Skip to content
2000
image of Research Progress on the Pathogenesis, Therapeutic Strategies, and Phthalocyanine Compounds for Alzheimer's Disease

Abstract

Alzheimer's disease (AD) is a formidable and complex neurodegenerative disorder driven by multifactorial interactions, including amyloid-beta (Aβ) aggregation, neurofibrillary tangles, and neuroinflammation Current therapies mainly consist of cholinesterase inhibitors and NMDA receptor antagonists, which can alleviate symptoms but fail to reverse disease progression. In recent years, emerging approaches such as immunotherapy and gene therapy have shown potential but remain in clinical exploration. Phthalocyanine (Pc) compounds, with their ability to inhibit Aβ fibril formation, favorable biocompatibility, and optical properties, have demonstrated potential in AD diagnosis and treatment. This review discusses the pathogenesis, therapeutic strategies, and research progress of Pc compounds in AD. Furthermore, the elucidation of their mechanisms of action, the optimization of blood-brain barrier penetration, and the promotion of clinical translation are needed to provide new directions for AD therapy.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050406141250822082635
2025-10-02
2025-11-06
Loading full text...

Full text loading...

References

  1. Chen S. Cao Z. Nandi A. The global macroeconomic burden of Alzheimer’s disease and other dementias: Estimates and projections for 152 countries or territories. Lancet Glob. Health 2024 12 9 e1534 e1543 10.1016/S2214‑109X(24)00264‑X 39151988
    [Google Scholar]
  2. Dementia W.H. A Public Health Priority. World Health Organization 2012
    [Google Scholar]
  3. Singh Y.P. Kumar N. Chauhan B.S. Garg P. Carbamate as a potential anti‐Alzheimer’s pharmacophore: A review. Drug Dev. Res. 2023 84 8 1624 1651 10.1002/ddr.22113 37694498
    [Google Scholar]
  4. Singh Y.P. Kumar H. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review. Chem. Biol. Drug Des. 2023 102 6 1592 1603 10.1111/cbdd.14337 37665093
    [Google Scholar]
  5. Hampel H. Hardy J. Blennow K. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  6. Zhang H. Wei W. Zhao M. Interaction between Aβ and Tau in the pathogenesis of Alzheimer’s disease. Int. J. Biol. Sci. 2021 17 9 2181 2192 10.7150/ijbs.57078 34239348
    [Google Scholar]
  7. Rezai A.R. D’Haese P.F. Finomore V. Ultrasound blood–brain barrier opening and aducanumab in Alzheimer’s disease. N. Engl. J. Med. 2024 390 1 55 62 10.1056/NEJMoa2308719 38169490
    [Google Scholar]
  8. van Dyck C.H. Swanson C.J. Aisen P. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  9. Valiente-Gabioud A.A. Miotto M.C. Chesta M.E. Lombardo V. Binolfi A. Fernández C.O. Phthalocyanines as molecular scaffolds to block disease-associated protein aggregation. Acc. Chem. Res. 2016 49 5 801 808 10.1021/acs.accounts.5b00507 27136297
    [Google Scholar]
  10. Akoury E. Gajda M. Pickhardt M. Inhibition of tau filament formation by conformational modulation. J. Am. Chem. Soc. 2013 135 7 2853 2862 10.1021/ja312471h 23360400
    [Google Scholar]
  11. Zhan Q. Shi X. Wang T. Design and synthesis of thymine modified phthalocyanine for Aβ protofibrils photodegradation and Aβ peptide aggregation inhibition. Talanta 2019 191 27 38 10.1016/j.talanta.2018.08.037 30262061
    [Google Scholar]
