Skip to content
2000
image of Unlocking Neuroprotection: Potassium Channel Openers in Alzheimer's Disease

Abstract

Alzheimer's disease is a neurodegenerative disorder characterized by impairments in cognitive functions such as thinking, behavior, and memory. The major pathological abnormalities associated with the disease include the formation of neurofibrillary tangles and amyloid plaques, which further cause neuroinflammation and nerve cell death. Currently, treatments for the disease focus on symptomatic management rather than addressing the root cause of neurological changes. Therefore, the current status of therapy highlights the need for more effective therapeutic substances that can either prevent abnormal deposition or slow neurodegeneration to preserve nerve cells. In this respect, ATP-sensitive potassium channel openers may have a potential role in prevention and protection. The present article focuses on several cellular mechanisms of this class, including the limitation of neuronal excitability, modulation of neurotransmitter release, prevention of aberrant protein buildup, reduction of excessive calcium influx, reduction of reactive oxygen species levels, and reduction of microglial activation.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050404363251128053608
2026-01-05
2026-01-12
Loading full text...

Full text loading...

References

  1. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  2. Abubakar M.B. Sanusi K.O. Ugusman A. Alzheimer’s disease: An update and insights into pathophysiology. Front. Aging Neurosci. 2022 14 742408 10.3389/fnagi.2022.742408 35431894
    [Google Scholar]
  3. Kocahan S. Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin. Psychopharmacol. Neurosci. 2017 15 1 1 8 10.9758/cpn.2017.15.1.1 28138104
    [Google Scholar]
  4. O’Brien R.J. Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011 34 1 185 204 10.1146/annurev‑neuro‑061010‑113613 21456963
    [Google Scholar]
  5. Chow V.W. Mattson M.P. Wong P.C. Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010 12 1 1 12 10.1007/s12017‑009‑8104‑z 20232515
    [Google Scholar]
  6. Carrillo-Mora P. Luna R. Colín-Barenque L. Amyloid beta: Multiple mechanisms of toxicity and only some protective effects? Oxid. Med. Cell. Longev. 2014 2014 1 1 15 10.1155/2014/795375 24683437
    [Google Scholar]
  7. Tu S. Okamoto S. Lipton S.A. Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 2014 9 1 48 10.1186/1750‑1326‑9‑48 25394486
    [Google Scholar]
  8. Kaur P. Khera A. Alajangi H.K. Role of Tau in various tauopathies, treatment approaches, and emerging role of nanotechnology in neurodegenerative disorders. Mol. Neurobiol. 2023 60 3 1690 1720 10.1007/s12035‑022‑03164‑z 36562884
    [Google Scholar]
  9. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  10. Hampel H. Hardy J. Blennow K. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  11. Monfared T.A.A. Byrnes M.J. White L.A. Zhang Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022 11 2 553 569 10.1007/s40120‑022‑00338‑8 35286590
    [Google Scholar]
  12. Karthivashan G. Ganesan P. Park S-Y. Kim J-S. Choi D-K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018 25 1 307 320 10.1080/10717544.2018.1428243 29350055
    [Google Scholar]
  13. Olivares D. Deshpande V.K. Shi Y. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr. Alzheimer Res. 2012 9 6 746 758 10.2174/156720512801322564 21875407
    [Google Scholar]
