Skip to content
2000
image of Advances in Nose-to-Brain Delivery Systems for Effective Alzheimer's Disease Management

Abstract

Neurodegenerative diseases comprise a heterogeneous group of disorders by the progressive structural and functional deterioration of neurons the central nervous system. Among them, Alzheimer’s disease . Despite their distinct clinical manifestations, many neurodegenerative disorders share convergent pathophysiological mechanisms protein misfolding and aggregation, oxidative stress, mitochondrial dysfunction, and neuroinflammation, which ultimately drive neuronal loss. These processes to profound impairments cognitive performance, motor coordination, and overall functional capacity, making such diseases exceptionally difficult to diagnose early manage effectively. Traditional treatment approaches administered orally or parenterally face limitations, including high hepatic metabolism, poor penetration across the blood–brain barrier (BBB), and systemic side effects. This review highlights the potential of the nose-to-brain (N2B) delivery system as an emerging and promising therapeutic strategy. N2B delivery utilizes the olfactory and trigeminal nerve pathways in the nasal cavity to rapidly and precisely deliver drugs to the central nervous system without crossing the blood–brain barrier. Because the system is non-invasive, it offers high bioavailability, reduced systemic exposure, and improved patient compliance. The use of lipid nanocarriers, nanoparticles, dendrimers, and nanogels to enhance the stability of drugs, facilitating efficient targeting and controlled release, is a crucial factor in optimizing N2B drug delivery systems. Various attributes influence drug transport, which are physiological, physicochemical and formulation-dependent characteristics. The main challenges faced by the N2B delivery system are enzymatic degradation and mucociliary clearance. Emerging technologies, such as AI, 3D Printing, and personalized medicine, all hold promise for future inventions in this area. Preclinical and clinical trials demonstrate the efficacy of delivering N2B in treating neurodegenerative diseases; however, its full potential remains to be seen due to regulatory, safety, and scalability concerns. Hence, this review emphasizes the research required to pursue interdisciplinary collaboration and unlock the full potential of N2B delivery, as well as a new approach to transforming neurodegenerative conditions.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050395356251106100427
2026-01-21
2026-01-29
Loading full text...

Full text loading...

References

  1. Wilson D.M. Cookson M.R. Van Den Bosch L. Zetterberg H. Holtzman D.M. Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023 186 4 693 714 10.1016/j.cell.2022.12.032 36803602
    [Google Scholar]
  2. Aderibigbe B. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics 2018 10 2 40 10.3390/pharmaceutics10020040 29601486
    [Google Scholar]
  3. Mittal P. Agrawal N. An overview of neurodegenerative disorders. Altered metabolism: A major contributor of comorbidities in neurodegenerative diseases. Agrawal N. Singapore Springer Nature 2024 1 27 10.1007/978‑981‑97‑4288‑2_1
    [Google Scholar]
  4. Mittal P. Singh N. Chaturvedi S. Jyoti A. Mishra A. Hazari P. Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin. Transl. Imaging 2021 9 153 175 10.1007/s40336‑021‑00410‑7
    [Google Scholar]
  5. Huang Y. Yu S. Wu Z. Tang B. Genetics of hereditary neurological disorders in children. Transl. Pediatr. 2014 3 2 108 119 10.3978/j.issn.2224‑4336.2014.03.04 26835329
    [Google Scholar]
  6. G SBA, Choi S, Krishnan J, K R. Cigarette smoke and related risk factors in neurological disorders: An update. Biomed. Pharmacother. 2017 85 79 86 10.1016/j.biopha.2016.11.118 27930990
    [Google Scholar]
  7. Kanwar J. Sriramoju B. Kanwar R.K. Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. Int. J. Nanomedicine 2012 7 3259 3278 10.2147/IJN.S30919 22848160
    [Google Scholar]
  8. Kumar R. Bhave A. Bhargava R. Agarwal G.G. Prevalence and risk factors for neurological disorders in children aged 6 months to 2 years in northern India. Dev. Med. Child Neurol. 2013 55 4 348 356 10.1111/dmcn.12079 23363431
    [Google Scholar]
  9. Wang Z. Xiong G. Tsang W.C. Schätzlein A.G. Uchegbu I.F. Nose-to-brain delivery. J. Pharmacol. Exp. Ther. 2019 370 3 593 601 10.1124/jpet.119.258152 31126978
    [Google Scholar]
  10. Tatulian S.A. Challenges and hopes for Alzheimer’s disease. Drug Discov. Today 2022 27 4 1027 1043 10.1016/j.drudis.2022.01.016 35121174
    [Google Scholar]
  11. A P, Agrawal M, Dethe MR, et al. Nose-to-brain drug delivery for the treatment of Alzheimer’s disease: Current advancements and challenges. Expert Opin Drug Deliv 2022 19 1 87 102 10.1080/17425247.2022.2029845 35040728