  12. Akel H. Csóka I. Ambrus R. In vitro comparative study of solid lipid and plga nanoparticles designed to facilitate nose-to-brain delivery of insulin. Int. J. Mol. Sci. 2021 22 24 13258 10.3390/ijms222413258 34948054
    [Google Scholar]
  13. Lillethorup I.A. Hemmingsen A.V. Qvortrup K. Prodrugs and their activation mechanisms for brain drug delivery. RSC Med Chem 2025 16 3 1037 1048 10.1039/D4MD00788C 39829971
    [Google Scholar]
  14. Monfared T.A.A. Byrnes M.J. White L.A. Zhang Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022 11 2 553 569 10.1007/s40120‑022‑00338‑8 35286590
    [Google Scholar]
  15. German-Castelan L. Shanks H.R.C. Gros R. Sex‐dependent cholinergic effects on amyloid pathology: A translational study. Alzheimers Dement. 2024 20 2 995 1012 10.1002/alz.13481 37846816
    [Google Scholar]
  16. Onisiforou A. Christodoulou C.C. Zamba-Papanicolaou E. Zanos P. Georgiou P. Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer’s disease. Front. Endocrinol. 2024 15 1345498 10.3389/fendo.2024.1345498 38689734
    [Google Scholar]
  17. Nichols E. Steinmetz J.D. Vollset S.E. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022 7 2 e105 e125 10.1016/S2468‑2667(21)00249‑8 34998485
    [Google Scholar]
  18. Li W. Pang Y. Wang Y. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer’s disease. BMC Med. 2023 21 1 223 10.1186/s12916‑023‑02930‑7 37365538
    [Google Scholar]
  19. Association A. 2025 Alzheimer’s disease facts and figures. Alzheimers Dement. 2025 21 4 e70235 10.1002/alz.70235
    [Google Scholar]
  20. Fortea J. Pegueroles J. Alcolea D. APOE4 homozygosity represents a distinct genetic form of Alzheimer’s disease. Nat. Med. 2024 30 5 1284 1291 10.1038/s41591‑024‑02931‑w 38710950
    [Google Scholar]
  21. Thomassen J.Q. Hampton L. Ulms B. APOE stratified genome-wide association studies provide novel insights into the genetic etiology of Alzheimers’s disease. medRxiv 2025 2025 05
    [Google Scholar]
  22. Onisiforou A. Charalambous E.G. Zanos P. Shattering the amyloid illusion: the microbial enigma of Alzheimer’s disease pathogenesis—from gut microbiota and viruses to brain biofilms. Microorganisms 2025 13 1 90 10.3390/microorganisms13010090 39858858
    [Google Scholar]
  23. Livingston G. Huntley J. Sommerlad A. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 2020 396 10248 413 446 10.1016/S0140‑6736(20)30367‑6 32738937
    [Google Scholar]
  24. Migliore L. Coppedè F. Gene–environment interactions in Alzheimer disease: The emerging role of epigenetics. Nat. Rev. Neurol. 2022 18 11 643 660 10.1038/s41582‑022‑00714‑w 36180553
    [Google Scholar]
  25. Lanoiselée H.M. Nicolas G. Wallon D. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 2017 14 3 e1002270 10.1371/journal.pmed.1002270 28350801
    [Google Scholar]
  26. Zheng Q. Wang X. Alzheimer’s disease: Insights into pathology, molecular mechanisms, and therapy. Protein Cell 2024 38733347
    [Google Scholar]
  27. Hong X. Huang L. Lei F. The role and pathogenesis of tau protein in Alzheimer’s disease. Biomolecules 2025 15 6 824 10.3390/biom15060824 40563464
    [Google Scholar]
  28. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  29. Francis PT The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 2005 10 S18 6 (Suppl. 18) 10.1017/S1092852900014164 16273023
    [Google Scholar]
  30. Tzioras M. McGeachan R.I. Durrant C.S. Spires-Jones T.L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 2023 19 1 19 38 10.1038/s41582‑022‑00749‑z 36513730
    [Google Scholar]