  14. Birks J.S. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Libr. 2006 2016 3 CD005593 10.1002/14651858.CD005593 16437532
    [Google Scholar]
  15. Pardo-Moreno T. González-Acedo A. Rivas-Domínguez A. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives. Pharmaceutics 2022 14 6 1117 10.3390/pharmaceutics14061117 35745693
    [Google Scholar]
  16. Cummings J. Osse A.M.L. Cammann D. Powell J. Chen J. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. BioDrugs 2024 38 1 5 22 10.1007/s40259‑023‑00633‑2 37955845
    [Google Scholar]
  17. Alhazmi H.A. Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm. J. 2022 30 12 1755 1764 10.1016/j.jsps.2022.10.004 36601504
    [Google Scholar]
  18. Briggs R. Kennelly S.P. O’Neill D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.) 2016 16 3 247 253 10.7861/clinmedicine.16‑3‑247 27251914
    [Google Scholar]
  19. Passeri E. Elkhoury K. Morsink M. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  20. Kumar S. Sharma B. Sharma A. Sharma N. Unraveling the plausible role of potassium channel openers in Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 10.2174/0118715249330827240819040302 39162277
    [Google Scholar]
  21. Shyng S.L. KATP channel function: More than meets the eye. Function (Oxf.) 2022 3 1 zqab070 10.1093/function/zqab070 35059642
    [Google Scholar]
  22. Jahangir A. Terzic A. K channel therapeutics at the bedside. J. Mol. Cell. Cardiol. 2005 39 1 99 112 10.1016/j.yjmcc.2005.04.006 15953614
    [Google Scholar]
  23. Dunn A.R. Kaczorowski C.C. Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer’s disease, and genetic diversity. Neurobiol. Learn. Mem. 2019 164 107069 10.1016/j.nlm.2019.107069 31442579
    [Google Scholar]
  24. Brini M. Calì T. Ottolini D. Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell. Mol. Life Sci. 2014 71 15 2787 2814 10.1007/s00018‑013‑1550‑7 24442513
    [Google Scholar]
  25. Chen R. Lai U.H. Zhu L. Singh A. Ahmed M. Forsyth N.R. Reactive oxygen species formation in the brain at different oxygen levels: The role of hypoxia inducible factors. Front. Cell Dev. Biol. 2018 6 132 10.3389/fcell.2018.00132 30364203
    [Google Scholar]
  26. Nguyen H.M. Blomster L.V. Christophersen P. Wulff H. Potassium channel expression and function in microglia: Plasticity and possible species variations. Channels 2017 11 4 305 315 10.1080/19336950.2017.1300738 28277939
    [Google Scholar]
  27. Du X. Wang X. Geng M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener. 2018 7 1 2 10.1186/s40035‑018‑0107‑y 29423193
    [Google Scholar]
  28. D’Egidio F. Castelli V. d’Angelo M. Ammannito F. Quintiliani M. Cimini A. Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles. Neurobiol. Dis. 2024 106663 10.1016/J.NBD.2024.106663
    [Google Scholar]
  29. Devanand D.P. Fremont R. Cognitive enhancers and treatments for Alzheimer’s disease. In: Tasman A, Ed. Tasman’s psychiatry. Tasman A. Cham Springer 2024 4345 4386 10.1007/978‑3‑030‑51366‑5_139
    [Google Scholar]
  30. Barage S.H. Sonawane K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015 52 1 18 10.1016/j.npep.2015.06.008 26149638
    [Google Scholar]
  31. Zyśk M. Beretta C. Naia L. Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism. J. Neuroinflammation 2023 20 1 43 10.1186/s12974‑023‑02722‑z 36803838
    [Google Scholar]
  32. Tönnies E. Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 2017 57 4 1105 1121 10.3233/JAD‑161088 28059794
