. ZhangY. Integrated molecular modeling and machine learning for drug design.J. Chem. Theory Comput.202319217478749510.1021/acs.jctc.3c0081437883810
    [Google Scholar]
  64. TorresP.H.M. SoderoA.C.R. JofilyP. Silva-JrF.P. Key topics in molecular docking for drug design.Int. J. Mol. Sci.20192018457410.3390/ijms2018457431540192
    [Google Scholar]
  65. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W. Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.00733624381236
    [Google Scholar]
  66. VieiraT.F. SousaS.F. Comparing AutoDock and Vina in ligand/decoy discrimination for virtual screening.Appl. Sci.2019921453810.3390/app9214538
    [Google Scholar]
  67. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  68. GoelS. KumarY. Assessing Inhibitory potential of natural compounds against BACE1 in Alzheimer’s disease: A molecular docking and molecular dynamics simulation approach.Indian J. Biochem. Biophys.2024616345353
    [Google Scholar]
  69. GoodsellD.S. MorrisG.M. OlsonA.J. Automated docking of flexible ligands: Applications of autodock.J. Mol. Recognit.1996911510.1002/(SICI)1099‑1352(199601)9:1<1::AID‑JMR241>3.0.CO;2‑68723313
    [Google Scholar]
  70. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  71. CS. SD.K. RagunathanV. TiwariP. AS. PB.D. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.202240258561110.1080/07391102.2020.181558432897178
    [Google Scholar]
  72. GhersiD. SanchezR. Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites.Proteins200974241742410.1002/prot.2215418636505
    [Google Scholar]
  73. SarkarA. ConcilioS. SessaL. MarrafinoF. PiottoS. Advancements and novel approaches in modified AutoDock Vina algorithms for enhanced molecular docking.Results Chem.2024710131910.1016/j.rechem.2024.101319
    [Google Scholar]
  74. ChenE.A. ZhangY. Can deep learning blind docking methods be used to predict allosteric compounds?J. Chem. Inf. Model.20256573737374810.1021/acs.jcim.5c0033140167386
    [Google Scholar]
  75. KoukosP.I. FaroI. van NoortC.W. BonvinA.M.J.J. A membrane protein complex docking benchmark.J. Mol. Biol.2018430245246525610.1016/j.jmb.2018.11.00530414967
    [Google Scholar]
  76. KurkcuogluZ. KoukosP.I. CitroN. TrelletM.E. RodriguesJ.P.G.L.M. MoreiraI.S. Roel-TourisJ. MelquiondA.S.J. GengC. SchaarschmidtJ. XueL.C. VangoneA. BonvinA.M.J.J. Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2.J. Comput. Aided Mol. Des.201832117518510.1007/s10822‑017‑0049‑y28831657
    [Google Scholar]
  77. WengG. WangE. WangZ. LiuH. ZhuF. LiD. HouT. HawkDock: A web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA.Nucleic Acids Res.201947W1W322W33010.1093/nar/gkz39731106357
    [Google Scholar]
  78. DominguezC. BoelensR. BonvinA.M.J.J. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information.J. Am. Chem. Soc.200312571731173710.1021/ja026939x12580598
    [Google Scholar]
  79. de VriesS.J. van DijkA.D.J. KrzeminskiM. van DijkM. ThureauA. HsuV. WassenaarT. BonvinA.M.J.J. HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets.Proteins200769472673310.1002/prot.2172317803234
    [Google Scholar]
  80. TrelletM. MelquiondA.S.J. BonvinA.M.J.J. Information-driven modeling of protein-peptide complexes.Methods Mol. Biol.2015126822123910.1007/978‑1‑4939‑2285‑7_1025555727
    [Google Scholar]
  81. KoukosP.I. RéauM. BonvinA.M.J.J. Shape-restrained modeling of protein–small-molecule complexes with high ambiguity driven DOCKing.J. Chem. Inf. Model.20216194807481810.1021/acs.jcim.1c0079634436890