  31. Korte N. Barkaway A. Wells J. Inhibiting Ca2+ channels in Alzheimer’s disease model mice relaxes pericytes, improves cerebral blood flow and reduces immune cell stalling and hypoxia. Nat. Neurosci. 2024 27 11 2086 2100 10.1038/s41593‑024‑01753‑w 39294491
    [Google Scholar]
  32. Karran E. De Strooper B. The amyloid hypothesis in Alzheimer disease: New insights from new therapeutics. Nat. Rev. Drug Discov. 2022 21 4 306 318 10.1038/s41573‑022‑00391‑w 35177833
    [Google Scholar]
  33. Kepp K.P. Robakis N.K. Høilund-Carlsen P.F. Sensi S.L. Vissel B. The amyloid cascade hypothesis: An updated critical review. Brain 2023 146 10 3969 3990 10.1093/brain/awad159 37183523
    [Google Scholar]
  34. Mate De Gerando A. Welikovitch L.A. Khasnavis A. Tau seeding and spreading in vivo is supported by both AD-derived fibrillar and oligomeric tau. Acta Neuropathol. 2023 146 2 191 210 10.1007/s00401‑023‑02600‑1 37341831
    [Google Scholar]
  35. Fonseca C.S. Baker S.L. Dobyns L. Janabi M. Jagust W.J. Harrison T.M. Tau accumulation and atrophy predict amyloid independent cognitive decline in aging. Alzheimers Dement. 2024 20 4 2526 2537 10.1002/alz.13654 38334195
    [Google Scholar]
  36. Dang M. Chen Q. Zhao X. Tau as a biomarker of cognitive impairment and neuropsychiatric symptom in Alzheimer’s disease. Hum. Brain Mapp. 2023 44 2 327 340 10.1002/hbm.26043 36647262
    [Google Scholar]
  37. Vogel J.W. Iturria-Medina Y. Strandberg O.T. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun. 2020 11 1 2612 10.1038/s41467‑020‑15701‑2 32457389
    [Google Scholar]
  38. Guerreiro R. Wojtas A. Bras J. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013 368 2 117 127 10.1056/NEJMoa1211851 23150934
    [Google Scholar]
  39. Kraller M. Faßbender J. Jabali A. Novel fully human high-affinity anti-TREM2 antibody shows efficacy in clinically relevant Alzheimer’s mouse model. Alzheimers Res. Ther. 2025 17 1 114 10.1186/s13195‑025‑01759‑x 40405265
    [Google Scholar]
  40. Nam Y. Shin S.J. Kumar V. Won J. Kim S. Moon M. Dual modulation of amyloid beta and tau aggregation and dissociation in Alzheimer’s disease: a comprehensive review of the characteristics and therapeutic strategies. Transl. Neurodegener. 2025 14 1 15 10.1186/s40035‑025‑00479‑4 40133924
    [Google Scholar]
  41. Sugandhi V.V. Gadhave D.G. Ugale A.R. Advances in Alzheimer’s therapy: Exploring neuropathological mechanisms to revolutionize the future therapeutic landscape. Ageing Res. Rev. 2025 109 102775 10.1016/j.arr.2025.102775 40403980
    [Google Scholar]
  42. DiBello J.R. Lu Y. Swartz J. Patterns of use of symptomatic treatments for Alzheimer’s disease dementia (AD). BMC Neurol. 2023 23 1 400 10.1186/s12883‑023‑03447‑5 37946118
    [Google Scholar]
  43. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006 2006 1 CD005593 16437532
    [Google Scholar]
  44. Larkin H.D. First donepezil transdermal patch approved for alzheimer disease. JAMA 2022 327 17 1642 10.1001/jama.2022.6662 35503362
    [Google Scholar]
  45. Dunn B. Stein P. Temple R. Cavazzoni P. An Appropriate use of accelerated approval — Aducanumab for Alzheimer’s disease. N. Engl. J. Med. 2021 385 9 856 857 10.1056/NEJMc2111960 34320283
    [Google Scholar]
  46. Mallinckrodt C. Tian Y. Aisen P.S. Investigating partially discordant results in phase 3 studies of aducanumab. J. Prev. Alzheimers Dis. 2023 10 2 171 177 10.14283/jpad.2023.6 36946443
    [Google Scholar]