    [Google Scholar]
  12. Lamptey R.N.L. Chaulagain B. Trivedi R. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  13. Galarza-Paez L. Marston G. Downs B.W. Anatomy, head and neck, nose. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  14. Cardesa A. Alos L. Nadal A. Franchi A. Nasal cavity and paranasal sinuses. Pathology of the Head and Neck 2016 Feb 49 127 10.1007/978‑3‑662‑49672‑5_2
    [Google Scholar]
  15. Freeman S.C. Karp D.A. Kahwaji C.I. Physiology, nasal. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  16. Sobiesk J.L. Munakomi S. Anatomy, Head and Neck, Nasal Cavity. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  17. Glezer I. Malnic B. Olfactory receptor function. Handb. Clin. Neurol. 2019 164 67 78 10.1016/B978‑0‑444‑63855‑7.00005‑8 31604564
    [Google Scholar]
  18. Fahrioglu L.S. VanKampen N. Andaloro C. Anatomy, head and neck, sinus function and development. StatPearls. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  19. Selvaraj K. Gowthamarajan K. Karri V.V.S.R. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif. Cells Nanomed. Biotechnol. 2017 46 8 1 8 10.1080/21691401.2017.1420073 29282995
    [Google Scholar]
  20. Lee D. Minko T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics 2021 13 12 2049 10.3390/pharmaceutics13122049 34959331
    [Google Scholar]
  21. Dhuria S.V. Hanson L.R. Frey W.H. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2010 99 4 1654 1673 10.1002/jps.21924 19877171
    [Google Scholar]
  22. Bourganis V. Kammona O. Alexopoulos A. Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm. 118 128 337 362 10.1016/j.ejpb.2018.05.009
    [Google Scholar]
  23. Landis M.S. Boyden T. Pegg S. Nasal-to-CNS drug delivery: Where are we now and where are we heading? An industrial perspective. Ther. Deliv. 2012 3 2 195 208 10.4155/tde.11.149 22834197
    [Google Scholar]
  24. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 2000 11 1 1 18 10.1016/S0928‑0987(00)00087‑7
    [Google Scholar]
  25. Marianecci C. Rinaldi F. Hanieh P. Paolino D. Marzio L. Carafa M. Nose to brain delivery: New trends in amphiphile-based “soft” nanocarriers. Curr. Pharm. Des. 2015 21 36 5225 5232 10.2174/1381612821666150923095958
    [Google Scholar]
  26. Pardeshi C.V. Belgamwar V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv. 2013 10 7 957 972 10.1517/17425247.2013.790887 23586809
    [Google Scholar]
  27. Dhuria S.V. Hanson L.R. Frey W.H. Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. J. Pharmacol. Exp. Ther. 2009 328 1 312 320 10.1124/jpet.108.145565 18945930
    [Google Scholar]
  28. Frey W.H. Liu J. Chen X. Delivery of 125 I-NGF to the brain via the olfactory route. Drug Deliv. 1997 4 2 87 92 10.3109/10717549709051878
    [Google Scholar]
  29. Chen X.Q. Fawcett J.R. Rahman Y.E. Ala T.A. Frey W.H. Delivery of nerve growth factor to the brain via the olfactory pathway. J. Alzheimers Dis. 1998 1 1 35 44 10.3233/JAD‑1998‑1102 12214010
    [Google Scholar]
  30. Morrison E.E. Costanzo R.M. Morphology of olfactory epithelium in humans and other vertebrates. Microsc. Res. Tech. 1992 23 1 49 61 10.1002/jemt.1070230105 1392071
    [Google Scholar]
  31. Bathla G. Hegde A.N. The trigeminal nerve: An illustrated review of its imaging anatomy and pathology. Clin. Radiol. 2013 68 2 203 213 10.1016/j.crad.2012.05.019 22889460
    [Google Scholar]
  32. Kumar R. Thakur A. Singh P.K. Drug delivery through nose: A noninvasive technique for brain targeting. J Rep Pharm Sci 2020 9 1 168 10.4103/jrptps.JRPTPS_59_19
    [Google Scholar]
  33. Huang Q. Chen X. Yu S. Gong G. Shu H. Research progress in brain-targeted nasal drug delivery. Front. Aging Neurosci. 2024 15 1341295 10.3389/fnagi.2023.1341295 38298925
    [Google Scholar]
  34. Jeong S.H. Jang J.H. Lee Y.B. Drug delivery to the brain via the nasal route of administration: Exploration of key targets and major consideration factors. J. Pharm. Investig. 2023 53 1 119 152 10.1007/s40005‑022‑00589‑5 35910081
    [Google Scholar]
  35. Ugwoke M.I. Verbeke N. Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol. 2024 53 1 3 21 10.1211/0022357011775145 11206189
    [Google Scholar]
  36. Francis G.J. Martinez J.A. Liu W.Q. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 2008 131 12 3311 10.1093/brain/awn288
    [Google Scholar]
  37. Nonaka N. Farr S.A. Kageyama H. Shioda S. Banks W.A. Delivery of galanin-like peptide to the brain: Targeting with intranasal delivery and cyclodextrins. J. Pharmacol. Exp. Ther. 2008 325 2 513 519 10.1124/jpet.107.132381 18270319
    [Google Scholar]
