Skip to content
2000
image of Current Perspectives on Oxytocin and Alzheimer’s Disease-Related Symptoms

Abstract

Alzheimer’s Disease (AD) is a neurodegenerative disorder accounting for 60-80% of dementia cases globally. Several risk factors are associated with increased AD onset, including genetics, physical activity, and varying levels of social interaction. Extensive research has explored potential treatments for AD, among which oxytocin (OX) has shown beneficial effects on memory-related neurological processes. OX has been suggested to modulate neuroplasticity within the hippocampus in rat and mouse AD models. Further studies indicate that intranasal administration of OX may lead to significant improvements in memory and cognition. In addition, a non-peptide agonistic analogue, LIT-001, has been investigated. This review aims to provide insight into the potential of OX as a therapeutic target for AD and to explore alternatives that activate similar cellular signaling pathways.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050403886251121065128
2026-01-05
2026-01-12
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  2. Nichols E. Steinmetz J.D. Vollset S.E. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022 7 2 e105 e125 10.1016/S2468‑2667(21)00249‑8 34998485
    [Google Scholar]
  3. Apostolova L.G. Alzheimer disease. Continuum 2016 22 2 419 434 10.1212/CON.0000000000000307 27042902
    [Google Scholar]
  4. Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 2018 19 11 687 700 10.1038/s41583‑018‑0067‑3 30266970
    [Google Scholar]
  5. Jack C.R. Andrews J.S. Beach T.G. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement. 2024 20 8 5143 5169 10.1002/alz.13859 38934362
    [Google Scholar]
  6. Kumar A. Sidhu J. Lui F. Tsao J.W. Alzheimer disease. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  7. Fortin N.J. Agster K.L. Eichenbaum H.B. Critical role of the hippocampus in memory for sequences of events. Nat. Neurosci. 2002 5 5 458 462 10.1038/nn834 11976705
    [Google Scholar]
  8. Rao YL Ganaraja B Murlimanju BV Joy T Krishnamurthy A Agrawal A Hippocampus and its involvement in Alzheimer’s disease: A review. 3 Biotech 2022 12 2 55 10.1007/s13205‑022‑03123‑4
    [Google Scholar]
  9. Xiao Y. Hu Y. Huang K. Atrophy of hippocampal subfields relates to memory decline during the pathological progression of Alzheimer’s disease. Front. Aging Neurosci. 2023 15 1287122 10.3389/fnagi.2023.1287122 38149170
    [Google Scholar]
  10. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  11. El Haj M. Antoine P. Amouyel P. Apolipoprotein E (APOE) ε4 and episodic memory decline in Alzheimer’s disease: A review. Ageing Res. Rev. 2016 27 15 22 10.1016/j.arr.2016.02.002 26876367
    [Google Scholar]
  12. Muralidar S. Ambi S.V. Sekaran S. Thirumalai D. Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020 163 1599 1617 10.1016/j.ijbiomac.2020.07.327 32784025
    [Google Scholar]
  13. Smith A.S. Williams Avram S.K. Cymerblit-Sabba A. Song J. Young W.S. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol. Psychiatry 2016 21 8 1137 1144 10.1038/mp.2015.189 26728562
    [Google Scholar]
  14. Guo T. Noble W. Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017 133 5 665 704 10.1007/s00401‑017‑1707‑9 28386764
    [Google Scholar]
  15. Kolarova M. García-Sierra F. Bartos A. Ricny J. Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimers Dis. 2012 2012 1 13 10.1155/2012/731526 22690349
    [Google Scholar]
  16. Nizynski B. Dzwolak W. Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci. 2017 26 11 2126 2150 10.1002/pro.3275 28833749
    [Google Scholar]
  17. Goedert M. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 2004 15 1 45 49 10.1016/j.semcdb.2003.12.015 15036206