    [Google Scholar]
  33. Kim A.C. Lim S. Kim Y.K. Metal ion effects on aβ and tau aggregation. Int. J. Mol. Sci. 2018 19 1 128 10.3390/ijms19010128 29301328
    [Google Scholar]
  34. Planche V. Schindler S. Knopman D.S. The science does not yet support regulatory approval of amyloid-targeting therapies for Alzheimer’s disease based solely on biomarker evidence. Alzheimers Dement. 2025 21 4 e70068 10.1002/alz.70068 40243238
    [Google Scholar]
  35. Bekdash R.A. Matsukawa N. The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 3 1273 10.3390/IJMS22031273
    [Google Scholar]
  36. Haass C. Selkoe D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline. PLoS Biol. 2022 20 7 e3001694 10.1371/journal.pbio.3001694 35862308
    [Google Scholar]
  37. Ovsepian S.V. O’Leary V.B. Zaborszky L. Cholinergic mechanisms in the cerebral cortex. Neuroscientist 2016 22 3 238 251 10.1177/1073858415588264 26002948
    [Google Scholar]
  38. Slater C. Liu Y. Weiss E. Yu K. Wang Q. The neuromodulatory role of the noradrenergic and cholinergic systems and their interplay in cognitive functions: A focused review. Brain Sci. 2022 12 7 890 10.3390/brainsci12070890 35884697
    [Google Scholar]
  39. Rosenberg P.B. Nowrangi M.A. Lyketsos C.G. Neuropsychiatric symptoms in Alzheimer’s disease: What might be associated brain circuits? Mol. Aspects Med. 2015 43-44 25 37 10.1016/j.mam.2015.05.005 26049034
    [Google Scholar]
  40. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  41. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  42. Španić E. Langer Horvat L. Hof P.R. Šimić G. Role of microglial cells in alzheimer’s disease tau propagation. Front. Aging Neurosci. 2019 11 271 10.3389/fnagi.2019.00271 31636558
    [Google Scholar]
  43. Roy R.G. Mandal P.K. Maroon J.C. Oxidative stress occurs prior to amyloid aβ plaque formation and tau phosphorylation in alzheimer’s disease: Role of glutathione and metal ions. ACS Chem. Neurosci. 2023 14 17 2944 2954 10.1021/acschemneuro.3c00486 37561556
    [Google Scholar]
  44. Ji K. Akgul G. Wollmuth L.P. Tsirka S.E. Microglia actively regulate the number of functional synapses. PLoS One 2013 8 2 e56293 10.1371/journal.pone.0056293 23393609
    [Google Scholar]
  45. Malito E. Hulse R.E. Tang W.J. Amyloid β-degrading cryptidases: Insulin degrading enzyme, presequence peptidase, and neprilysin. Cell. Mol. Life Sci. 2008 65 16 2574 2585 10.1007/s00018‑008‑8112‑4 18470479
    [Google Scholar]
  46. Zhao Y. Wu X. Li X. TREM2 is a receptor for β-amyloid which mediates microglial function. Neuron 2018 97 5 1023 1031.e7 10.1016/j.neuron.2018.01.031 29518356
    [Google Scholar]
  47. Wang Y. Cella M. Mallinson K. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 2015 160 6 1061 1071 10.1016/j.cell.2015.01.049 25728668
    [Google Scholar]
  48. Yang S.B. Jan L.Y. Potassium channels, their physiological and molecular diversity. In: Roberts G, Watts A, Eds. Encyclopedia of biophysics. Roberts G. Watts A. Berlin, Heidelberg Springer 2020 1 11 10.1007/978‑3‑642‑35943‑9_358‑1
    [Google Scholar]
  49. Tinker A. Aziz Q. Li Y. Specterman M. ATP‐sensitive potassium channels and their physiological and pathophysiological roles. Compr. Physiol. 2018 8 4 1463 1511 10.1002/j.2040‑4603.2018.tb00049.x 30215858
    [Google Scholar]
  50. Bantel C. Maze M. Trapp S. Neuronal preconditioning by inhalational anesthetics: Evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology 2009 110 5 986 995 10.1097/ALN.0b013e31819dadc7 19352153
