Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer's disease (AD) is the most common form of dementia, and it is important to diagnose the disease at an early stage to help people with the condition and their families. Recently, artificial intelligence, especially deep learning approaches applied to medical imaging, has shown potential in enhancing AD diagnosis. This comprehensive review investigates the current state of the art in multimodal deep learning for the early diagnosis of Alzheimer's disease using image processing.

Methods

The research underpinning this review spanned several months. Numerous deep learning architectures are examined, including CNNs, transfer learning methods, and combined models that use different imaging modalities, such as structural MRI, functional MRI, and amyloid PET. The latest work on explainable AI (XAI) is also reviewed to improve the understandability of the models and identify the particular regions of the brain related to AD pathology.

Results

The results indicate that multimodal approaches generally outperform single-modality methods, and three-dimensional (volumetric) data provides a better form of representation compared to two-dimensional images.

Discussion

Current challenges are also discussed, including insufficient and/or poorly prepared datasets, computational expense, and the lack of integration with clinical practice. The findings highlight the potential of applying deep learning approaches for early AD diagnosis and for directing future research pathways.

Conclusion

The integration of multimodal imaging with deep learning techniques presents an exciting direction for developing improved AD diagnostic tools. However, significant challenges remain in achieving accurate, reliable, and understandable clinical applications.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050401817250721190509
2025-08-07
2025-12-23
Loading full text...

Full text loading...