  47. Salloway S. Chalkias S. Barkhof F. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 2022 79 1 13 21 10.1001/jamaneurol.2021.4161 34807243
    [Google Scholar]
  48. Chen C. Katayama S. Lee J.H. Clarity AD: Asian regional analysis of a phase III trial of lecanemab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2025 12 5 100160 10.1016/j.tjpad.2025.100160 40189473
    [Google Scholar]
  49. Global E. Lecanemab confirmatory phase 3 clarity AD study met primary endpoint, showing highly statistically significant reduction of clinical decline in large global clinical study of 1,795 participants with early Alzheimer’s disease. New York PR Newswire Association LLC 2022
    [Google Scholar]
  50. Shcherbinin S. Evans C.D. Lu M. Association of amyloid reduction after donanemab treatment with tau pathology and clinical outcomes. JAMA Neurol. 2022 79 10 1015 1024 10.1001/jamaneurol.2022.2793 36094645
    [Google Scholar]
  51. Salloway S. Pain A. Lee E. TRAILBLAZER‐ALZ 4: A phase 3 trial comparing donanemab with aducanumab on amyloid plaque clearance in early, symptomatic Alzheimer’s disease. Alzheimers Dement. 2025 21 5 e70293 10.1002/alz.70293 40390253
    [Google Scholar]
  52. Rentz D.M. Aisen P.S. Atri A. Benefits and risks of FDA‐approved amyloid‐targeting antibodies for treatment of early Alzheimer’s disease: Navigating clinician‐patient engagement. Alzheimers Dement. 2024 20 11 8162 8171 10.1002/alz.14199 39306695
    [Google Scholar]
  53. Kim B.H. Kim S. Nam Y. Park Y.H. Shin S.M. Moon M. Second-generation anti-amyloid monoclonal antibodies for Alzheimer’s disease: current landscape and future perspectives. Transl. Neurodegener. 2025 14 1 6 10.1186/s40035‑025‑00465‑w 39865265
    [Google Scholar]
  54. Tonegawa-Kuji R. Hou Y. Hu B. Efficacy and safety of passive immunotherapies targeting amyloid beta in Alzheimer’s disease: A systematic review and meta-analysis. PLoS Med. 2025 22 3 e1004568 10.1371/journal.pmed.1004568 40163534
    [Google Scholar]
  55. Tartaglia M.C. Ingelsson M. Molecular therapeutics in development to treat Alzheimer’s disease. Mol. Diagn. Ther. 2025 29 1 9 24 10.1007/s40291‑024‑00738‑6 39316339
    [Google Scholar]
  56. Morroni F. Caccamo A. Advances and challenges in gene therapy for Alzheimer’s disease. J. Alzheimers Dis. 2024 101 s1 S417 S431 10.3233/JAD‑230783 39422937
    [Google Scholar]
  57. Darehbagh R.R. Seyedoshohadaei S.A. Ramezani R. Rezaei N. Stem cell therapies for neurological disorders: Current progress, challenges, and future perspectives. Eur. J. Med. Res. 2024 29 1 386 10.1186/s40001‑024‑01987‑1 39054501
    [Google Scholar]
  58. Wang Z.B. Wang Z.T. Sun Y. Tan L. Yu J.T. The future of stem cell therapies of Alzheimer’s disease. Ageing Res. Rev. 2022 80 101655 10.1016/j.arr.2022.101655 35660003
    [Google Scholar]
  59. Olson K.E. Abdelmoaty M.M. Namminga K.L. An open-label multiyear study of sargramostim-treated Parkinson’s disease patients examining drug safety, tolerability, and immune biomarkers from limited case numbers. Transl. Neurodegener. 2023 12 1 26 10.1186/s40035‑023‑00361‑1 37217980
    [Google Scholar]
  60. Lopez-Rodriguez A.B. Hennessy E. Murray C.L. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL‐1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement. 2021 17 10 1735 1755 10.1002/alz.12341 34080771
    [Google Scholar]