    [Google Scholar]
  82. ElkinsM.R. SergeyevI.V. HongM. Determining cholesterol binding to membrane proteins by cholesterol 13C labeling in yeast and dynamic nuclear polarization NMR.J. Am. Chem. Soc.201814045154371544910.1021/jacs.8b0965830338997
    [Google Scholar]
  83. IbrahimI.M. AbdelmalekD.H. ElshahatM.E. ElfikyA.A. COVID-19 spike-host cell receptor GRP78 binding site prediction.J. Infect.202080555456210.1016/j.jinf.2020.02.02632169481
    [Google Scholar]
  84. GrosdidierA ZoeteV MichielinO. SwissDock, a protein-small molecule docking web service based on EADock DSS.Nucleic Acids Res.201139Web Server issueW270W27710.1093/nar/gkr36621624888
    [Google Scholar]
  85. KnightI.S. MailhotO. TangK.G. IrwinJ.J. DockOpt: A tool for automatic optimization of docking models.J. Chem. Inf. Model.20246431004101610.1021/acs.jcim.3c0140638206771
    [Google Scholar]
  86. GaoY. WangH. ZhouJ. YangY. An easy-to-use three-dimensional protein-structure-prediction online platform “DPL3D” based on deep learning algorithms.Curr. Res. Struct. Biol.2025910016310.1016/j.crstbi.2024.10016339867105
    [Google Scholar]
  87. KufarevaI. AbagyanR. Methods of protein structure comparison.Methods Mol. Biol.201185723125710.1007/978‑1‑61779‑588‑6_1022323224
    [Google Scholar]
  88. KozakovD. HallD.R. XiaB. PorterK.A. PadhornyD. YuehC. BeglovD. VajdaS. The ClusPro web server for protein–protein docking.Nat. Protoc.201712225527810.1038/nprot.2016.16928079879
    [Google Scholar]
  89. DasD.R. KumarD. KumarP. DashB.P. Molecular docking and its application in search of antisickling agent from Carica papaya.J. Appl. Biol. Biotechnol.20208110511610.7324/JABB.2020.80117
    [Google Scholar]
  90. AbudiyabN.A. AlanaziA.T. Visualization techniques in healthcare applications: A narrative review.Cureus20221411e3135510.7759/cureus.3135536514654
    [Google Scholar]
  91. MorrisG.M. GreenL.G. RadićZ. TaylorP. SharplessK.B. OlsonA.J. GrynszpanF. Automated docking with protein flexibility in the design of femtomolar “click chemistry” inhibitors of acetylcholinesterase.J. Chem. Inf. Model.201353489890610.1021/ci300545a23451944
    [Google Scholar]
  92. HuangS.Y. ZouX. Advances and challenges in protein-ligand docking.Int. J. Mol. Sci.20101183016303410.3390/ijms1108301621152288
    [Google Scholar]
  93. Blanes-MiraC Fernández-AguadoP de Andrés-LópezJ Fernández-CarvajalA Ferrer-MontielA Fernández-BallesterG. Comprehensive survey of consensus docking for high-throughput virtual screening.Molecules202228117510.3390/molecules2801017536615367
    [Google Scholar]
  94. VakserI.A. Protein-protein docking: From interaction to interactome.Biophys. J.201410781785179310.1016/j.bpj.2014.08.03325418159
    [Google Scholar]
  95. PagadalaN.S. SyedK. TuszynskiJ. Software for molecular docking: A review.Biophys. Rev.2017929110210.1007/s12551‑016‑0247‑128510083
    [Google Scholar]
  96. HaE.J. LwinC.T. DurrantJ.D. LigGrep: A tool for filtering docked poses to improve virtual-screening hit rates.J. Cheminform.20201216910.1186/s13321‑020‑00471‑233292486
    [Google Scholar]
  97. Bitencourt-FerreiraG. de AzevedoW.F. Molegro virtual docker for docking.Methods Mol. Biol.2019205314916710.1007/978‑1‑4939‑9752‑7_1031452104
    [Google Scholar]
  98. IqbalD. AlsaweedM. JamalQ.M.S. AsadM.R. RizviS.M.D. RizviM.R. AlbadraniH.M. HamedM. JahanS. AlyenbaawiH. Pharmacophore-based screening, molecular docking, and dynamic simulation of fungal metabolites as inhibitors of multi-targets in neurodegenerative disorders.Biomolecules20231311161310.3390/biom1311161338002295