    [Google Scholar]
  51. Zhang D.M. Lin Y.F. Functional modulation of sarcolemmal K ATP channels by atrial natriuretic peptide-elicited intracellular signaling in adult rabbit ventricular cardiomyocytes. Am. J. Physiol. Cell Physiol. 2020 319 1 C194 C207 10.1152/ajpcell.00409.2019 32432931
    [Google Scholar]
  52. Sun X.L. Hu G. ATP‐sensitive potassium channels: A promising target for protecting neurovascular unit function in stroke. Clin. Exp. Pharmacol. Physiol. 2010 37 2 243 252 10.1111/j.1440‑1681.2009.05190.x 19413600
    [Google Scholar]
  53. Gada K. Plant L.D. Two‐pore domain potassium channels: Emerging targets for novel analgesic drugs: IUPHAR Review 26. Br. J. Pharmacol. 2019 176 2 256 266 10.1111/bph.14518 30325008
    [Google Scholar]
  54. Xia C. Liu C. Ren S. Cai Y. Zhang Q. Xia C. Potassium channels, tumorigenesis and targeted drugs. Biomed. Pharmacother. 2023 162 114673 10.1016/j.biopha.2023.114673 37031494
    [Google Scholar]
  55. Merelli A. Repetto M. Lazarowski A. Auzmendi J. Hypoxia, oxidative stress, and inflammation: Three faces of neurodegenerative diseases. J. Alzheimers Dis. 2021 82 s1 S109 S126 10.3233/JAD‑201074 33325385
    [Google Scholar]
  56. Lv J. Xiao X. Bi M. ATP-sensitive potassium channels: A double-edged sword in neurodegenerative diseases. Ageing Res. Rev. 2022 80 101676 10.1016/j.arr.2022.101676 35724860
    [Google Scholar]
  57. Coetzee W.A. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol. Ther. 2013 140 2 167 175 10.1016/j.pharmthera.2013.06.007 23792087
    [Google Scholar]
  58. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  59. Xiao X. Bi M. Du X. Jiang H. The ATP-sensitive potassium channel: A therapeutic target for neurodegeneration? Expert Opin. Ther. Targets 2023 27 7 517 521 10.1080/14728222.2023.2240023 37489110
    [Google Scholar]
  60. Mannhold R. Leclerc G. Second-generation K(ATP) channel openers. Mini Rev. Med. Chem. 2005 5 11 961 969 10.2174/138955705774575282 16307527
    [Google Scholar]
  61. Wang X He B. Endothelial dysfunction: Molecular mechanisms and clinical implications. MedComm (2020) 2024 5 8 e651 10.1002/mco2.651 39040847
    [Google Scholar]
  62. Quast U. Bray K.M. Baumlin Y. Dosogne J. Potassium channel openers: Pharmacology and therapeutic prospects. In: Angeli P, Gulini U, Quaglia W, Eds. Pharmacochemistry Library. Elsevier 1992 18 309 3 10.1016/B978‑0‑444‑88931‑7.50023‑2
    [Google Scholar]
  63. Babenko A.P. Gonzalez G. Bryan J. Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of K(ATP) channel isoforms are required for selective interaction with K(+) channel openers. J. Biol. Chem. 2000 275 2 717 720 10.1074/jbc.275.2.717 10625598
    [Google Scholar]
  64. Ding D. Wu J.X. Duan X. Ma S. Lai L. Chen L. Structural identification of vasodilator binding sites on the SUR2 subunit. Nat. Commun. 2022 13 1 2675 10.1038/s41467‑022‑30428‑y 35562524
    [Google Scholar]
  65. Kumar M. Nishad D.K. Kumar A. Enhancement in brain uptake of vitamin D3 nanoemulsion for treatment of cerebral ischemia: Formulation, gamma scintigraphy and efficacy study in transient middle cerebral artery occlusion rat models. J. Microencapsul. 2020 37 7 492 501 10.1080/02652048.2020.1801870 32715833
    [Google Scholar]
  66. Lim M.L.R. Lum M-G. Hansen T.M. Roucou X. Nagley P. On the release of cytochrome c from mitochondria during cell death signaling. J. Biomed. Sci. 2002 9 6 488 506 10.1159/000064722