    [Google Scholar]
  18. Sehar U. Rawat P. Reddy A.P. Kopel J. Reddy P.H. Amyloid beta in aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2022 23 21 12924 10.3390/ijms232112924 36361714
    [Google Scholar]
  19. Murphy M.P. LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010 19 1 311 323 10.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  20. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  21. Fanlo-Ucar H. Picón-Pagès P. Herrera-Fernández V. ILL-Raga G, Muñoz FJ. The dual role of amyloid beta-peptide in oxidative stress and inflammation: Unveiling their connections in Alzheimer’s disease etiopathology. Antioxidants 2024 13 10 1208 10.3390/antiox13101208 39456461
    [Google Scholar]
  22. Yunna C. Mengru H. Lei W. Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020 877 173090 10.1016/j.ejphar.2020.173090 32234529
    [Google Scholar]
  23. Miao J. Ma H. Yang Y. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci. 2023 15 1201982 10.3389/fnagi.2023.1201982 37396657
    [Google Scholar]
  24. Wang N. Liang H. Zen K. Molecular mechanisms that influence the macrophage M1-M2 polarization balance. Front. Immunol. 2014 5 614 10.3389/fimmu.2014.00614
    [Google Scholar]
  25. Frank-Cannon T.C. Alto L.T. McAlpine F.E. Tansey M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 2009 4 1 47 10.1186/1750‑1326‑4‑47 19917131
    [Google Scholar]
  26. van Dyck C.H. Swanson C.J. Aisen P. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  27. Niidome T. Ishikawa Y. Ogawa T. Nakagawa M. Nakamura Y. Mechanism of action and clinical trial results of Lecanemab (Leqembi® 200 mg, 500 mg for Intravenous Infusion), a novel treatment for Alzheimer’s disease. Nippon Yakurigaku Zasshi 2024 159 3 173 181 10.1254/fpj.24005 38692883
    [Google Scholar]
  28. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006 2006 1 CD005593 16437532
    [Google Scholar]
  29. McGleenon B.M. Dynan K.B. Passmore A.P. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol. 1999 48 4 471 480 10.1046/j.1365‑2125.1999.00026.x 10583015
    [Google Scholar]
  30. Kalola U.K. Patel P. Nguyen H. Galantamine. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  31. Kumar A. Gupta V. Sharma S. Donepezil. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  32. Patel P.H. Gupta V. Rivastigmine. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  33. Singh Y.P. Kumar H. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review. Chem. Biol. Drug Des. 2023 102 6 1592 1603 10.1111/cbdd.14337 37665093
    [Google Scholar]
  34. Liu J. Chang L. Song Y. Li H. Wu Y. The role of NMDA receptors in Alzheimer’s Disease. Front. Neurosci. 2019 13 43 10.3389/fnins.2019.00043 30800052
    [Google Scholar]
  35. Singh Y.P. Kumar H. Recent advances in medicinal chemistry of memantine against Alzheimer’s disease. Chem. Biol. Drug Des. 2024 104 4 e14638 10.1111/cbdd.14638 39370170
    [Google Scholar]
  36. Singh Y.P. Prasad S. Kumar H. A comprehensive analysis on galantamine based hybrids for the management of Alzheimer’s Disease. Chem. Biol. Drug Des. 2024 104 5 e70004 10.1111/cbdd.70004 39494477
    [Google Scholar]
  37. Hales C.M. Servais J. Martin C.B. Kohen D. Prescription drug use among adults aged 40-79 in the United States and Canada. NCHS Data Brief 2019 347 1 8 31442200
    [Google Scholar]
  38. Olchanski N. Daly A.T. Zhu Y. Alzheimer’s disease medication use and adherence patterns by race and ethnicity. Alzheimers Dement. 2023 19 4 1184 1193 10.1002/alz.12753 35939325
    [Google Scholar]
  39. Grace S.A. Rossell S.L. Heinrichs M. Kordsachia C. Labuschagne I. Oxytocin and brain activity in humans: A systematic review and coordinate-based meta-analysis of functional MRI studies. Psychoneuroendocrinology 2018 96 6 24 10.1016/j.psyneuen.2018.05.031 29879563