References

  1. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  2. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  3. BehlT. KaurI. SehgalA. KhandigeP.S. ImranM. GulatiM. Khalid AnwerM. ElossailyG.M. AliN. WalP. GasmiA. The link between Alzheimer’s disease and stroke: A detrimental synergism.Ageing Res. Rev.20249910238810.1016/j.arr.2024.10238838914265
    [Google Scholar]
  4. SinhaS. WalP. GoudanavarP. DivyaS. KimothiV. JyothiD. Research on Alzheimer's disease (AD) involving the use of in vivo and in vitro models and mechanisms.CNS Agents Med. Chem.202525212314210.2174/011871524929364224052205492938803173
    [Google Scholar]
  5. SinghM. AgarwalV. PanchamP. JindalD. AgarwalS. RaiS. SinghS. GuptaV. A comprehensive review and androgen deprivation therapy and its impact on alzheimer’s disease risk in older men with prostate cancer.Degener. Neurol. Neuromuscul. Dis.202414334610.2147/DNND.S44513038774717
    [Google Scholar]
  6. QiuS. JoshiP.S. MillerM.I. XueC. ZhouX. KarjadiC. ChangG.H. JoshiA.S. DwyerB. ZhuS. KakuM. ZhouY. AlderaziY.J. SwaminathanA. KedarS. Saint-HilaireM.H. AuerbachS.H. YuanJ. SartorE.A. AuR. KolachalamaV.B. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification.Brain202014361920193310.1093/brain/awaa13732357201
    [Google Scholar]
  7. SpasovS. PassamontiL. DuggentoA. LiòP. ToschiN. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease.Neuroimage201918927628710.1016/j.neuroimage.2019.01.03130654174
    [Google Scholar]
  8. CuiR. LiuM. Hippocampus analysis by combination of 3-d densenet and shapes for alzheimer’s disease diagnosis.IEEE J. Biomed. Health Inform.20192352099210710.1109/JBHI.2018.288239230475734
    [Google Scholar]
  9. EbrahimighahnaviehM.A. LuoS. ChiongR. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review.Comput. Methods Programs Biomed.202018710524210.1016/j.cmpb.2019.10524231837630
    [Google Scholar]
  10. WenJ. Thibeau-SutreE. Diaz-MeloM. Samper-GonzálezJ. RoutierA. BottaniS. DormontD. DurrlemanS. BurgosN. ColliotO. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation.Med. Image Anal.20206310169410.1016/j.media.2020.10169432417716
    [Google Scholar]
  11. HelalyH.A. BadawyM. HossnyE. Deep learning approaches for Alzheimer’s disease detection from brain MRI: A comprehensive review.Neural Comput. Appl.202436112510.1007/s00521‑023‑08697‑5
    [Google Scholar]
  12. RamzanF. KhanM.U.G. RehmatA. IqbalS. SabaT. RehmanA. MehmoodZ. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state FMRI and residual neural networks.J. Med. Syst.20204423710.1007/s10916‑019‑1475‑231853655
    [Google Scholar]
  13. NoorM.B.T. ZeniaN.Z. KaiserM.S. MamunS.A. MahmudM. Application of deep learning in detecting neurological disorders from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and Schizophrenia.Brain Inform.2020711110.1186/s40708‑020‑00112‑233034769
    [Google Scholar]
  14. ShenT. JiangJ. LuJ. WangM. ZuoC. YuZ. YanZ. Predicting Alzheimer disease from mild cognitive impairment with a deep belief network based on 18F-FDG-PET images.Mol. Imaging201918153601211987728510.1177/153601211987728531552787
    [Google Scholar]
  15. FengC. ElazabA. YangP. WangT. ZhouF. HuH. XiaoX. LeiB. Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM.IEEE Access20197636056361810.1109/ACCESS.2019.2913847
    [Google Scholar]
  16. PunjabiA. MartersteckA. WangY. ParrishT.B. KatsaggelosA.K. Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks.PLoS One20191412022575910.1371/journal.pone.022575931805160
    [Google Scholar]
  17. AnsartM. EpelbaumS. BassignanaG. BôneA. BottaniS. CattaiT. CouronnéR. FaouziJ. KovalI. LouisM. Thibeau-SutreE. WenJ. WildA. BurgosN. DormontD. ColliotO. DurrlemanS. Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.Med. Image Anal.20216710184810.1016/j.media.2020.10184833091740
    [Google Scholar]
  18. AbuhmedT. El-SappaghS. AlonsoJ.M. Robust hybrid deep learning models for Alzheimer’s progression detection.Knowl. Base. Syst.202121310668810.1016/j.knosys.2020.106688
    [Google Scholar]
  19. RiekeJ. EitelF. WeygandtM. HaynesJ.D. RitterK. Visualizing convolutional networks for mri-based diagnosis of Alzheimer’s disease.Understanding and Interpreting Machine Learning in Medical Image Computing Applications.ChamSpringer2018243110.1007/978‑3‑030‑02628‑8_3
    [Google Scholar]
  20. BöhleM. EitelF. WeygandtM. RitterK. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification.Front. Aging Neurosci.20191119410.3389/fnagi.2019.0019431417397
    [Google Scholar]
  21. RudinC. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.Nat. Mach. Intell.20191520621510.1038/s42256‑019‑0048‑x35603010