    [Google Scholar]
  99. Salo-AhenOMH AlankoI BhadaneR AlexandreAM HonoratoRV HossainS Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  100. RaoS.N. HeadM.S. KulkarniA. LaLondeJ.M. Validation studies of the site-directed docking program LibDock.J. Chem. Inf. Model.20074762159217110.1021/ci600429917985863
    [Google Scholar]
  101. VenkatachalamC.M. JiangX. OldfieldT. WaldmanM. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites.J. Mol. Graph. Model.200321428930710.1016/S1093‑3263(02)00164‑X12479928
    [Google Scholar]
  102. LiH. KomoriA. LiM. ChenX. YangA.W.H. SunX. LiuY. HungA. ZhaoX. ZhouL. Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2.J. Mol. Liq.202337412125310.1016/j.molliq.2023.12125336694691
    [Google Scholar]
  103. GoddardT.D. HuangC.C. FerrinT.E. Software extensions to UCSF chimera for interactive visualization of large molecular assemblies.Structure200513347348210.1016/j.str.2005.01.00615766548
    [Google Scholar]
  104. SalmasoV. MoroS. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview.Front. Pharmacol.20189AUG92310.3389/fphar.2018.0092330186166
    [Google Scholar]
  105. BadarM.S. ShamsiS. AhmedJ. AlamM.A. Molecular dynamics simulations: Concept, methods, and applications.TransdisciplinarityChamSpringer2022513115110.1007/978‑3‑030‑94651‑7_7
    [Google Scholar]
  106. ButtS.S. BadshahY. ShabbirM. RafiqM. Molecular docking using Chimera and Autodock Vina software for nonbioinformaticians.JMIR Bioinf. Biot.202011e1423210.2196/14232
    [Google Scholar]
  107. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  108. MengY. ZhangZ. ZhouC. TangX. HuX. TianG. YangJ. YaoY. Protein structure prediction via deep learning: An in-depth review.Front. Pharmacol.202516149866210.3389/fphar.2025.149866240248099
    [Google Scholar]
  109. PinziL RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  110. AghajaniJ. FarniaP. FarniaP. GhanaviJ. VelayatiA.A. Molecular dynamic simulations and molecular docking as a potential way for designed new inhibitor drug without resistance.Tanaffos202221111436258912
    [Google Scholar]
  111. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x21091654
    [Google Scholar]
  112. DnyandevK.M. BabasahebG.V. ChandrashekharK.V. ChandrakantM.A. VasantO.K. A review on molecular docking.Int. Res. J. Pure Appl. Chem.2021223606810.9734/irjpac/2021/v22i330396
    [Google Scholar]
  113. dos SantosR.N. FerreiraL.G. AndricopuloA.D. Practices in molecular docking and structure-based virtual screening.Methods Mol. Biol.20181762315010.1007/978‑1‑4939‑7756‑7_329594766
    [Google Scholar]
  114. LiY. LiuZ. LiJ. HanL. LiuJ. ZhaoZ. WangR. Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set.J. Chem. Inf. Model.20145461700171610.1021/ci500080q24716849
    [Google Scholar]
  115. AshtawyH.M. MahapatraN.R. Task-specific scoring functions for predicting ligand binding poses and affinity and for screening enrichment.J. Chem. Inf. Model.201858111913310.1021/acs.jcim.7b0030929190087
    [Google Scholar]
  116. MeliR. MorrisG.M. BigginP.C. Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: A review.Front. Bioinform.2022288598310.3389/fbinf.2022.88598336187180
    [Google Scholar]
  117. GuedesI.A. PereiraF.S.S. DardenneL.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges.Front. Pharmacol.20189SEP108910.3389/fphar.2018.0108930319422
    [Google Scholar]