    [Google Scholar]
  40. Neumann I.D. Oxytocin: The neuropeptide of love reveals some of its secrets. Cell Metab. 2007 5 4 231 233 10.1016/j.cmet.2007.03.008 17403367
    [Google Scholar]
  41. Inoue T. Yamakage H. Tanaka M. Kusakabe T. Shimatsu A. Satoh-Asahara N. Oxytocin suppresses inflammatory responses induced by lipopolysaccharide through inhibition of the eIF-2α-ATF4 pathway in mouse microglia. Cells 2019 8 6 527 10.3390/cells8060527 31159306
    [Google Scholar]
  42. El-Ganainy S.O. Soliman O.A. Ghazy A.A. Intranasal oxytocin attenuates cognitive impairment, β-amyloid burden and tau deposition in female rats with Alzheimer’s Disease: Interplay of ERK1/2/GSK3β/caspase-3. Neurochem. Res. 2022 47 8 2345 2356 10.1007/s11064‑022‑03624‑x 35596040
    [Google Scholar]
  43. Kamrani-Sharif R. Hayes A.W. Gholami M. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023 101 102352 10.1016/j.npep.2023.102352 37354708
    [Google Scholar]
  44. Koulousakis P. Willems E. Schepers M. Exogenous oxytocin administration restores memory in female APP/PS1 mice. J. Alzheimers Dis. 2023 96 3 1207 1219 10.3233/JAD‑230657 37927260
    [Google Scholar]
  45. Lee S.Y. Park S.H. Chung C. Kim J.J. Choi S.Y. Han J.S. Oxytocin protects hippocampal memory and plasticity from uncontrollable stress. Sci. Rep. 2015 5 1 18540 10.1038/srep18540 26688325
    [Google Scholar]
  46. Tamagno E. Guglielmotto M. Vasciaveo V. Tabaton M. Oxidative stress and beta amyloid in Alzheimer’s disease. Which comes first: The chicken or the egg? Antioxidants 2021 10 9 1479 10.3390/antiox10091479 34573112
    [Google Scholar]
  47. Buccellato F.R. D’Anca M. Fenoglio C. Scarpini E. Galimberti D. Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants 2021 10 9 1353 10.3390/antiox10091353 34572985
    [Google Scholar]
  48. Wang Y. Zhao S. Liu X. Zheng Y. Li L. Meng S. Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed. Pharmacother. 2018 107 262 269 10.1016/j.biopha.2018.07.148 30098544
    [Google Scholar]
  49. Knoop M. Possovre M.L. Jacquens A. Charlet A. Baud O. Darbon P. The role of oxytocin in abnormal brain development: Effect on glial cells and neuroinflammation. Cells 2022 11 23 3899 10.3390/cells11233899 36497156
    [Google Scholar]
  50. Takahashi J. Yamada D. Nagano W. Saitoh A. The role of oxytocin in Alzheimer’s Disease and its relationship with social interaction. Cells 2023 12 20 2426 10.3390/cells12202426 37887270
    [Google Scholar]
  51. Takahashi J. Ueta Y. Yamada D. Intracerebroventricular administration of oxytocin and intranasal administration of the oxytocin derivative improve β‐amyloid peptide (25-35)‐induced memory impairment in mice. Neuropsychopharmacol. Rep. 2022 42 4 492 501 10.1002/npr2.12292 36117475
    [Google Scholar]
  52. Takahashi J. Yamada D. Ueta Y. Oxytocin reverses Aβ-induced impairment of hippocampal synaptic plasticity in mice. Biochem. Biophys. Res. Commun. 2020 528 1 174 178 10.1016/j.bbrc.2020.04.046 32482389
    [Google Scholar]
  53. Michaelian J.C. McCade D. Hoyos C.M. Pilot randomized, double-blind, placebo-controlled crossover trial evaluating the feasibility of an intranasal oxytocin in improving social cognition in individuals living with Alzheimer’s Disease. J. Alzheimers Dis. Rep. 2023 7 1 715 729 10.3233/ADR‑230013 37483320
    [Google Scholar]
  54. Cloutier S. Chertkow H. Kergoat M.J. Gauthier S. Belleville S. Patterns of cognitive decline prior to dementia in persons with mild cognitive impairment. J. Alzheimers Dis. 2015 47 4 901 913 10.3233/JAD‑142910 26401770
    [Google Scholar]