  61. Cai W. Zhang H. Wu Y. Yao Y. Zhang J. Comparative the efficacy and safety of gosuranemab, semorinemab, tilavonemab, and zagotenemab in patients with Alzheimer’s disease: A systematic review and network meta-analysis of randomized controlled trials. Front. Aging Neurosci. 2025 16 1465871 10.3389/fnagi.2024.1465871 39945003
    [Google Scholar]
  62. Wischik C.M. Bentham P. Gauthier S. Miller S. Kook K. Schelter B.O. Oral tau aggregation inhibitor for Alzheimer’s disease: Design, progress and basis for selection of the 16 mg/day dose in a phase 3, randomized, placebo-controlled trial of hydromethylthionine mesylate. J. Prev. Alzheimers Dis. 2022 9 4 780 790 10.14283/jpad.2022.63 36281683
    [Google Scholar]
  63. Li Z. Yin B. Zhang S. Lan Z. Zhang L. Targeting protein kinases for the treatment of Alzheimer’s disease: Recent progress and future perspectives. Eur. J. Med. Chem. 2023 261 115817 10.1016/j.ejmech.2023.115817 37722288
    [Google Scholar]
  64. Zheng B. Su B. Ahmadi-Abhari S. Dementia risk in patients with type 2 diabetes: Comparing metformin with no pharmacological treatment. Alzheimers Dement. 2023 19 12 5681 5689 10.1002/alz.13349 37395154
    [Google Scholar]
  65. Georgiou A. Zanos P. Onisiforou A. Metformin shows greater potential than semaglutide in reducing Alzheimer′s risk in diabetes type ii via dual actions: Tackling disease pathways and environmental herpesvirus triggers. bioRxiv 2025 2025 03
    [Google Scholar]
  66. Luchsinger J.A. Devanand D. Goldberg T.E. Protocol for a Randomized Phase II/III double-blind placebo-controlled trial to evaluate the safety and efficacy of extended-release metformin in amnestic mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 2025 39 2 123 133 10.1097/WAD.0000000000000677 40434891
    [Google Scholar]
  67. Henry D.S. Pellegrino R.G. A case-control study of phosphodiesterase-5 inhibitor use and Alzheimer’s disease and related dementias among male and female patients aged 65 years and older supporting the need for a phase III clinical trial. PLoS One 2023 18 10 e0292863 10.1371/journal.pone.0292863 37851623
    [Google Scholar]
  68. Weidung B. Hemmingsson E.S. Olsson J. VALZ‐Pilot: High‐dose valacyclovir treatment in patients with early‐stage Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2022 8 1 e12264 10.1002/trc2.12264 35310522
    [Google Scholar]
  69. Devanand D.P. Andrews H. Kreisl W.C. Antiviral therapy: Valacyclovir Treatment of Alzheimer’s Disease (VALAD) Trial: Protocol for a randomised, double-blind,placebo-controlled, treatment trial. BMJ Open 2020 10 2 e032112 10.1136/bmjopen‑2019‑032112 32034019
    [Google Scholar]
  70. Meyer C. O’Keefe F. Non-pharmacological interventions for people with dementia: A review of reviews. Dementia 2020 19 6 1927 1954 10.1177/1471301218813234 30526036
    [Google Scholar]
  71. Law C.K. Lam F.M.H. Chung R.C.K. Pang M.Y.C. Physical exercise attenuates cognitive decline and reduces behavioural problems in people with mild cognitive impairment and dementia: A systematic review. J. Physiother. 2020 66 1 9 18 10.1016/j.jphys.2019.11.014 31843427
    [Google Scholar]
  72. Wang Y. Wang X. Chen L. Liu Y. Li Y. A systematic review and network meta-analysis comparing various non-pharmacological treatments for older people with mild cognitive impairment. Asian J. Psychiatr. 2023 86 103635 10.1016/j.ajp.2023.103635 37270875
    [Google Scholar]
  73. Li X. Ji M. Zhang H. Non-drug therapies for Alzheimer’s disease: A review. Neurol. Ther. 2023 12 1 39 72 10.1007/s40120‑022‑00416‑x 36376734