  38. Karim M.M. Paswan S. Bhairam M. Mishra S. Understanding gut microbiota and antibiotics complex interplay and clinical implications. Prob Sci 2024 1 2 46 57 10.5281/zenodo.14635348
    [Google Scholar]
  39. Lieleg O. Ribbeck K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011 21 9 543 551 10.1016/j.tcb.2011.06.002 21727007
    [Google Scholar]
  40. Williams O.W. Sharafkhaneh A. Kim V. Dickey B.F. Evans C.M. Airway mucus: From production to secretion. Am. J. Respir. Cell Mol. Biol. 2006 34 5 527 536 10.1165/rcmb.2005‑0436SF 16415249
    [Google Scholar]
  41. Lochhead J.J. Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 614 628 10.1016/j.addr.2011.11.002 22119441
    [Google Scholar]
  42. Prabakaran A. Agrawal M. Dethe M.R. Nose-to-brain drug delivery for the treatment of Alzheimer’s disease: Current advancements and challenges. Expert Opin. Drug Deliv. 2012 19 1 87 102 10.1080/17425247.2022.2029845 35040728
    [Google Scholar]
  43. Pandey V. Formulation strategies for nose-to-brain delivery of therapeutic molecules. Drug Delivery Systems. Elsevier 2020 291 332 10.1016/B978‑0‑12‑814487‑9.00007‑7
    [Google Scholar]
  44. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  45. Agrawal M Ajazuddin Tripathi DK Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release 2017 260 61 77 10.1016/j.jconrel.2017.05.019 28549949
    [Google Scholar]
  46. Barratt G.M. Therapeutic applications of colloidal drug carriers. Pharm. Sci. Technol. Today 2000 3 5 163 171 10.1016/S1461‑5347(00)00255‑8 10785658
    [Google Scholar]
  47. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  48. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  49. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  50. Zheng X. Shao X. Zhang C. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm. Res. 2015 32 12 3837 3849 10.1007/s11095‑015‑1744‑9 26113236
    [Google Scholar]
  51. Yang Z.Z. Zhang Y.Q. Wang Z.Z. Wu K. Lou J.N. Qi X.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int. J. Pharm. 2013 452 1-2 344 354 10.1016/j.ijpharm.2013.05.009 23680731
    [Google Scholar]
  52. Lee D. Shen A.M. Garbuzenko O.B. Minko T. Liposomal formulations of anti-alzheimer drugs and siRNA for nose-to-brain delivery: Design, safety and efficacy in vitro. AAPS J. 2024 26 5 99 10.1208/s12248‑024‑00967‑x 39231845
    [Google Scholar]
  53. Salem H.F. Aboud H.M. Abdellatif M.M. Abou-Taleb H.A. Nose-to-brain targeted delivery of donepezil hydrochloride via novel hyaluronic acid-doped nanotransfersomes for Alzheimer’s Disease mitigation. J. Pharm. Sci. 2024 113 7 1934 1945 10.1016/j.xphs.2024.02.014 38369023
    [Google Scholar]
  54. Li R. Lu F. Sun X. Development and in vivo evaluation of hydroxy-α-sanshool intranasal liposomes as a potential remedial treatment for Alzheimer’s disease. Int. J. Nanomedicine 2022 17 185 201 10.2147/IJN.S339979 35046654
    [Google Scholar]
  55. Saka R. Chella N. Khan W. Development of imatinib mesylate-loaded liposomes for nose to brain delivery: In vitro and in vivo evaluation. AAPS PharmSciTech 2021 22 5 192 10.1208/s12249‑021‑02072‑0 34184160
    [Google Scholar]
  56. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  57. Anel A. Gallego-Lleyda A. de Miguel D. Naval J. Martínez-Lostao L. Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells 2019 8 2 154 10.3390/cells8020154 30759880
    [Google Scholar]
  58. Jain A. Parihar D.K. Tiwary B. Kushwaha M. Evaluation of antibacterial activity of silver nanoparticle loaded curcuma extract collected from Sarguja District of Chhattisgarh. Prob Sci 2024 1 2 58 64 10.5281/zenodo.14640610
    [Google Scholar]
  59. Jin Z. Na J. Lin X. Jiao R. Liu X. Huang Y. Plant-derived exosome-like nanovesicles: A novel nanotool for disease therapy. Heliyon 2024 10 9 e30630 10.1016/j.heliyon.2024.e30630 38765146
    [Google Scholar]
  60. Zhang Y. Chopp M. Liu X.S. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol. Neurobiol. 2017 54 4 2659 2673 10.1007/s12035‑016‑9851‑0 26993303
    [Google Scholar]
  61. Sun C. Sha S. Shan Y. Intranasal delivery of BACE1 siRNA and berberine via engineered stem cell exosomes for the treatment of Alzheimer’s Disease. Int. J. Nanomedicine 2025 20 5873 5891 10.2147/IJN.S506793 40351705
    [Google Scholar]
  62. Zhdanova D.Y. Poltavtseva R.A. Svirshchevskaya E.V. Bobkova N.V. Effect of intranasal administration of multipotent mesenchymal stromal cell exosomes on memory of mice in Alzheimer’s disease model. Bull. Exp. Biol. Med. 2021 170 4 575 582 10.1007/s10517‑021‑05109‑3 33725248
    [Google Scholar]
  63. Xu M. Feng T. Liu B. Engineered exosomes: Desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 2021 11 18 8926 8944 10.7150/thno.62330 34522219
    [Google Scholar]