  55. Wilson R.S. Leurgans S.E. Boyle P.A. Bennett D.A. Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. Arch. Neurol. 2011 68 3 351 356 10.1001/archneurol.2011.31 21403020
    [Google Scholar]
  56. Mahalingam G. Samtani S. Lam B.C.P. Social connections and risk of incident mild cognitive impairment, dementia, and mortality in 13 longitudinal cohort studies of ageing. Alzheimers Dement. 2023 19 11 5114 5128 10.1002/alz.13072 37102417
    [Google Scholar]
  57. Liu H. Zhang Z. Choi S. Langa K.M. Marital status and dementia: Evidence from the health and retirement study. J. Gerontol. B Psychol. Sci. Soc. Sci. 2020 75 8 1783 1795 10.1093/geronb/gbz087 31251349
    [Google Scholar]
  58. Sjöberg L. Fratiglioni L. Lövdén M. Wang H.X. Low mood and risk of dementia: The role of marital status and living situation. Am. J. Geriatr. Psychiatry 2020 28 1 33 44 10.1016/j.jagp.2019.08.014 31522861
    [Google Scholar]
  59. Sundström A. Westerlund O. Mousavi-Nasab H. Adolfsson R. Nilsson L.G. The relationship between marital and parental status and the risk of dementia. Int. Psychogeriatr. 2014 26 5 749 757 10.1017/S1041610213002652 24451183
    [Google Scholar]
  60. Joshi P. Hendrie K. Jester D.J. Social connections as determinants of cognitive health and as targets for social interventions in persons with or at risk of Alzheimer’s disease and related disorders: A scoping review. Int. Psychogeriatr. 2024 36 2 92 118 10.1017/S1041610223000923 37994532
    [Google Scholar]
  61. Orihashi R. Mizoguchi Y. Oxytocin for maintaining mental health in older adults. Arch Gerontol Geriatr Plus 2024 1 4 100090 10.1016/j.aggp.2024.100090
    [Google Scholar]
  62. Donovan N.J. Okereke O.I. Vannini P. Association of higher cortical amyloid burden with loneliness in cognitively normal older adults. JAMA Psychiatry 2016 73 12 1230 1237 10.1001/jamapsychiatry.2016.2657 27806159
    [Google Scholar]
  63. Seike T. Chen C.H. Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer’s disease. Front. Aging Neurosci. 2023 15 1223977 10.3389/fnagi.2023.1223977 37693648
    [Google Scholar]
  64. Joshi A.U. Van Wassenhove L.D. Logas K.R. Aldehyde dehydrogenase 2 activity and aldehydic load contribute to neuroinflammation and Alzheimer’s disease related pathology. Acta Neuropathol. Commun. 2019 7 1 190 10.1186/s40478‑019‑0839‑7 31829281
    [Google Scholar]
  65. Hsu C.Y. Lee K.T. Sun T.Y. WWOX and its binding proteins in neurodegeneration. Cells 2021 10 7 1781 10.3390/cells10071781 34359949
    [Google Scholar]
  66. Liu C.C. Ho P.C. Lee I.T. WWOX phosphorylation, signaling, and role in neurodegeneration. Front. Neurosci. 2018 12 563 10.3389/fnins.2018.00563 30158849
    [Google Scholar]
  67. Sze C.I. Su M. Pugazhenthi S. Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer’s disease. J. Biol. Chem. 2004 279 29 30498 30506 10.1074/jbc.M401399200 15126504
    [Google Scholar]
  68. Yuan Y.T. Hong W.P. Tan C.H. Yu R.L. Influence of WWOX/MAF genes on cognitive performance in patients with Parkinson’s disease. Neurobiol. Dis. 2025 208 106887 10.1016/j.nbd.2025.106887 40139278
    [Google Scholar]
  69. Tochigi Y. Takamatsu Y. Nakane J. Nakai R. Katayama K. Suzuki H. Loss of Wwox causes defective development of cerebral cortex with hypomyelination in a rat model of lethal dwarfism with epilepsy. Int. J. Mol. Sci. 2019 20 14 3596 10.3390/ijms20143596 31340538
    [Google Scholar]
  70. Jones C. Barrera I. Brothers S. Ring R. Wahlestedt C. Oxytocin and social functioning. Dialogues Clin. Neurosci. 2017 19 2 193 201 10.31887/DCNS.2017.19.2/cjones 28867943
    [Google Scholar]
  71. Su F.T. Tai C.H. Tan C.H. Hwang W.J. Yu R.L. The development of the social functioning scale for patients with Parkinson’s disease. J. Parkinsons Dis. 2020 10 3 1143 1151 10.3233/JPD‑201930 32444559
