Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer’s disease is a progressive neurodegenerative condition characterized by the gradual deterioration of cognitive functions. Early identification of functional brain changes is crucial for timely diagnosis and effective intervention. This study employs multiplex network analysis to examine alterations in brain connectivity topology associated with Alzheimer's Disease, to identify early biomarkers and uncover potential therapeutic targets.

Methods

This study presents a secondary cross-sectional analysis based on a publicly available EEG dataset comprising spectral coherence measurements from 25 patients with clinically diagnosed Alzheimer's Disease (AD) and 25 age- and gender-matched Healthy Controls (HC). Functional connectivity matrices were generated across seven distinct frequency bands, with each brain region modeled as a network node and inter-regional coherence values represented as weighted edges. These matrices were then used to construct multiplex brain networks, which were rigorously analyzed using graph-theoretical approaches. The analysis encompassed key metrics, including modularity, centrality measures (Betweenness and MultiRank), motif distribution, and network controllability, to characterize and compare the underlying patterns of functional brain organization in AD and healthy aging.

Results

Networks associated with AD exhibited significantly reduced modularity, disrupted centrality patterns, and a higher occurrence of 2 and 3-node motifs, indicating local reorganization of connectivity. Additionally, the spatial distribution of driver nodes was markedly altered in AD. Centrality analyses revealed a pronounced shift in network hubs toward the temporal and insular cortices, suggesting compensatory or pathological reallocation of influence. Controllability assessments demonstrated a lower energy requirement for network control in AD, accompanied by increased inter-layer fragmentation, reflecting compromised integrative function across frequency bands.

Discussion

The findings revealed specific topological alterations, including reduced modularity, altered centrality, and decreased controllability, all of which are closely linked to AD-related network degeneration. By leveraging multi-frequency EEG data, the multiplex approach shows significant clinical potential for monitoring disease progression and supporting personalized treatments, with the ability to detect subtle connectivity disruptions before cognitive symptoms manifest.

Conclusion

Multiplex network analysis reveals distinct and robust alterations in the functional brain architecture of individuals with Alzheimer’s Disease. These network-level disruptions offer valuable insights into the pathophysiology of AD and highlight potential avenues for early diagnosis and targeted therapeutic strategies aimed at preserving cognitive function.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050399190250815070642
2025-08-26
2025-12-23
Loading full text...

Full text loading...