    [Google Scholar]
  67. Zhuo M-L. Huang Y. Liu D-P. Liang C-C. KATP channel: Relation with cell metabolism and role in the cardiovascular system. Int. J. Biochem. Cell Biol. 2005 37 4 751 764 10.1016/j.biocel.2004.10.008
    [Google Scholar]
  68. Liu D. Pitta M. Lee J.H. The KATP channel activator diazoxide ameliorates amyloid-β and tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2010 22 2 443 457 10.3233/JAD‑2010‑101017 20847430
    [Google Scholar]
  69. Virgili N. Mancera P. Wappenhans B. K(ATP) channel opener diazoxide prevents neurodegeneration: A new mechanism of action via antioxidative pathway activation. PLoS One 2013 8 9 e75189 10.1371/journal.pone.0075189 24040400
    [Google Scholar]
  70. Dovonou A. Bolduc C. Soto Linan V. Gora C. Peralta M.R. Lévesque M. Animal models of Parkinson’s disease: Bridging the gap between disease hallmarks and research questions. Transl. Neurodegener. 2023 12 1 36 10.1186/s40035‑023‑00368‑8 37468944
    [Google Scholar]
  71. Kong M. Ba M. Protective effects of diazoxide against Aβ25-35 induced PC12 cell apoptosis due to prevention of endoplasmic reticulum stress. Neuroreport 2012 23 8 493 497 10.1097/WNR.0b013e3283537615 22551949
    [Google Scholar]
  72. Akyuz E. Villa C. Beker M. Elibol B. Unraveling the role of inwardly rectifying potassium channels in the hippocampus of an Aβ(1–42)-infused rat model of Alzheimer’s disease. Biomedicines 2020 8 3 58 10.3390/biomedicines8030058 32183098
    [Google Scholar]
  73. Ahmed L. Nicorandil: A drug with ongoing benefits and different mechanisms in various diseased conditions. Indian J. Pharmacol. 2019 51 5 296 301 10.4103/ijp.IJP_298_19 31831918
    [Google Scholar]
  74. Owjfard M. Rahmani N. Mallahzadeh A. Mechanism of action and neuroprotective role of nicorandil in ischemic stroke. Heliyon 2024 10 4 e26640 10.1016/j.heliyon.2024.e26640 38434007
    [Google Scholar]
  75. Owjfard M. Bigdeli M.R. Safari A. Namavar M.R. Effects of nicorandil on neurobehavioral function, BBB integrity, edema and stereological parameters of the brain in the sub-acute phase of stroke in a rat model. J. Biosci. 2020 45 49 32345775
    [Google Scholar]
  76. Sharma N. Sharma A. Rai Y. Protective effect of organ preservation fluid supplemented with nicorandil and rutin trihydrate: A comparative study in a rat model of renal ischemia. Exp. Clin. Transplant. 2022 20 6 569 579 10.6002/ect.2022.0019 35791830
    [Google Scholar]
  77. Kong J.J. Zhang D.D. Li P. Nicorandil inhibits oxidative stress and amyloid-β precursor protein processing in SH-SY5Y cells overexpressing APPsw. Int. J. Clin. Exp. Med. 2015 8 2 1966 1975 25932125
    [Google Scholar]
  78. Zong Y. Li J. Xu X. Xu X. Effects of nicorandil on systemic inflammation and oxidative stress induced by percutaneous coronary intervention in patients with coronary heart disease. J. Int. Med. Res. 2021 49 12 03000605211058873 10.1177/03000605211058873 34871513
    [Google Scholar]
  79. Hosseini S.M. Ziaee S.M. Haider K.H. Karimi A. Tabeshmehr P. Abbasi Z. Preconditioned neurons with NaB and nicorandil, a favorable source for stroke cell therapy. J. Cell. Biochem. 2018 119 12 10301 10313 10.1002/jcb.27372 30145846
    [Google Scholar]
  80. Kong J. Ren G. Jia N. Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer’s disease. Eur. Neurol. 2013 70 3-4 233 241 10.1159/000351247 24008440