    [Google Scholar]
  72. Grothe J. Schomerus G. Dietzel J. Riedel-Heller S. Röhr S. Instruments to assess social functioning in individuals with dementia: A systematic review. J. Alzheimers Dis. 2021 80 2 619 637 33579833
    [Google Scholar]
  73. Christ-Crain M. Ball S. The neurohypophysis: Endocrinology of vasopressin and oxytocin. Endotext. South Dartmouth, MA: MDText.com, Inc. Feingold KR. Ahmed S.F. Anawalt B. Blackman M.R. Boyce A. Chrousos G. 2000
    [Google Scholar]
  74. Song Z. Albers H.E. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Front. Neuroendocrinol. 2018 51 14 24 10.1016/j.yfrne.2017.10.004 29054552
    [Google Scholar]
  75. Rigney N. de Vries G.J. Petrulis A. Young L.J. Oxytocin, vasopressin, and social behavior: From neural circuits to clinical opportunities. Endocrinology 2022 163 9 bqac111 10.1210/endocr/bqac111 35863332
    [Google Scholar]
  76. Yang C. Zhang X. Gao J. Wang M. Yang Z. Transcriptomic changes in the prefrontal cortex of post-traumatic stress disorder patients. Transl. Psychiatry 2017 7 7 e1212 10.1038/tp.2017.121
    [Google Scholar]
  77. Gimpl G. Fahrenholz F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev. 2001 81 2 629 683 10.1152/physrev.2001.81.2.629 11274341
    [Google Scholar]
  78. Wang H. Xu J. Lazarovici P. Quirion R. Zheng W. cAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci. 2018 11 255 10.3389/fnmol.2018.00255 30214393
    [Google Scholar]
  79. Teich A.F. Nicholls R.E. Puzzo D. Synaptic therapy in Alzheimer’s disease: A CREB-centric approach. Neurotherapeutics 2015 12 1 29 41 10.1007/s13311‑014‑0327‑5 25575647
    [Google Scholar]
  80. Yiu A.P. Rashid A.J. Josselyn S.A. Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2011 36 11 2169 2186 10.1038/npp.2011.107 21734652
    [Google Scholar]
  81. Majdalawieh A. Ro H.S. Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm. 2010 2010 1 27 10.1155/2010/823821 20396415
    [Google Scholar]
  82. Singh S. Singh T.G. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach. Curr. Neuropharmacol. 2020 18 10 918 935 10.2174/1570159X18666200207120949 32031074
    [Google Scholar]
  83. Zuo L. Shi L. Yan F. The reciprocal interaction of sympathetic nervous system and cAMP-PKA-NF-kB pathway in immune suppression after experimental stroke. Neurosci. Lett. 2016 627 205 210 10.1016/j.neulet.2016.05.066 27250857
    [Google Scholar]
  84. Wang L. Guo T. Guo Y. Xu Y. Asiaticoside produces an antidepressant like effect in a chronic unpredictable mild stress model of depression in mice, involving reversion of inflammation and the PKA/pCREB/BDNF signaling pathway. Mol. Med. Rep. 2020 22 3 2364 2372 10.3892/mmr.2020.11305 32705202
    [Google Scholar]
  85. Neumann I.D. Maloumby R. Beiderbeck D.I. Lukas M. Landgraf R. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 2013 38 10 1985 1993 10.1016/j.psyneuen.2013.03.003 23579082
    [Google Scholar]
  86. Weisman O. Zagoory-Sharon O. Feldman R. Intranasal oxytocin administration is reflected in human saliva. Psychoneuroendocrinology 2012 37 9 1582 1586 10.1016/j.psyneuen.2012.02.014 22436536
    [Google Scholar]
  87. Piotrowska D. Potasiewicz A. Popik P. Nikiforuk A. Pro-social and pro-cognitive effects of LIT-001, a novel oxytocin receptor agonist in a neurodevelopmental model of schizophrenia. Eur. Neuropsychopharmacol. 2024 78 30 42 10.1016/j.euroneuro.2023.09.005 37866191
    [Google Scholar]
  88. Hilfiger L. Zhao Q. Kerspern D. A nonpeptide oxytocin receptor agonist for a durable relief of inflammatory pain. Sci. Rep. 2020 10 1 3017 10.1038/s41598‑020‑59929‑w 32080303
    [Google Scholar]