    [Google Scholar]
  74. Ornish D. Madison C. Kivipelto M. Effects of intensive lifestyle changes on the progression of mild cognitive impairment or early dementia due to Alzheimer’s disease: a randomized, controlled clinical trial. Alzheimers Res. Ther. 2024 16 1 122 10.1186/s13195‑024‑01482‑z 38849944
    [Google Scholar]
  75. Astara K. Tsimpolis A. Kalafatakis K. Sleep disorders and Alzheimer’s disease pathophysiology: The role of the Glymphatic System. A scoping review. Mech. Ageing Dev. 2024 217 111899 10.1016/j.mad.2023.111899 38163471
    [Google Scholar]
  76. Gamble L.D. Clare L. Opdebeeck C. Cognitive reserve and its impact on cognitive and functional abilities, physical activity and quality of life following a diagnosis of dementia: Longitudinal findings from the Improving the experience of Dementia and Enhancing Active Life (IDEAL) study. Age Ageing 2025 54 1 afae284 10.1093/ageing/afae284 39775724
    [Google Scholar]
  77. Wang H. Levey A. Wang G. Lymphatic-venous anastomosis surgery for Alzheimer’s disease. Gen. Psychiatr. 2025 38 3 e102062 10.1136/gpsych‑2025‑102062 40444027
    [Google Scholar]
  78. Chen J.Y. Zhao D.W. Yin Y. Deep cervical lymphovenous anastomosis (LVA) for Alzheimer’s disease microsurgical procedure in a prospective cohort study. Int. J. Surg. 2025 10.1097/JS9.0000000000002490 40391969
    [Google Scholar]
  79. Davidson B. Vetkas A. Germann J. Tang-Wai D. Lozano A.M. Deep brain stimulation for Alzheimer’s disease – Current status and next steps. Expert Rev. Med. Devices 2024 21 4 285 292 10.1080/17434440.2024.2337298 38573133
    [Google Scholar]
  80. Neudorfer C. Elias G.J.B. Jakobs M. Mapping autonomic, mood and cognitive effects of hypothalamic region deep brain stimulation. Brain 2021 144 9 2837 2851 10.1093/brain/awab170 33905474
    [Google Scholar]
  81. Germann J. Amaral R.S.C. Tomaszczyk J. Biomarker changes associated with fornix deep brain stimulation in Alzheimer’s disease. Alzheimers Dement. 2025 21 6 e70394 10.1002/alz.70394 40566800
    [Google Scholar]
  82. Bae S. Liu K. Pouliopoulos A.N. Transcranial blood-brain barrier opening in Alzheimer’s disease patients using a portable focused ultrasound system with real-time 2-D cavitation mapping. Theranostics 2024 14 11 4519 4535 10.7150/thno.94206 39113808
    [Google Scholar]
  83. Mahajan N.M. Saini A. Raut N.A. Dhoble S.J. Photophysics and nanophysics in therapeutics. Chantilly 2022
    [Google Scholar]
  84. Galstyan A. Turning photons into drugs: Phthalocyanine‐based photosensitizers as efficient photoantimicrobials. Chemistry 2021 27 6 1903 1920 10.1002/chem.202002703 32677718
    [Google Scholar]
  85. The Minerals M M S Recent Developments in the Processing, Characterization, Properties, Performance and Applications of Metal Matrix Composites. United States 2013
    [Google Scholar]
  86. Gounden D. Nombona N. van Zyl W.E. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord. Chem. Rev. 2020 420 213359 10.1016/j.ccr.2020.213359
    [Google Scholar]
  87. Nyamu S.N. Ombaka L. Masika E. Ng’ang’a M. Antimicrobial photodynamic activity of phthalocyanine derivatives. Advances in Chemistry 2018 2018 1 8 10.1155/2018/2598062
    [Google Scholar]
  88. Ross P. Moving photodynamic medicine forward by stimulating collaboration between the laboratory and the clinic. J. Natl. Compr. Canc. Netw. 2012 10 S-1 S-2 10.6004/jnccn.2012.0165 23055206
    [Google Scholar]