  118. LiJ. FuA. ZhangL. An overview of scoring functions used for protein–ligand interactions in molecular docking.Interdiscip. Sci.201911232032810.1007/s12539‑019‑00327‑w30877639
    [Google Scholar]
  119. AminK.M. RahmanA.D.E. AllamA.H. El-ZoheiryH.H. Design and synthesis of novel coumarin derivatives as potential acetylcholinesterase inhibitors for Alzheimer’s disease.Bioorg. Chem.202111010479210.1016/j.bioorg.2021.10479233799178
    [Google Scholar]
  120. KarunakaranK.B. ThiyagarajA. SanthakumarK. Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish.Nat. Prod. Bioprospect.2022121610.1007/s13659‑022‑00332‑535212831
    [Google Scholar]
  121. PeitzikaS.C. PontikiE. A Review on recent approaches on molecular docking studies of novel compounds targeting acetylcholinesterase in Alzheimer disease.Molecules2023283108410.3390/molecules2803108436770750
    [Google Scholar]
  122. Correa-BasurtoJ. AlcántaraI.V. Espinoza-FonsecaL.M. Trujillo-FerraraJ.G. p–Aminobenzoic acid derivatives as acetylcholinesterase inhibitors.Eur. J. Med. Chem.200540773273510.1016/j.ejmech.2005.03.01115935907
    [Google Scholar]
  123. DongH. YuedeC.M. CoughlanC.A. MurphyK.M. CsernanskyJ.G. Effects of donepezil on amyloid-β and synapse density in the Tg2576 mouse model of Alzheimer’s disease.Brain Res.2009130316917810.1016/j.brainres.2009.09.09719799879
    [Google Scholar]
  124. Shahrivar-GargariM. Hamzeh-MivehroudM. HemmatiS. ShahbaziM.J. NotashB. TüylüK.T. AyazgökB. DastmalchiS. Design, synthesis, and biological evaluation of novel indanone-based hybrids as multifunctional cholinesterase inhibitors for Alzheimer’s disease.J. Mol. Struct.2021122912978710.1016/j.molstruc.2020.129787
    [Google Scholar]
  125. SaeediM. SafaviM. Karimpour-RazkenariE. MahdaviM. EdrakiN. MoghadamF.H. KhanaviM. AkbarzadehT. Synthesis of novel chromenones linked to 1,2,3-triazole ring system: Investigation of biological activities against Alzheimer’s disease.Bioorg. Chem.201770869310.1016/j.bioorg.2016.11.01127914694
    [Google Scholar]
  126. XieX YuT LiX ZhangN FosterLJ PengC Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials.Signal Transduct. Target. Ther.20238133510.1038/s41392‑023‑01589‑z37669923
    [Google Scholar]
  127. BlancoE. IzotovaN. BoothC. ThrasherA.J. Immune reconstitution after gene therapy approaches in patients with X-linked severe combined immunodeficiency disease.Front. Immunol.20201160865310.3389/fimmu.2020.60865333329605
    [Google Scholar]
  128. LiY ZhangN PengX MaW QinY YaoX Network pharmacology analysis and clinical verification of Jishe Qushi capsules in rheumatoid arthritis treatment.Medicine202310234e3488310.1097/MD.0000000000034883
    [Google Scholar]
  129. WuX. HeC. LiuC. XuX. ChenC. YangH. ShiH. FeiY. SunY. ZhouS. FangB. Mechanisms of JinHong Formula on treating sepsis explored by randomized controlled trial combined with network pharmacology.J. Ethnopharmacol.202330511604010.1016/j.jep.2022.11604036539071
    [Google Scholar]
  130. XiaM. AiN. PangJ. Preliminary exploration of clinical efficacy and pharmacological mechanism of modified danggui-shaoyao san in the treatment of depression in patients with chronic kidney disease.Drug Des. Devel. Ther.2022163975398910.2147/DDDT.S38767736415742
    [Google Scholar]
  131. De RavinS.S. LiuS. SweeneyC.L. BraultJ. Whiting-TheobaldN. MaM. Lentivector cryptic splicing mediates increase in CD34+ clones expressing truncated HMGA2 in human X-linked severe combined immunodeficiency.Nat. Commun.2022131371010.1038/s41467‑022‑31344‑x35764638