References

  1. JaunyG. MijalkovM. Canal-GarciaA. Linking structural and functional changes during aging using multilayer brain network analysis.Commun. Biol.20247123910.1038/s42003‑024‑05927‑x38418523
    [Google Scholar]
  2. ZhengX. WangB. LiuH. Diagnosis of Alzheimer’s disease via resting-state EEG: Integration of spectrum, complexity, and synchronization signal features.Front. Aging Neurosci.202315128829510.3389/fnagi.2023.128829538020761
    [Google Scholar]
  3. ChettyC.A. BhardwajH. KumarG.P. EEG biomarkers in Alzheimer’s and prodromal Alzheimer’s: A comprehensive analysis of spectral and connectivity features.Alzheimers Res. Ther.202416123610.1186/s13195‑024‑01582‑w39449097
    [Google Scholar]
  4. CaoJ. LiB. LiX. Identification of Alzheimer’s disease brain networks based on EEG phase synchronization.Biomed. Eng. Online20252413210.1186/s12938‑025‑01361‑040059173
    [Google Scholar]
  5. GwonD. WonK. SongM. NamC.S. JunS.C. AhnM. Review of public motor imagery and execution datasets in brain-computer interfaces.Front. Hum. Neurosci.202317113486910.3389/fnhum.2023.113486937063105
    [Google Scholar]
  6. PrakashR.S. McKennaM.R. GbadeyanO. A whole‐brain functional connectivity model of Alzheimer’s disease pathology.Alzheimers Dement.20252111434910.1002/alz.1434939711458
    [Google Scholar]
  7. ChangC. ChenJ.E. Multimodal EEG-fMRI: Advancing insight into large-scale human brain dynamics.Curr. Opin. Biomed. Eng.20211810027910.1016/j.cobme.2021.10027934095643
    [Google Scholar]
  8. BoucherS. ArribaratG. CartiauxB. Diffusion tensor imaging tractography of white matter tracts in the equine brain.Front. Vet. Sci.2020738210.3389/fvets.2020.0038232850994
    [Google Scholar]
  9. LamaR.K. KwonG.R. Diagnosis of Alzheimer’s disease using brain network.Front. Neurosci.20211560511510.3389/fnins.2021.60511533613178
    [Google Scholar]
  10. FathianA. JamaliY. RaoufyM.R. The trend of disruption in the functional brain network topology of Alzheimer’s disease.Sci. Rep.20221211499810.1038/s41598‑022‑18987‑y36056059
    [Google Scholar]
  11. PinedaAM RamosFM BettingLE CampanharoAS Use of complex networks for the automatic detection and the diagnosis of Alzheimer’s disease.Advances in Computational Intelligence: 15th International Work-Conference on Artificial Neural Networks, IWANN 2019.Gran Canaria, Spain, 2019, vol. 11506, pp. 115-126.
    [Google Scholar]
  12. MohammadianF. NoroozianM. SadeghiA.Z. Effective connectivity evaluation of resting-state brain networks in Alzheimer’s disease, amnestic mild cognitive impairment, and normal aging: An exploratory study.Brain Sci.202313226510.3390/brainsci1302026536831808
    [Google Scholar]
  13. WangL ShengJ ZhangQ Functional brain network measures for Alzheimer’s disease classification.IEEE Access2023111118324510.1109/ACCESS.2023.3323250
    [Google Scholar]
  14. PlutaR. A look at the etiology of Alzheimer’s Disease based on the brain ischemia model.Curr. Alzheimer Res.202421316618210.2174/011567205032092124062705073638963100
    [Google Scholar]
  15. WangJ. ZhaoJ. ChenX. YinB. LiX. XieP. Alzheimer’s disease diagnosis using rhythmic power changes and phase differences: A low-density EEG study.Front. Aging Neurosci.202516148513210.3389/fnagi.2024.148513239897456
    [Google Scholar]
  16. BassettD.S. SpornsO. Network neuroscience.Nat. Neurosci.201720335336410.1038/nn.450228230844
    [Google Scholar]
  17. BassettD.S. ZurnP. GoldJ.I. On the nature and use of models in network neuroscience.Nat. Rev. Neurosci.201819956657810.1038/s41583‑018‑0038‑830002509
    [Google Scholar]
  18. WangD. EEG and brain network analysis in the early diagnosis of Alzheimer’s disease.TNS2024581606510.54254/2753‑8818/58/20241336
    [Google Scholar]
  19. VaianaM. MuldoonS.F. Multilayer brain networks.J. Nonlinear Sci.20203052147216910.1007/s00332‑017‑9436‑8
    [Google Scholar]
  20. StelzerG.T. Lima-FilhoR.A.S. Amyloid-β as a key player in cerebrovascular dysfunction in Alzheimer’s disease.J. Neurosci.20244427066324202410.1523/JNEUROSCI.0663‑24.202438960709
    [Google Scholar]
  21. AmorosoN. La RoccaM. BrunoS. Multiplex networks for early diagnosis of alzheimer’s disease.Front. Aging Neurosci.20181036510.3389/fnagi.2018.0036530487745
    [Google Scholar]