  64. Sarko D.K. McKinney C.E. Exosomes: Origins and therapeutic potential for neurodegenerative disease. Front. Neurosci. 2017 11 82 10.3389/fnins.2017.00082 28289371
    [Google Scholar]
  65. Cunha S. Almeida H. Amaral M.H. Lobo J.M.S. Silva A.C. Intranasal lipid nanoparticles for the treatment of neurodegenerative diseases. Curr. Pharm. Des. 2017 23 43 6553 6562 10.2174/1381612824666171128105305 29189138
    [Google Scholar]
  66. Cunha S. Amaral M.H. Lobo J.M.S. Silva A.C. Lipid nanoparticles for nasal/intranasal drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2017 34 3 257 282 10.1615/CritRevTherDrugCarrierSyst.2017018693 28845761
    [Google Scholar]
  67. Tzanova M.M. Hagesaether E. Tho I. Solid lipid nanoparticle-loaded mucoadhesive buccal films – Critical quality attributes and in vitro safety & efficacy. Int. J. Pharm. 2021 592 120100 10.1016/j.ijpharm.2020.120100 33227374
    [Google Scholar]
  68. Abdel-Mageed H.M. Abd El Aziz A.E. Mohamed S.A. AbuelEzz NZ. The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: An updated review. J. Microencapsul. 2022 39 1 72 94 10.1080/02652048.2021.2021307 34958628
    [Google Scholar]
  69. Nguyen T.T.L. Maeng H.J. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery. Pharmaceutics 2022 14 3 572 10.3390/pharmaceutics14030572 35335948
    [Google Scholar]
  70. Alexander A. Agrawal M. Bhupal Chougule M. Saraf S. Saraf S. Nose-to-brain drug delivery: An alternative approach for effective brain drug targeting. Nanopharmaceuticals. Shegokar R. Elsevier 2020 175 200 10.1016/B978‑0‑12‑817778‑5.00009‑9
    [Google Scholar]
  71. Rai A. Jain A. Jain A. Targeted SLNs for management of HIV-1 associated dementia. Drug Dev. Ind. Pharm. 2015 41 8 1321 1327 10.3109/03639045.2014.948453 25113430
    [Google Scholar]
  72. Costa C.P. Moreira J.N. Sousa Lobo J.M. Silva A.C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm. Sin. B 2021 11 4 925 940 10.1016/j.apsb.2021.02.012 33996407
    [Google Scholar]
  73. Malekpour-Galogahi F. Hatamian-Zarmi A. Ganji F. Preparation and optimization of rivastigmine-loaded tocopherol succinate-based solid lipid nanoparticles. J. Liposome Res. 2018 28 3 226 235 10.1080/08982104.2017.1349143 28670949
    [Google Scholar]
  74. Muntimadugu E. Dhommati R. Jain A. Challa V.G.S. Shaheen M. Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci. 2016 92 224 234 10.1016/j.ejps.2016.05.012 27185298
    [Google Scholar]
  75. Shah B. Khunt D. Bhatt H. Misra M. Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur. J. Pharm. Sci. 2015 78 54 66 10.1016/j.ejps.2015.07.002 26143262
    [Google Scholar]
  76. Shivananjegowda M.G. Hani U. Osmani R.A.M. Development and evaluation of solid lipid nanoparticles for the clearance of aβ in Alzheimer’s disease. Pharmaceutics 2023 15 1 221 10.3390/pharmaceutics15010221 36678849
    [Google Scholar]
  77. Müller R.H. Radtke M. Wissing S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002 242 1-2 121 128 10.1016/S0378‑5173(02)00180‑1 12176234
    [Google Scholar]
  78. Wissing S.A. Kayser O. Müller R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004 56 9 1257 1272 10.1016/j.addr.2003.12.002 15109768
    [Google Scholar]
  79. Müller R. Petersen R. Hommoss A. Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 2007 59 6 522 530 10.1016/j.addr.2007.04.012 17602783
    [Google Scholar]
  80. Gartziandia O. Herran E. Pedraz J.L. Carro E. Igartua M. Hernandez R.M. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf. B Biointerfaces 2015 134 304 313 10.1016/j.colsurfb.2015.06.054 26209963
    [Google Scholar]
  81. Ali M.H. Alam O. Ali A. Donepezil and embelin loaded nanostructured lipid carriers for direct brain delivery as an intervention for Alzheimer’s disease: Formulation design, optimization and evaluation. J. Cluster Sci. 2024 35 4 1021 1044 10.1007/s10876‑023‑02531‑7
    [Google Scholar]
  82. Tekade A. Susar R. Kulkarni G. Surwade S. Gaikwad A. Nanostructured lipid carriers of donepezil hydrochloride for the treatment of Alzheimer’s Disease. Curr. Alzheimer Res. 2025 21 10 710 722 10.2174/0115672050288659240229080535 38445703
    [Google Scholar]
  83. Khodabandelou S. Nazem Z. Komaki A. Development of silibinin-loaded nanostructured lipid carriers for Alzheimer’s disease induced by amyloid beta in Wistar rats. J. Mater. Chem. B Mater. Biol. Med. 2024 12 44 11426 11443 10.1039/D4TB00775A 39380555
    [Google Scholar]
  84. Gupta A. Eral H.B. Hatton T.A. Doyle P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016 12 11 2826 2841 10.1039/C5SM02958A 26924445
    [Google Scholar]
  85. Zhang X. Wang M. Liu Z. Transnasal-brain delivery of nanomedicines for neurodegenerative diseases. Front. Drug Deliv. 2023 3 1247162 10.3389/fddev.2023.1247162