  89. Frantz M.C. Pellissier L.P. Pflimlin E. LIT-001, the first nonpeptide oxytocin receptor agonist that improves social interaction in a mouse model of autism. J. Med. Chem. 2018 61 19 8670 8692 10.1021/acs.jmedchem.8b00697 30199637
    [Google Scholar]
  90. Samtani S. Mahalingam G. Lam B.C.P. Associations between social connections and cognition: A global collaborative individual participant data meta-analysis. Lancet Healthy Longev. 2022 3 11 e740 e753 10.1016/S2666‑7568(22)00199‑4 36273484
    [Google Scholar]
  91. McKay E.C. Counts S.E. Oxytocin receptor signaling in vascular function and stroke. Front. Neurosci. 2020 14 574499 10.3389/fnins.2020.574499 33071746
    [Google Scholar]
  92. Dokholyan N.V. Mohs R.C. Bateman R.J. Challenges and progress in research, diagnostics, and therapeutics in Alzheimer’s disease and related dementias. Alzheimers Dement. 2022 8 1 e12330 10.1002/trc2.12330 35910674
    [Google Scholar]
  93. Sasaguri H. Nilsson P. Hashimoto S. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 2017 36 17 2473 2487 10.15252/embj.201797397 28768718
    [Google Scholar]
  94. Kamatham P.T. Shukla R. Khatri D.K. Vora L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res. Rev. 2024 101 102481 10.1016/j.arr.2024.102481 39236855
    [Google Scholar]
  95. Filali M. Lalonde R. Rivest S. Anomalies in social behaviors and exploratory activities in an APPswe/PS1 mouse model of Alzheimer’s disease. Physiol. Behav. 2011 104 5 880 885 10.1016/j.physbeh.2011.05.023 21640739
    [Google Scholar]
  96. Teixeira A.L. Rocha N.P. Gatchel J. Behavioral or neuropsychiatric symptoms of Alzheimer’s disease: From psychopathology to pharmacological management. Arq. Neuropsiquiatr. 2023 81 12 1152 1162 10.1055/s‑0043‑1777774 38157881
    [Google Scholar]
  97. Tcw J. Goate A.M. Genetics of β-amyloid precursor protein in alzheimer’s disease. Cold Spring Harb. Perspect. Med. 2017 7 6 a024539 10.1101/cshperspect.a024539 28003277
    [Google Scholar]
  98. Bekris L.M. Yu C.E. Bird T.D. Tsuang D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 2010 23 4 213 227 10.1177/0891988710383571 21045163
    [Google Scholar]
  99. Kos T. Popik P. A comparison of the predictive therapeutic and undesired side-effects of the NMDA receptor antagonist, memantine, in mice. Behav. Pharmacol. 2005 16 3 155 161 10.1097/00008877‑200505000‑00004 15864070
    [Google Scholar]
  100. Jayaprakash N. Elumalai K. Translational medicine in Alzheimer’s Disease: The journey of donanemab from discovery to clinical application. Chronic Dis. Transl. Med. 2025 11 2 105 116 10.1002/cdt3.155 40486952
    [Google Scholar]
  101. Peralta Reyes F.S. Sommerhage S. Willbold D. Schröder G.F. Gremer L. Lecanemab binds to transgenic mouse model‐derived amyloid‐β fibril structures resembling Alzheimer’s disease type I, type II and arctic folds. Neuropathol. Appl. Neurobiol. 2025 51 3 e70022 10.1111/nan.70022 40495448
    [Google Scholar]
  102. Tucker S. Möller C. Tegerstedt K. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis. 2015 43 2 575 588 10.3233/JAD‑140741 25096615
    [Google Scholar]
  103. Muñoz-Contreras M.C. Segarra I. López-Román F.J. Galera R.N. Cerdá B. Role of caregivers on medication adherence management in polymedicated patients with Alzheimer’s disease or other types of dementia. Front. Public Health 2022 10 987936 10.3389/fpubh.2022.987936 36353281
    [Google Scholar]
/content/journals/car/10.2174/0115672050403886251121065128
Loading
/content/journals/car/10.2174/0115672050403886251121065128
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: neuroinflammation ; oxytocin ; dementia ; neuroprotection ; oxidative stress ; LIT-001 ; Alzheimer's disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test