    [Google Scholar]
  22. MamalakisA. Investigating the fidelity of explainable artificial intelligence methods for weather and climate applications.Artif. Intell. Earth Sys.20221422001210.1175/AIES‑D‑22‑0012.1
    [Google Scholar]
  23. YangW. Survey on explainable AI: From approaches, limitations, opportunities to metrics, recent advances and challenges.CAAI Artif. Intell. Res.202321910.1007/s44230‑023‑00038‑y
    [Google Scholar]
  24. KindermansP.J. The (un)reliability of saliency methods.Explainable AI: Interpreting, Explaining and Visualizing Deep LearningChamSpringer201926728010.1007/978‑3‑030‑28954‑6_10
    [Google Scholar]
  25. JacoviA. Formalizing trust in artificial intelligence: Prerequisites, causes and goals of human trust in AI.Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21)2021, pp. 624-635.10.1145/3442188.3445923
    [Google Scholar]
  26. Poursabzi-SangdehF. Manipulating and Measuring Model Interpretability.Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21)2021, pp. (1-52).10.1145/3411764.3445315
    [Google Scholar]
  27. HoffmannF. Bridging the Gap in XAI—the need for reliable metrics and robust evaluation strategies.arXiv:2502.04695202515
    [Google Scholar]
  28. VelmuruganM. Developing guidelines for functionally-grounded evaluation of explainable AI.Knowl. Base. Syst.202529911206910.1016/j.knosys.2024.112069
    [Google Scholar]
  29. KhvostikovA. AderghalK. Benois-PineauJ. KrylovA. 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer’s disease studies.arXiv:1801.0596820181710.48550/arXiv.1801.05968
    [Google Scholar]
  30. PayanA. MontanaG. Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks.IEEE International Conference on Image Processing2015, pp. 1-5.10.1109/ICIP.2015.7351000
    [Google Scholar]
  31. Hosseini-AslE. KeyntonR. El-BazA. Alzheimer’s disease diagnostics by adaptation of 3D convolutional network.IEEE International Conference on Image Processing2016, pp. 126-130.10.1109/ICIP.2016.7532332
    [Google Scholar]
  32. ChenA.A. LuoC. ChenY. ShinoharaR.T. ShouH. Privacy-preserving harmonization via distributed ComBat.Neuroimage202224811882210.1016/j.neuroimage.2021.11882234958950
    [Google Scholar]
  33. ZhouX. QiuS. JoshiP.S. XueC. KillianyR.J. MianA.Z. ChinS.P. AuR. KolachalamaV.B. Enhancing magnetic resonance imaging-driven Alzheimer’s disease classification performance using generative adversarial learning.Alzheimers Res. Ther.20211316010.1186/s13195‑021‑00797‑533766132
    [Google Scholar]
  34. MitrovskaA. SafariP. RitterK. ShariatiB. FischerJ.K. Secure federated learning for Alzheimer’s disease detection.Front. Aging Neurosci.202416132403210.3389/fnagi.2024.132403238515517
    [Google Scholar]
  35. MarinescuRV OxtobyNP YoungAL Tadpole challenge: Prediction of longitudinal evolution in alzheimer’s disease.arXiv.2018:1805.03909201816
    [Google Scholar]
  36. JiY. ZhuL. YangZ. Improved Alzheimer’s disease diagnosis using ensemble learning with convolutional neural networks and structural MRI.Front. Aging Neurosci.202315117326510.3389/fnagi.2023.1173265
    [Google Scholar]
  37. PrajapatiC. RaiS.N. SinghA.K. ChopadeB.A. SinghY. SinghS.K. HaqueS. PrietoM.A. AshrafG.M. An update of fungal endophyte diversity and strategies for augmenting therapeutic potential of their potent metabolites: Recent advancement.Appl. Biochem. Biotechnol.202519752799286610.1007/s12010‑024‑05098‑939907846
    [Google Scholar]
  38. KangS.K. SeoS. ShinS.A. Deep learning for Alzheimer’s disease: A systematic review of structural and functional brain imaging.Diagnostics2022125107510.3390/diagnostics1205107535626231
    [Google Scholar]
  39. Samper-GonzálezJ. BurgosN. BottaniS. FontanellaS. LuP. MarcouxA. RoutierA. GuillonJ. BacciM. WenJ. BertrandA. BertinH. HabertM.O. DurrlemanS. EvgeniouT. ColliotO. Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data.Neuroimage201818350452110.1016/j.neuroimage.2018.08.04230130647
    [Google Scholar]
  40. FarooqA. AnwarS. AwaisM. RehmanS. A deep CNN based multi-class classification of Alzheimer’s disease using MRI.IEEE International Conference on Imaging Systems and Techniques2017, pp. 1-6.10.1109/IST.2017.8261460
    [Google Scholar]
  41. ZhangD. WangY. ZhouL. YuanH. ShenD. Multimodal classification of Alzheimer’s disease and mild cognitive impairment.Neuroimage201155385686710.1016/j.neuroimage.2011.01.00821236349
    [Google Scholar]
  42. Abd El-LatifA.A. ChellougS.A. AlabdulhafithM. HammadM. Accurate detection of alzheimer’s disease using lightweight deep learning model on MRI data.Diagnostics20231371216
    [Google Scholar]