    [Google Scholar]
  86. Emad N.A. Ahmed B. Alhalmi A. Alzobaidi N. Al-Kubati S.S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol. 2021 64 102642 10.1016/j.jddst.2021.102642
    [Google Scholar]
  87. Kaur A. Nigam K. Srivastava S. Tyagi A. Dang S. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease. J. Microencapsul. 2020 37 5 355 365 10.1080/02652048.2020.1756971 32293915
    [Google Scholar]
  88. Parikh R.H. Patel R.J. Nanoemulsions for intranasal delivery of riluzole to improve brain bioavailability: Formulation development and pharmacokinetic studies. Curr. Drug Deliv. 2016 13 7 1130 1143 10.2174/1567201813666151202195729 26638977
    [Google Scholar]
  89. Koo J. Lim C. Oh K.T. Recent advances in intranasal administration for brain-targeting delivery: A comprehensive review of lipid-based nanoparticles and stimuli-responsive gel formulations. Int. J. Nanomedicine 2024 19 1767 1807 10.2147/IJN.S439181 38414526
    [Google Scholar]
  90. Casadomé-Perales Á. Matteis L.D. Alleva M. Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules. Nanomedicine 2019 14 18 2409 2422 10.2217/nnm‑2018‑0496 31456488
    [Google Scholar]
  91. Kaur A. Nigam K. Bhatnagar I. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach. Drug Deliv. Transl. Res. 2020 10 6 1862 1875 10.1007/s13346‑020‑00754‑z 32297166
    [Google Scholar]
  92. Jiang Y. Liu C. Zhai W. Zhuang N. Han T. Ding Z. The optimization design of lactoferrin loaded HupA nanoemulsion for targeted drug transport via intranasal route. Int. J. Nanomedicine 2019 14 9217 9234 10.2147/IJN.S214657 31819426
    [Google Scholar]
  93. Kannan R.M. Nance E. Kannan S. Tomalia D.A. Emerging concepts in dendrimer‐based nanomedicine: from design principles to clinical applications. J. Intern. Med. 2014 276 6 579 617 10.1111/joim.12280 24995512
    [Google Scholar]
  94. Kaurav M. Ruhi S. Al-Goshae H.A. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front. Pharmacol. 2023 14 1159131 10.3389/fphar.2023.1159131 37006997
    [Google Scholar]
  95. Mittal P. Saharan A. Verma R. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int. 2021 2021 1 8844030 10.1155/2021/8844030 33644232
    [Google Scholar]
  96. Mignani S. Shi X. Karpus A. Majoral J.P. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur. J. Med. Chem. 2021 209 112905 10.1016/j.ejmech.2020.112905 33069435
    [Google Scholar]
  97. Awad R. Avital A. Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm. Sin. B 2023 13 5 1866 1886 10.1016/j.apsb.2022.07.003 37250152
    [Google Scholar]
  98. Igartúa D.E. Martinez C.S. Del V. Alonso S. Prieto M.J. Combined therapy for Alzheimer’s Disease: Tacrine and PAMAM dendrimers co-administration reduces the side effects of the drug without modifying its activity. AAPS PharmSciTech 2020 21 3 110 10.1208/s12249‑020‑01652‑w 32215751
    [Google Scholar]
  99. Ramanathan S. Archunan G. Sivakumar M. Theranostic applications of nanoparticles in neurodegenerative disorders. Int. J. Nanomedicine 2018 13 5561 5576 10.2147/IJN.S149022 30271147
    [Google Scholar]
  100. Zhang Q.Z. Zha L.S. Zhang Y. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J. Drug Target. 2006 14 5 281 290 10.1080/10611860600721051 16882548
    [Google Scholar]
  101. Lai S.K. O’Hanlon D.E. Harrold S. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA 2007 104 5 1482 1487 10.1073/pnas.0608611104
    [Google Scholar]
  102. Soane R.J. Hinchcliffe M. Davis S.S. Illum L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int. J. Pharm. 2001 217 1-2 183 191 10.1016/S0378‑5173(01)00602‑0 11292554
    [Google Scholar]
  103. Wang F. Li C. Cheng J. Yuan Z. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int. J. Environ. Res. Public Health 2016 13 12 1182 10.3390/ijerph13121182 27898016
    [Google Scholar]
  104. Fu Q. Li Z. Fu F. Chen X. Song J. Yang H. Stimuli-responsive plasmonic assemblies and their biomedical applications. Nano Today 2021 36 101014 10.1016/j.nantod.2020.101014 33250931
    [Google Scholar]
  105. Shiga H. Yamamoto J. Miwa T. Clinical diagnosis of the olfactory nerve transport function. Yakugaku Zasshi 2012 132 11 1263 1266 10.1248/yakushi.12‑00229‑3 23123717
    [Google Scholar]
  106. Formica M.L. Real D.A. Picchio M.L. Catlin E. Donnelly R.F. Paredes A.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today 2022 29 101631 10.1016/j.apmt.2022.101631
    [Google Scholar]
  107. Ulbrich K. Holá K. Šubr V. Bakandritsos A. Tuček J. Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016 116 9 5338 5431 10.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  108. Israel L.L. Galstyan A. Holler E. Ljubimova J.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J. Control. Release 2020 320 45 62 10.1016/j.jconrel.2020.01.009 31923537