  22. GuillonJ. Multilayer approach to brain connectivity in Alzheimer’s disease.Doctoral dissertation, Sorbonne Université2018
    [Google Scholar]
  23. BianconiG. Multilayer Networks: Structure and Function.OxfordOxford University Press201810.1093/oso/9780198753919.001.0001
    [Google Scholar]
  24. GuS. PasqualettiF. CieslakM. Controllability of structural brain networks.Nat. Commun.201561841410.1038/ncomms941426423222
    [Google Scholar]
  25. FilippiM. SpinelliE.G. CividiniC. GhirelliA. BasaiaS. AgostaF. The human functional connectome in neurodegenerative diseases: Relationship to pathology and clinical progression.Expert Rev. Neurother.2023231597310.1080/14737175.2023.217401636710600
    [Google Scholar]
  26. LiuY-Y. SlotineJ-J. Barab’asiA-L. Controllability of complex networks.Nature201147316717310.1038/nature10011
    [Google Scholar]
  27. YuanZ. ZhaoC. DiZ. WangW.X. LaiY.C. Exact controllability of complex networks.Nat. Commun.201341244710.1038/ncomms344724025746
    [Google Scholar]
  28. TangE. BassettD.S. Colloquium: Control of dynamics in brain networks.Rev. Mod. Phys.201890303100310.1103/RevModPhys.90.031003
    [Google Scholar]
  29. WuL. LiM. WangJ.X. WuF.X. Controllability and its applications to biological networks.J. Comput. Sci. Technol.2019341163410.1007/s11390‑019‑1896‑x
    [Google Scholar]
  30. TahmassebiA. Meyer-B¨aseU. Meyer-B¨aseA. Modeling disease spreading process induced by disease agent mobility in dementia networks.Pattern Recognition and Tracking XXXI.SPIE202011400303610.1117/12.2557814
    [Google Scholar]
  31. TahmassebiA. Meyer-BaeseU. Meyer-BaeseA. Structural target controllability of brain networks in Dementia.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.202120213978398110.1109/EMBC46164.2021.963049634892102
    [Google Scholar]
  32. Van PoperingL. TahmassebiA. Meyer-BaeseU. Identifying the diffusion source of dementia spreading in structural brain networks. Medical Imaging 2021.Biomedical Applications in Molecular, Structural, and Functional Imaging.2021Vol. 11600586310.1117/12.2582200
    [Google Scholar]
  33. McGowanA.L. ParkesL. HeX. Controllability of structural brain networks and the waxing and waning of negative affect in daily life.Biol. Psychiatry Glob. Open Sci.20222443243910.1016/j.bpsgos.2021.11.00836324655
    [Google Scholar]
  34. García-PlanasM. García-CambaM. Controllability of brain neural networks in learning disorders, a geometric approach.Mathematics202210333110.3390/math10030331
    [Google Scholar]
  35. BattistonF. NicosiaV. LatoraV. Structural measures for multiplex networks.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.201489303280410.1103/PhysRevE.89.03280424730896
    [Google Scholar]
  36. GuillonJ. AttalY. ColliotO. Loss of brain inter-frequency hubs in Alzheimer’s disease.Sci. Rep.2017711087910.1038/s41598‑017‑07846‑w28883408
    [Google Scholar]
  37. IhmelsJ. FriedlanderG. BergmannS. SarigO. ZivY. BarkaiN. Revealing modular organization in the yeast transcriptional network.Nat. Genet.200231437037710.1038/ng94112134151
    [Google Scholar]
  38. NewmanM.E.J. Modularity and community structure in networks.Proc. Natl. Acad. Sci. USA2006103238577858210.1073/pnas.060160210316723398
    [Google Scholar]
  39. WagnerG.P. PavlicevM. CheverudJ.M. The road to modularity.Nat. Rev. Genet.200781292193110.1038/nrg226718007649
    [Google Scholar]
  40. ChenZ.J. HeY. Rosa-NetoP. GermannJ. EvansA.C. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI.Cereb. Cortex200818102374238110.1093/cercor/bhn00318267952
    [Google Scholar]
  41. BassettD.S. GreenfieldD.L. Meyer-LindenbergA. WeinbergerD.R. MooreS.W. BullmoreE.T. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.PLOS Comput. Biol.201064100074810.1371/journal.pcbi.100074820421990
    [Google Scholar]
  42. MeunierD. LambiotteR. BullmoreE.T. Modular and hierarchically modular organization of brain networks.Front. Neurosci.2010420010.3389/fnins.2010.0020021151783
    [Google Scholar]
  43. OldhamM.C. KonopkaG. IwamotoK. Functional organization of the transcriptome in human brain.Nat. Neurosci.200811111271128210.1038/nn.220718849986
    [Google Scholar]
  44. CrossleyN.A. MechelliA. VértesP.E. Cognitive relevance of the community structure of the human brain functional coactivation network.Proc. Natl. Acad. Sci. USA201311028115831158810.1073/pnas.122082611023798414