  43. ZhouT. ThungK.H. ZhuX. ShenD. Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis.Hum. Brain Mapp.20194031001101610.1002/hbm.2442830381863
    [Google Scholar]
  44. LiuS. YadavC. Fernandez-GrandaC. RazavianN. On the design of convolutional neural networks for automatic detection of Alzheimer’s disease.Machine Learn. Medi. Imag.20201186128729610.1007/978‑3‑030‑32692‑0_3
    [Google Scholar]
  45. YadavA. SinghN. SinghA. AshishA. SinghS. RaiS. SinghS. SinghR. Investigation of serum pro-inflammatory markers and trace elements among short stature in eastern uttar pradesh and bihar populations.J. Inflamm. Res.2024176063607310.2147/JIR.S47389539253565
    [Google Scholar]
  46. TripathiP. LodhiA. RaiS. NandiN. DumogaS. YadavP. TiwariA. SinghS. El-ShorbagiA.N. ChaudharyS. Review of pharmacotherapeutic targets in Alzheimer’s disease and its management using traditional medicinal plants.Degener. Neurol. Neuromuscul. Dis.202414477410.2147/DNND.S45200938784601
    [Google Scholar]
  47. AltayO. UlasC. KaraE. GulerE. AltayE.E. Attention-based recurrent neural networks for Alzheimer’s disease detection using structural MRI.Comput. Biol. Med.202315810688710.1016/j.compbiomed.2023.106887
    [Google Scholar]
  48. RamakrishnaK. NallaL.V. NareshD. VenkateswarluK. ViswanadhM.K. NalluriB.N. ChakravarthyG. DuguluriS. SinghP. RaiS.N. KumarA. SinghV. SinghS.K. WNT-β catenin signaling as a potential therapeutic target for neurodegenerative diseases: Current status and future perspective.Diseases20231138910.3390/diseases1103008937489441
    [Google Scholar]
  49. TripathiP.N. SrivastavaP. SharmaP. TripathiM.K. SethA. TripathiA. RaiS.N. SinghS.P. ShrivastavaS.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory.Bioorg. Chem.201985829610.1016/j.bioorg.2018.12.01730605887
    [Google Scholar]
  50. SrivastavaP. TripathiP.N. SharmaP. RaiS.N. SinghS.P. SrivastavaR.K. ShankarS. ShrivastavaS.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory.Eur. J. Med. Chem.201916311613510.1016/j.ejmech.2018.11.04930503937
    [Google Scholar]
  51. VenugopalanJ. TongL. HassanzadehH.R. WangM.D. Multimodal deep learning models for early detection of Alzheimer’s disease stage.Sci. Rep.2021111325410.1038/s41598‑020‑74399‑w33547343
    [Google Scholar]
  52. CastellanoG. EspositoA. LellaE. MontanaroG. VessioG. Automated detection of Alzheimer’s disease: A multi-modal approach with 3D MRI and amyloid PET.Sci. Rep.2024141521010.1038/s41598‑024‑56001‑938433282
    [Google Scholar]
  53. ChamakuriR. JanapanaH. A systematic review on recent methods on deep learning for automatic detection of Alzheimer’s disease.Med. Novel Technol. Devices20252510034310.1016/j.medntd.2024.100343
    [Google Scholar]
  54. GrandeG. VallettaM. RizzutoD. et al. Blood-based biomarkers of Alzheimer’s disease and incident dementia in the community.Nat. Med.2025312027203510.1038/s41591‑025‑03605‑x
    [Google Scholar]
  55. SarrafS. TofighiG. Classification of Alzheimer’s disease using fMRI data and deep learning convolutional neural networks.arXiv:1603.0863120161610.48550/arXiv.1603.08631
    [Google Scholar]
  56. RaiS.N. SinghC. SinghA. SinghM.P. SinghB.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease.Mol. Neurobiol.20205773075308810.1007/s12035‑020‑01945‑y32462551
    [Google Scholar]
  57. LiF. TranL. ThungK.H. JiS. ShenD. LiJ. A robust deep model for improved classification of AD/MCI patients.IEEE J. Biomed. Health Inform.20192341613162310.1109/JBHI.2018.287950125955998
    [Google Scholar]
  58. BasaiaS. AgostaF. WagnerL. CanuE. MagnaniG. SantangeloR. FilippiM. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks.Neuroimage Clin.20192110164510.1016/j.nicl.2018.10164530584016
    [Google Scholar]
  59. SukH.I. LeeS.W. ShenD. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis.Brain Struct. Funct.201722273249326410.1007/s00429‑017‑1459‑225993900
    [Google Scholar]
  60. CuiR. LiuM. RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease.Comput. Med. Imaging Graph.20197311010.1016/j.compmedimag.2019.01.00530763637
    [Google Scholar]
  61. JungJ. Essential properties and explanation effectiveness of explainable artificial intelligence in healthcare: A systematic review.Heliyon202395e1611010.1016/j.heliyon.2023.e16110
    [Google Scholar]
  62. RathoreS. HabesM. IftikharM.A. ShacklettA. DavatzikosC. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages.Neuroimage201715553054810.1016/j.neuroimage.2017.03.05728414186
    [Google Scholar]
/content/journals/car/10.2174/0115672050401817250721190509
Loading
/content/journals/car/10.2174/0115672050401817250721190509
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test