    [Google Scholar]
  109. Yun W.S. Choi J.S. Ju H.M. Enhanced homing technique of mesenchymal stem cells using iron oxide nanoparticles by magnetic attraction in olfactory-injured mouse models. Int. J. Mol. Sci. 2018 19 5 1376 10.3390/ijms19051376 29734748
    [Google Scholar]
  110. Dhas N. Mehta T. Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative stress in effective treatment of Alzheimer’s disease: A non-invasive approach. Int. J. Pharm. 2020 586 119553 10.1016/j.ijpharm.2020.119553 32561306
    [Google Scholar]
  111. Heydari S. Hedayati Ch.M. Saadat F. Diphtheria toxoid nanoparticles improve learning and memory impairment in animal model of Alzheimer’s disease. Pharmacol. Rep. 2020 72 4 814 826 10.1007/s43440‑019‑00017‑w 32048245
    [Google Scholar]
  112. Hanafy A.S. Farid R.M. Helmy M.W. ElGamal S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv. 2016 23 8 3111 3122 10.3109/10717544.2016.1153748 26942549
    [Google Scholar]
  113. Meng Q. Wang A. Hua H. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine 2018 13 705 718 10.2147/IJN.S151474 29440896
    [Google Scholar]
  114. Su Y. Sun B. Gao X. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front. Pharmacol. 2020 11 1165 10.3389/fphar.2020.01165 32848773
    [Google Scholar]
  115. Subhash Hinge N. Kathuria H. Monohar Pandey M. Rivastigmine-DHA ion-pair complex improved loading in hybrid nanoparticles for better amyloid inhibition and nose-to-brain targeting in Alzheimer’s. Eur. J. Pharm. Biopharm. 2023 190 131 149 10.1016/j.ejpb.2023.06.007 37330117
    [Google Scholar]
  116. Vashist A. Kaushik A. Ghosal A. Nanocomposite hydrogels: Advances in nanofillers used for nanomedicine. Gels 2018 4 3 75 10.3390/gels4030075 30674851
    [Google Scholar]
  117. Soni K.S. Desale S.S. Bronich T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release 2015 240 109 126 10.1016/j.jconrel.2015.11.009
    [Google Scholar]
  118. Zhang Y. Zou Z. Liu S. Miao S. Liu H. Nanogels as novel nanocarrier systems for efficient delivery of CNS therapeutics. Front. Bioeng. Biotechnol. 2022 10 954470 10.3389/fbioe.2022.954470 35928954
    [Google Scholar]
  119. Vashist A. Atluri V. Raymond A. Development of multifunctional biopolymeric auto-fluorescent micro- and nanogels as a platform for biomedical applications. Front. Bioeng. Biotechnol. 2020 8 315 10.3389/fbioe.2020.00315 32426338
    [Google Scholar]
  120. Elnaggar Y.S.R. Etman S.M. Abdelmonsif D.A. Abdallah O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci. 2015 104 10 3544 3556 10.1002/jps.24557
    [Google Scholar]
  121. Huang G. Xie J. Shuai S. Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ-nanogel. Int. J. Pharm. 2021 594 120182 10.1016/j.ijpharm.2020.120182 33346126
    [Google Scholar]
  122. Jacob S. Nair A.B. Boddu S.H.S. The emerging role of lipid nanosystems and nanomicelles in liver diseases. Eur. Rev. Med. Pharmacol. Sci. 2023 27 18 8651 8680 10.26355/eurrev_202309_33790 37782180
    [Google Scholar]
  123. Chiappetta D.A. Hocht C. Opezzo J.A.W. Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond.) 2013 8 2 223 237 10.2217/nnm.12.104 23173734
    [Google Scholar]
  124. Kotta S. Aldawsari H.M. Badr-Eldin S.M. Nair A.B. Yt K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics 2022 14 8 1636 10.3390/pharmaceutics14081636 36015262
    [Google Scholar]
  125. Gandhi S. Shastri D.H. Shah J. Nair A.B. Jacob S. Nasal delivery to the brain: Harnessing nanoparticles for effective drug transport. Pharmaceutics 2024 16 4 481 10.3390/pharmaceutics16040481 38675142
    [Google Scholar]
  126. Guo H. Wang G. Zhai Z. Rivastigmine nasal spray for the treatment of Alzheimer’s Disease: Olfactory deposition and brain delivery. Int. J. Pharm. 2024 652 123809 10.1016/j.ijpharm.2024.123809 38224760
    [Google Scholar]
  127. Wong L.R. Ho P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: Implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2018 70 1 59 69 10.1111/jphp.12836 29034965
    [Google Scholar]
  128. Bose M. Farias Quipildor G. Ehrlich M.E. Salton S.R. Intranasal peptide therapeutics: A promising avenue for overcoming the challenges of traditional CNS drug development. Cells 2022 11 22 3629 10.3390/cells11223629 36429060
    [Google Scholar]
  129. Alabsi W. Eedara B.B. Encinas-Basurto D. Polt R. Mansour H.M. Nose-to-brain delivery of therapeutic peptides as nasal aerosols. Pharmaceutics 2022 14 9 1870 10.3390/pharmaceutics14091870 36145618
    [Google Scholar]
  130. Di Scala C. Armstrong N. Chahinian H. Chabrière E. Fantini J. Yahi N. AmyP53, a therapeutic peptide candidate for the treatment of Alzheimer’s and Parkinson’s disease: Safety, stability, pharmacokinetics parameters and nose-to brain delivery. Int. J. Mol. Sci. 2022 23 21 13383 10.3390/ijms232113383 36362170