    [Google Scholar]
  45. FukushimaM BetzelRF HeY Fluctuations between highand low-modularity topology in time-resolved functional connectivity.Neuroimage2018180Pt B4061610.1016/j.neuroimage.2017.08.04428823827
    [Google Scholar]
  46. FreemanL.C. Centrality in social networks conceptual clarification.Soc. Networks19781321523910.1016/0378‑8733(78)90021‑7
    [Google Scholar]
  47. RubinovM. SpornsO. Complex network measures of brain connectivity: Uses and interpretations.Neuroimage20105231059106910.1016/j.neuroimage.2009.10.00319819337
    [Google Scholar]
  48. StamC.J. de HaanW. DaffertshoferA. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease.Brain2009132121322410.1093/brain/awn26218952674
    [Google Scholar]
  49. TaguasI. DovalS. MaestúF. López-SanzD. Toward a more comprehensive understanding of network centrality disruption in amnestic mild cognitive impairment: A MEG multilayer approach.Alzheimers Res. Ther.202416121610.1186/s13195‑024‑01576‑839385281
    [Google Scholar]
  50. DaianuM. JahanshadN. NirT. Disrupted rich club network in alzheimer’s disease: A structural connectome study.Brain Struct. Funct.201522021051106624442866
    [Google Scholar]
  51. RahmedeC. IacovacciJ. ArenasA. BianconiG. Centralities of nodes and influences of layers in large multiplex networks.J. Complex Netw.20186573375210.1093/comnet/cnx050
    [Google Scholar]
  52. AertsH. FiasW. CaeyenberghsK. MarinazzoD. Brain networks under attack: Robustness properties and the impact of lesions.Brain2016139Pt 123063308310.1093/brain/aww194
    [Google Scholar]
  53. FuL. LiuL. ZhangJ. XuB. FanY. TianJ. Brain network alterations in Alzheimer’s disease identified by early-phase PIB-PET.Contrast Media Mol. Imaging20182018111010.1155/2018/683010529531506
    [Google Scholar]
  54. Gracia-TabuencaZ. MorenoM.F. BarriosF.A. AlcauterS. Distinct network topology in Alzheimer’s Disease and behavioral variant frontotemporal dementia.Brain2018141514661481
    [Google Scholar]
  55. De DomenicoM. Multilayer modeling and analysis of human brain networks.Gigascience2017651810.1093/gigascience/gix00428327916
    [Google Scholar]
  56. StellaM CitraroS RossettiG MarinazzoD KenettYN VitevitchMS Cognitive modelling with multilayer networks: Insights, advancements and future challenges.arXiv Preprint2022
    [Google Scholar]
  57. BoccalettiS. LatoraV. MorenoY. ChavezM. HwangD. Complex networks: Structure and dynamics.Phys. Rep.20064244-517530810.1016/j.physrep.2005.10.009
    [Google Scholar]
  58. MiloR. Shen-OrrS. ItzkovitzS. KashtanN. ChklovskiiD. AlonU. Network motifs: Simple building blocks of complex networks.Science2002298559482482710.1126/science.298.5594.82412399590
    [Google Scholar]
  59. SpornsO. KötterR. Motifs in brain networks.PLoS Biol.200421136910.1371/journal.pbio.002036915510229
    [Google Scholar]
  60. StamC.J. Modern network science of neurological disorders.Nat. Rev. Neurosci.2014151068369510.1038/nrn380125186238
    [Google Scholar]
  61. AlizadehS. PósfaiM. GhasemiA. Input node placement restricting the longest control chain in controllability of complex networks.Sci. Rep.2023131375210.1038/s41598‑023‑30810‑w36882620
    [Google Scholar]
  62. ChenY.Z. WangL.Z. WangW.X. LaiY.C. Energy scaling and reduction in controlling complex networks.R. Soc. Open Sci.20163416006410.1098/rsos.16006427152220
    [Google Scholar]
  63. KlicksteinI. SorrentinoF. Control distance and energy scaling of complex networks.IEEE Trans. Netw. Sci. Eng.20207272673610.1109/TNSE.2018.2887042
    [Google Scholar]
  64. SrivastavaP. NozariE. KimJ.Z. Models of communication and control for brain networks: Distinctions, convergence, and future outlook.Netw. Neurosci.2020441122115910.1162/netn_a_0015833195951
    [Google Scholar]
  65. MüllerP.C. WeberH.I. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems.Automatica19728323724610.1016/0005‑1098(72)90044‑1
    [Google Scholar]
  66. AlizadehD.S.S. FornitoA. GhasemiA. The impact of input node placement in the controllability of structural brain networks.Sci. Rep.2024141690210.1038/s41598‑024‑57181‑038519624
    [Google Scholar]
/content/journals/car/10.2174/0115672050399190250815070642
Loading
/content/journals/car/10.2174/0115672050399190250815070642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test