    [Google Scholar]
  132. CuiY. MiJ. FengY. LiL. WangY. HuJ. WangH. Huangqi Sijunzi decoction for treating cancer-related fatigue in breast cancer patients: A randomized trial and network pharmacology study.Nan Fang Yi Ke Da Xue Xue Bao202242564965735673907
    [Google Scholar]
  133. FengY. ZhuB. LiuY. LiuY. ZhouG. YangL. LiuL. RenJ. HouY. YuH. MengP. JiangY. WangX. Yindan Jiedu granules exhibit anti-inflammatory effect in patients with novel Coronavirus disease (COVID-19) by suppressing the NF-κB signaling pathway.Phytomedicine20229515378410.1016/j.phymed.2021.153784
    [Google Scholar]
  134. Di PierroF. DerosaG. MaffioliP. BertuccioliA. TogniS. RivaA. AllegriniP. KhanA. KhanS. KhanB.A. AltafN. ZahidM. UjjanI.D. NigarR. KhushkM.I. PhulpotoM. LailA. DevrajaniB.R. AhmedS. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage covid-19 infection: A prospective, randomized, controlled, and open-label study.Int. J. Gen. Med.2021142359236610.2147/IJGM.S31872034135619
    [Google Scholar]
  135. XiaL. ShiY. SuJ. FriedemannT. TaoZ. LuY. LingY. LvY. ZhaoR. GengZ. CuiX. LuH. SchröderS. Shufeng Jiedu, a promising herbal therapy for moderate COVID-19: Antiviral and anti-inflammatory properties, pathways of bioactive compounds, and a clinical real-world pragmatic study.Phytomedicine20218515339010.1016/j.phymed.2020.15339033158717
    [Google Scholar]
  136. PoudelP. ParkS. Recent advances in the treatment of alzheimer’s disease using nanoparticle-based drug delivery systems.Pharmaceutics202214483510.3390/pharmaceutics1404083535456671
    [Google Scholar]
  137. O’BrienR.J. WongP.C. Amyloid precursor protein processing and Alzheimer’s disease.Annu. Rev. Neurosci.201134118520410.1146/annurev‑neuro‑061010‑11361321456963
    [Google Scholar]
  138. MillerV.M. GouvionC.M. DavidsonB.L. PaulsonH.L. Targeting Alzheimer’s disease genes with RNA interference: an efficient strategy for silencing mutant alleles.Nucleic Acids Res.200432266166810.1093/nar/gkh20814754988
    [Google Scholar]
  139. McConlogueL. ButtiniM. AndersonJ.P. BrighamE.F. ChenK.S. FreedmanS.B. GamesD. Johnson-WoodK. LeeM. ZellerM. LiuW. MotterR. SinhaS. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP Transgenic Mice.J. Biol. Chem.200728236263262633410.1074/jbc.M61168720017616527
    [Google Scholar]
  140. CiftciI. SeverB. DemirciH. AlghamdiM.A. From molecules to medicines: The role of ai-driven drug discovery against Alzheimer's disease and other neurological disorders.Pharmaceuticals2025187104110.3390/ph18071041
    [Google Scholar]
  141. SarkarC. DasB. RawatV.S. WahlangJ.B. NongpiurA. TiewsohI. LyngdohN.M. DasD. BidarolliM. SonyH.T. Artificial intelligence and machine learning technology driven modern drug discovery and development.Int. J. Mol. Sci.2023243202610.3390/ijms2403202636768346
    [Google Scholar]
  142. TeleanuR.I. PredaM.D. NiculescuA.G. VladâcencoO. RaduC.I. GrumezescuA.M. TeleanuD.M. Current strategies to enhance delivery of drugs across the blood–brain barrier.Pharmaceutics202214598710.3390/pharmaceutics1405098735631573
    [Google Scholar]
  143. Van CauwenbergheC. Van BroeckhovenC. SleegersK. The genetic landscape of Alzheimer disease: Clinical implications and perspectives.Genet. Med.201618542143010.1038/gim.2015.11726312828
    [Google Scholar]
/content/journals/car/10.2174/0115672050386924250930184405
Loading
/content/journals/car/10.2174/0115672050386924250930184405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test