  89. Zheng K. Liu X. Li M. Zhou S. Ding C. Phthalocyanine-based nanoassembly with switchable fluorescence and photoactivities for tumor imaging and phototherapy. Anal. Chem. 2022 94 43 15067 15075 10.1021/acs.analchem.2c03128 36268852
    [Google Scholar]
  90. Li G. Wang C. Jin B. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discov. 2024 10 1 466 10.1038/s41420‑024‑02236‑4 39528439
    [Google Scholar]
  91. Hakli Ö. Yarali S. Öner Usta E. Ayaz F. Photodynamic anti-inflammatory activity of meso aryl substituted porphyrin derivative on mammalian macrophages. Photodiagn. Photodyn. Ther. 2024 45 103922 10.1016/j.pdpdt.2023.103922 38081569
    [Google Scholar]
  92. El-badrawy A.M. Fadda A.A. Abdel-Latif E. Selim Y.A. Design and synthesis of novel phthalocyanines as potential antioxidant and antitumor agents starting with new synthesized phthalonitrile derivatives. RSC Advances 2021 11 54 34300 34308 10.1039/D1RA05249G 35497267
    [Google Scholar]
  93. Rennie C.C. Edkins R.M. Targeted cancer phototherapy using phthalocyanine–anticancer drug conjugates. Dalton Trans. 2022 51 35 13157 13175 10.1039/D2DT02040H 36018269
    [Google Scholar]
  94. Spesia M.B. Durantini E.N. Evolution of phthalocyanine structures as photodynamic agents for bacteria inactivation. Chem. Rec. 2022 22 4 e202100292 10.1002/tcr.202100292 35018719
    [Google Scholar]
  95. Ozturk I. Tunçel A. Yurt F. Biyiklioglu Z. Ince M. Ocakoglu K. Antifungal photodynamic activities of phthalocyanine derivatives on Candida albicans. Photodiagn. Photodyn. Ther. 2020 30 101715 10.1016/j.pdpdt.2020.101715 32165338
    [Google Scholar]
  96. Francisco T.N. Malafaia D. Melo L. Silva A.M.S. Albuquerque H.M.T. Recent advances in fluorescent theranostics for Alzheimer’s disease: A comprehensive survey on design, synthesis, and properties. ACS Omega 2024 9 12 13556 13591 10.1021/acsomega.3c10417 38559945
    [Google Scholar]
  97. Alhazmi H.A. Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm. J. 2022 30 12 1755 1764 10.1016/j.jsps.2022.10.004 36601504
    [Google Scholar]
  98. Güzel E. Koçyiğit Ü.M. Taslimi P. Erkan S. Taskin O.S. Biologically active phthalocyanine metal complexes: Preparation, evaluation of α‐glycosidase and anticholinesterase enzyme inhibition activities, and molecular docking studies. J. Biochem. Mol. Toxicol. 2021 35 6 1 9 10.1002/jbt.22765 33704864
    [Google Scholar]
  99. González N. Gentile I. Garro H.A. Metal coordination and peripheral substitution modulate the activity of cyclic tetrapyrroles on αS aggregation: A structural and cell-based study. J. Biol. Inorg. Chem. 2019 24 8 1269 1278 10.1007/s00775‑019‑01711‑z 31486955
    [Google Scholar]
  100. Park J.W. Ahn J.S. Lee J.H. Bhak G. Jung S. Paik S.R. Amyloid fibrillar meshwork formation of iron-induced oligomeric species of Abeta40 with phthalocyanine tetrasulfonate and its toxic consequences. ChemBioChem 2008 9 16 2602 2605 10.1002/cbic.200800343 18803192
    [Google Scholar]
  101. Marino J. García Vior M.C. Dicelio L.E. Roguin L.P. Awruch J. Photodynamic effects of isosteric water-soluble phthalocyanines on human nasopharynx KB carcinoma cells. Eur. J. Med. Chem. 2010 45 9 4129 4139 10.1016/j.ejmech.2010.06.002 20599298
    [Google Scholar]
  102. Tabassum S. Sheikh A.M. Yano S. Ikeue T. Handa M. Nagai A. A carboxylated Zn‐phthalocyanine inhibits fibril formation of Alzheimer’s amyloid β peptide. FEBS J. 2015 282 3 463 476 10.1111/febs.13151 25404240