    [Google Scholar]
  81. Liu M. Li S. Yin M. Pinacidil ameliorates cardiac microvascular ischemia–reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin. Basic Res. Cardiol. 2024 119 1 113 131 10.1007/s00395‑023‑01028‑8 38168863
    [Google Scholar]
  82. Deng Y. Xu Z. Xu B. Excitotoxicity in rat’s brain induced by exposure of manganese and neuroprotective effects of pinacidil and nimodipine. Biol. Trace Elem. Res. 2009 131 2 143 153 10.1007/s12011‑009‑8361‑6 19300915
    [Google Scholar]
  83. Shukry M. Kamal T. Ali R. Pinacidil and levamisole prevent glutamate-induced death of hippocampal neuronal cells through reducing ROS production. Neurol. Res. 2015 37 10 916 923 10.1179/1743132815Y.0000000077 26183935
    [Google Scholar]
  84. Choi E.M. Jung W.W. Suh K.S. Pinacidil protects osteoblastic cells against antimycin A-induced oxidative damage. Mol. Med. Rep. 2015 11 1 746 752 10.3892/mmr.2014.2721 25334089
    [Google Scholar]
  85. Yang Y.J. Zhang S. Ding J.H. Zhou F. Hu G. Iptakalim protects against MPP+-induced degeneration of dopaminergic neurons in association with astrocyte activation. Int. J. Neuropsychopharmacol. 2009 12 3 317 327 10.1017/S1461145708009243 18700057
    [Google Scholar]
  86. Loussouarn G. Pike L.J. Ashcroft F.M. Makhina E.N. Nichols C.G. Dynamic sensitivity of ATP-sensitive K(+) channels to ATP. J. Biol. Chem. 2001 276 31 29098 29103 10.1074/jbc.M102365200 11395495
    [Google Scholar]
  87. Wu J. Wakui M. Wang H. Hu G. Iptakalim hydrochloride and neuronal protection. Curr. Neuropharmacol. 2005 3 3 249 256 10.2174/1570159054368295
    [Google Scholar]
  88. Guo W. Tang Z.Y. Cai Z.Y. Iptakalim alleviates synaptic damages via targeting mitochondrial ATP‐sensitive potassium channel in depression. FASEB J. 2021 35 5 e21581 10.1096/fj.202100124RR 33871072
    [Google Scholar]
  89. Zhang J. Guo J. Zhao X. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav. Brain Res. 2013 250 230 237 10.1016/j.bbr.2013.05.017 23685322
    [Google Scholar]
  90. Wang X. Fisher P.W. Xi L. Kukreja R.C. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J. Mol. Cell. Cardiol. 2008 44 1 105 113 10.1016/j.yjmcc.2007.10.006 18021798
    [Google Scholar]
  91. Tait S.W.G. Green D.R. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol. 2013 5 9 a008706 10.1101/cshperspect.a008706 24003207
    [Google Scholar]
  92. Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007 14 1 32 43 10.1038/sj.cdd.4402060 17082813
    [Google Scholar]
  93. Pușcașu C. Zanfirescu A. Negreș S. Șeremet O.C. Exploring the multifaceted potential of sildenafil in medicine. Medicina 2023 59 12 2190 10.3390/medicina59122190 38138293
    [Google Scholar]
  94. Sanders O. Sildenafil for the treatment of Alzheimer’s disease: A systematic review. J. Alzheimers Dis. Rep. 2020 4 1 91 106 10.3233/ADR‑200166 32467879
    [Google Scholar]
  95. Cuadrado-Tejedor M. Hervias I. Ricobaraza A. Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer’s disease. Br. J. Pharmacol. 2011 164 8 2029 2041 10.1111/j.1476‑5381.2011.01517.x 21627640
    [Google Scholar]
  96. Fang J. Zhang P. Zhou Y. Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease. Nat. Aging 2021 1 1175 1188 10.1038/s43587‑021‑00138‑z
    [Google Scholar]
/content/journals/car/10.2174/0115672050404363251128053608
Loading
/content/journals/car/10.2174/0115672050404363251128053608
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test