    [Google Scholar]
  131. Paul A. Collins M.G. Lee H.Y. Gene therapy: The next-generation therapeutics and their delivery approaches for neurological disorders. Front. Genome Editing 2022 4 899209 10.3389/fgeed.2022.899209 35832929
    [Google Scholar]
  132. Liu C.C. Kanekiyo T. Xu H. Bu G. Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013 9 2 106 118 10.1038/nrneurol.2012.263 23296339
    [Google Scholar]
  133. Hanson L.R. Frey W.H. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008 9 Suppl. 3 S5 10.1186/1471‑2202‑9‑S3‑S5
    [Google Scholar]
  134. Djupesland P.G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective - A review. Drug Deliv. Transl. Res. 2013 3 1 42 62 10.1007/s13346‑012‑0108‑9 23316447
    [Google Scholar]
  135. Chapman C.D. Frey W.H. Craft S. Intranasal treatment of central nervous system dysfunction in humans. Pharm. Res. 2013 30 10 2475 2484 10.1007/s11095‑012‑0915‑1 23135822
    [Google Scholar]
  136. Singh B. Day C.M. Abdella S. Garg S. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. J. Control. Release [Internet]. 2024 367 402 424
    [Google Scholar]
  137. Freiherr J. Hallschmid M. Frey W.H. Intranasal insulin as a treatment for Alzheimer’s disease: A review of basic research and clinical evidence. CNS Drugs 2013 27 7 505 514 10.1007/s40263‑013‑0076‑8 23719722
    [Google Scholar]
  138. FDA clears foralumab nasal spray for expanded use in Alzheimer’s. 2024. Available from: https://alzheimersnewstoday.com/news/alzheimers-therapy-foralumab-nasal-spray-cleared-fda-expanded-use/
  139. How to use a metered-dose inhaler fact sheet. 2021. Available from: https://www.nhlbi.nih.gov/resources/how-use-metered-dose-inhaler-fact-sheet
  140. Warnken Z.N. Smyth H.D.C. Watts A.B. Weitman S. Kuhn J.G. Williams R.O. Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci. Technol. 2016 35 213 222 10.1016/j.jddst.2016.05.003
    [Google Scholar]
  141. Laffleur F. Bauer B. Progress in nasal drug delivery systems. Int. J. Pharm. 2021 607 120994 10.1016/j.ijpharm.2021.120994 34390810
    [Google Scholar]
  142. Boyuklieva R. Zagorchev P. Pilicheva B. Computational, in vitro, and in vivo models for nose-to-brain drug delivery studies. Biomedicines 2023 11 8 2198 10.3390/biomedicines11082198 37626694
    [Google Scholar]
  143. Jiang Y. Jiang Y. Ding Z. Yu Q. Investigation of the “Nose-to-Brain” pathways in intranasal HupA nanoemulsions and evaluation of their in vivo pharmacokinetics and brain-targeting ability. Int. J. Nanomedicine 2022 17 3443 3456 10.2147/IJN.S369978 35959279
    [Google Scholar]
  144. Pérez-Osorio I.N. Espinosa A. Giraldo Velázquez M. Nose-to-brain delivery of dexamethasone: Biodistribution studies in mice. J. Pharmacol. Exp. Ther. 2021 378 3 244 250 10.1124/jpet.121.000530 34531307
    [Google Scholar]
  145. Arisoy S. Sayiner O. Comoglu T. Onal D. Atalay O. Pehlivanoglu B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm. Dev. Technol. 2020 25 6 735 747 10.1080/10837450.2020.1740257 32141798
    [Google Scholar]
  146. Patharapankal E.J. Ajiboye A.L. Mattern C. Trivedi V. Nose-to-Brain (N2B) delivery: An alternative route for the delivery of biologics in the management and treatment of central nervous system disorders. Pharmaceutics 2023 16 1 66 10.3390/pharmaceutics16010066 38258077
    [Google Scholar]
  147. Dawson TM Golde TE Lagier-Tourenne C Animal models of neurodegenerative diseases. Nat Neurosci. 2018 Oct;21(10):1370-1379 10.1038/s41593‑018‑0236‑8 Epub 2018 Sep 24 30250265 PMC6615039
    [Google Scholar]
  148. Tian J. Song X. Wang Y. Regulatory perspectives of combination products. Bioact. Mater. 2022 10 492 503 10.1016/j.bioactmat.2021.09.002 34901562
    [Google Scholar]
  149. Bangarurajan K. Regulatory process for new drug approval in india. Drug discovery and development: from targets and molecules to medicines. Poduri R. Singapore Springer 2021 451 463 10.1007/978‑981‑15‑5534‑3_16
    [Google Scholar]
  150. Andrade E.L. Bento A.F. Cavalli J. Non-clinical studies required for new drug development - Part I: Early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies. Braz. J. Med. Biol. Res. 2016 49 11 e5644 10.1590/1414‑431x20165644 27783811
    [Google Scholar]
  151. Ozair A. Bhat V. Faruqi A. Nanda A. Phases of clinical trials. Translational Surgery.Chapter 62 - Academic Press 2023 379 388 10.1016/B978‑0‑323‑90300‑4.00027‑6
    [Google Scholar]
  152. Salalli R Dange JR Dhiman S Sharma T Vaccines development in India: advances, regulation, and challenges.Clin Exp Vaccine Res. 2023 Jul;12(3):193-208. 10.7774/cevr.2023.12.3.193.Epub 2023 Jul 31 37599804 PMC10435768.