    [Google Scholar]
  103. Wang R. Azad A.K. Sheikh A.M. Carboxylated Zn-phthalocyanine attenuates brain Aβ in AD model mouse. Brain Res. 2025 1850 149422 10.1016/j.brainres.2024.149422 39722311
    [Google Scholar]
  104. Singh Y.P. Kumar H. A recent update on huprine and its hybrids as a potential multifunctional agent for the treatment of Alzheimer’s disease. Chem. Biol. Drug Des. 2024 103 2 e14478 10.1111/cbdd.14478
    [Google Scholar]
  105. Soni A.G. Verma A. Joshi R. Phytoactive drugs used in the treatment of Alzheimer’s disease and dementia. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 11 8633 8649 10.1007/s00210‑024‑03243‑z 38940847
    [Google Scholar]
  106. Banik A. Brown R.E. Bamburg J. Translation of pre-clinical studies into successful clinical trials for Alzheimer’s disease: What are the roadblocks and how can they be overcome?1. J. Alzheimers Dis. 2015 47 4 815 843 10.3233/JAD‑150136 26401762
    [Google Scholar]
  107. Lo P.C. Rodríguez-Morgade M.S. Pandey R.K. Ng D.K.P. Torres T. Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020 49 4 1041 1056 10.1039/C9CS00129H 31845688
    [Google Scholar]
  108. Panza F. Solfrizzi V. Seripa D. Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res. Int. 2016 2016 1 15 10.1155/2016/3245935 27429978
    [Google Scholar]
  109. Miretti M. Prucca C.G. Tempesti T.C. Baumgartner M.T. Current phthalocyanines delivery systems in photodynamic therapy: An updated review. Curr. Med. Chem. 2021 28 26 5339 5367 10.2174/0929867328666210208111234 33557727
    [Google Scholar]
  110. Su W. Xu W. Liu E. Su W. Polyakov N.E. Improving the treatment effect of carotenoids on Alzheimer’s disease through various nano-delivery systems. Int. J. Mol. Sci. 2023 24 8 7652 10.3390/ijms24087652 37108814
    [Google Scholar]
  111. Liu J.Y. Guo H.Y. Quan Z.S. Shen Q.K. Cui H. Li X. Research progress of natural products and their derivatives against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2023 38 1 2171026 10.1080/14756366.2023.2171026 36803484
    [Google Scholar]
  112. Liu P. Zhang T. Chen Q. Biomimetic Dendrimer–peptide conjugates for early multi‐target therapy of Alzheimer’s disease by inflammatory microenvironment modulation. Adv. Mater. 2021 33 26 2100746 10.1002/adma.202100746 33998706
    [Google Scholar]
  113. Wang X. Zhang W. Hou L. A biomimetic upconversion nanobait-based near infrared light guided photodynamic therapy alleviates alzheimer’s disease by inhibiting b-amyloid aggregation. Adv. Healthc. Mater. 2023 2023 13
    [Google Scholar]
  114. Kamkaew A. Cheng L. Goel S. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2016 8 40 26630 26637 10.1021/acsami.6b10255 27657487
    [Google Scholar]
  115. Gonçalves J. Caliceti P. Optimizing pharmacological and immunological properties of therapeutic proteins through pegylation: investigating key parameters and their impact. Drug Des. Devel. Ther. 2024 18 5041 5062 10.2147/DDDT.S481420 39529843
    [Google Scholar]
  116. Chu J.C.H. Fong W.P. Wong C.T.T. Ng D.K.P. Facile synthesis of cyclic peptide–phthalocyanine conjugates for epidermal growth factor receptor-targeted photodynamic therapy. J. Med. Chem. 2021 64 4 2064 2076 10.1021/acs.jmedchem.0c01677 33577327
    [Google Scholar]
/content/journals/car/10.2174/0115672050406141250822082635
Loading
/content/journals/car/10.2174/0115672050406141250822082635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test