    [Google Scholar]
  153. Amaresh K Salimath G Ganachari MS Devarinti RS Kumar U A comparison of regulatory approval of clinical trial protocol with different countries. 2021 8 3 260 6
    [Google Scholar]
  154. Illum L. Is nose-to-brain transport of drugs in man a reality? J. Pharm. Pharmacol. 2004 56 1 3 17 10.1211/0022357022539 14979996
    [Google Scholar]
  155. Kumar M.K. Ahirwar K. Mishra S. Recent advancement in drug development for intranasal drug delivery system. Prob Sci 2024 1 2 1 19 10.5281/zenodo.13767525
    [Google Scholar]
  156. Mathur S. Sutton J. Personalized medicine could transform healthcare. Biomed. Rep. 2017 7 1 3 5 10.3892/br.2017.922 28685051
    [Google Scholar]
  157. Griñán-Ferré C. Bellver-Sanchis A. Guerrero A. Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol. Res. 2024 205 107247 10.1016/j.phrs.2024.107247
    [Google Scholar]
  158. Yue X. Guo H. Wang G. A tailored phytosomes based nose-to-brain drug delivery strategy: Silver bullet for Alzheimer’s disease. Bioact. Mater. 2025 44 97 115 10.1016/j.bioactmat.2024.09.039
    [Google Scholar]
  159. Ahmad A Imran M Ahsan H Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases.Pharmaceutics 2023 15 6 1630 10.3390/pharmaceutics15061630 37376078 PMC10303887
    [Google Scholar]
  160. Toader C. Dobrin N. Brehar F.M. From recognition to remedy: The significance of biomarkers in neurodegenerative disease pathology. Int. J. Mol. Sci. 2023 24 22 16119 10.3390/ijms242216119 38003309
    [Google Scholar]
  161. Curtis A. Curtis A. Goodman I. Goodman J. Recent breakthroughs in the diagnosis and treatment of neurodegenerative disorders. J Stud Res 2023 12 3 10.47611/jsrhs.v12i3.4808
    [Google Scholar]
  162. Hansson O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021 27 6 954 963 10.1038/s41591‑021‑01382‑x 34083813
    [Google Scholar]
  163. Suriyaamporn P. Pamornpathomkul B. Patrojanasophon P. Ngawhirunpat T. Rojanarata T. Opanasopit P. The artificial intelligence-powered new era in pharmaceutical research and development: A review. AAPS PharmSciTech 2024 25 6 188 10.1208/s12249‑024‑02901‑y 39147952
    [Google Scholar]
  164. Serrano D.R. Luciano F.C. Anaya B.J. Artificial Intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics 2024 16 10 1328 10.3390/pharmaceutics16101328 39458657
    [Google Scholar]
  165. Tonk M. Gupta V. Dhwaj A. Sachdeva M. Current developments and advancements of 3-dimensional printing in personalized medication and drug screening. Drug Metab. Pers. Ther. 2025 39 4 167 182 10.1515/dmpt‑2024‑0024 39331538
    [Google Scholar]
  166. Yuvaraj AR Jayadurka J Elavarasi E Srinivasan R ]applications and advancement of 3D printing in pharmaceutical manufacturing and drug delivery. J Pharma Insight Res 2024 2 3 023 9 10.69613/hc0dzb10
  167. Venkataramana Gadi Jyothsna M. Nookaratnam Pirla, Bhavani B. A comprehensive review of 3D printing applications in drug development and delivery. J Pharma Insight Res 2024 2 4 139 145 10.69613/5tp1qg79
    [Google Scholar]
  168. Gander C. Shi K. Nokhodchi A. Lam M. A review of the benefits 3D printing brings to patients with neurological diseases. Pharmaceutics 2023 15 3 892 10.3390/pharmaceutics15030892 36986752
    [Google Scholar]
  169. Rigaut C. Deruyver L. Goole J. Haut B. Lambert P. Instillation of a dry powder in nasal casts: Parameters influencing the olfactory deposition with uni- and bi-directional devices. Front. Med. Technol. 2022 4 924501 10.3389/fmedt.2022.924501 35832236
    [Google Scholar]
  170. Boyuklieva R. Pilicheva B. Micro- and nanosized carriers for nose-to-brain drug delivery in neurodegenerative disorders. Biomedicines 2022 10 7 1706 10.3390/biomedicines10071706 35885011
    [Google Scholar]
  171. Michel M.C. Staskin D. Study designs for evaluation of combination treatment: Focus on individual patient benefit. Biomedicines 2022 10 2 270 10.3390/biomedicines10020270 35203479
    [Google Scholar]
  172. Abourehab M.A.S. Ansari M.J. Singh A. Cubosomes as an emerging platform for drug delivery: A review of the state of the art. J. Mater. Chem. B Mater. Biol. Med. 2022 10 15 2781 2819 10.1039/D2TB00031H 35315858
    [Google Scholar]
  173. Kulkarni P. Rawtani D. Barot T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl Cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2021 163 1 15 10.1016/j.ejpb.2021.02.015 33774160
    [Google Scholar]
  174. Wu H. Zhou Y. Wang Y. Current state and future directions of intranasal delivery route for central nervous system disorders: A scientometric and visualization analysis. Front. Pharmacol. 2021 12 717192 10.3389/fphar.2021.717192 34322030
    [Google Scholar]
/content/journals/car/10.2174/0115672050395356251106100427
Loading
/content/journals/car/10.2174/0115672050395356251106100427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test