Skip to content
2000
image of Topological Biomarkers of Alzheimer’s Disease from Functional Brain Network Analysis

Abstract

Introduction

Alzheimer’s disease is a progressive neurodegenerative condition characterized by the gradual deterioration of cognitive functions. Early identification of functional brain changes is crucial for timely diagnosis and effective intervention. This study employs multiplex network analysis to examine alterations in brain connectivity topology associated with Alzheimer's Disease, to identify early biomarkers and uncover potential therapeutic targets.

Methods

This study presents a secondary cross-sectional analysis based on a publicly available EEG dataset comprising spectral coherence measurements from 25 patients with clinically diagnosed Alzheimer's Disease (AD) and 25 age- and gender-matched Healthy Controls (HC). Functional connectivity matrices were generated across seven distinct frequency bands, with each brain region modeled as a network node and inter-regional coherence values represented as weighted edges. These matrices were then used to construct multiplex brain networks, which were rigorously analyzed using graph-theoretical approaches. The analysis encompassed key metrics, including modularity, centrality measures (Betweenness and MultiRank), motif distribution, and network controllability, to characterize and compare the underlying patterns of functional brain organization in AD and healthy aging.

Results

Networks associated with AD exhibited significantly reduced modularity, disrupted centrality patterns, and a higher occurrence of 2 and 3-node motifs, indicating local reorganization of connectivity. Additionally, the spatial distribution of driver nodes was markedly altered in AD. Centrality analyses revealed a pronounced shift in network hubs toward the temporal and insular cortices, suggesting compensatory or pathological reallocation of influence. Controllability assessments demonstrated a lower energy requirement for network control in AD, accompanied by increased inter-layer fragmentation, reflecting compromised integrative function across frequency bands.

Discussion

The findings revealed specific topological alterations, including reduced modularity, altered centrality, and decreased controllability, all of which are closely linked to AD-related network degeneration. By leveraging multi-frequency EEG data, the multiplex approach shows significant clinical potential for monitoring disease progression and supporting personalized treatments, with the ability to detect subtle connectivity disruptions before cognitive symptoms manifest.

Conclusion

Multiplex network analysis reveals distinct and robust alterations in the functional brain architecture of individuals with Alzheimer’s Disease. These network-level disruptions offer valuable insights into the pathophysiology of AD and highlight potential avenues for early diagnosis and targeted therapeutic strategies aimed at preserving cognitive function.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050399190250815070642
2025-08-26
2025-09-12
Loading full text...

Full text loading...

References

  1. Jauny G. Mijalkov M. Canal-Garcia A. Linking structural and functional changes during aging using multilayer brain network analysis. Commun. Biol. 2024 7 1 239 10.1038/s42003‑024‑05927‑x 38418523
    [Google Scholar]
  2. Zheng X. Wang B. Liu H. Diagnosis of Alzheimer’s disease via resting-state EEG: Integration of spectrum, complexity, and synchronization signal features. Front. Aging Neurosci. 2023 15 1288295 10.3389/fnagi.2023.1288295 38020761
    [Google Scholar]
  3. Chetty C.A. Bhardwaj H. Kumar G.P. EEG biomarkers in Alzheimer’s and prodromal Alzheimer’s: A comprehensive analysis of spectral and connectivity features. Alzheimers Res. Ther. 2024 16 1 236 10.1186/s13195‑024‑01582‑w 39449097
    [Google Scholar]
  4. Cao J. Li B. Li X. Identification of Alzheimer’s disease brain networks based on EEG phase synchronization. Biomed. Eng. Online 2025 24 1 32 10.1186/s12938‑025‑01361‑0 40059173
    [Google Scholar]
  5. Gwon D. Won K. Song M. Nam C.S. Jun S.C. Ahn M. Review of public motor imagery and execution datasets in brain-computer interfaces. Front. Hum. Neurosci. 2023 17 1134869 10.3389/fnhum.2023.1134869 37063105
    [Google Scholar]
  6. Prakash R.S. McKenna M.R. Gbadeyan O. A whole‐brain functional connectivity model of Alzheimer’s disease pathology. Alzheimers Dement. 2025 21 1 14349 10.1002/alz.14349 39711458
    [Google Scholar]
  7. Chang C. Chen J.E. Multimodal EEG-fMRI: Advancing insight into large-scale human brain dynamics. Curr. Opin. Biomed. Eng. 2021 18 100279 10.1016/j.cobme.2021.100279 34095643
    [Google Scholar]
  8. Boucher S. Arribarat G. Cartiaux B. Diffusion tensor imaging tractography of white matter tracts in the equine brain. Front. Vet. Sci. 2020 7 382 10.3389/fvets.2020.00382 32850994
    [Google Scholar]
  9. Lama R.K. Kwon G.R. Diagnosis of Alzheimer’s Disease using brain network. Front. Neurosci. 2021 15 605115 10.3389/fnins.2021.605115 33613178
    [Google Scholar]
  10. Fathian A. Jamali Y. Raoufy M.R. The trend of disruption in the functional brain network topology of Alzheimer’s disease. Sci. Rep. 2022 12 1 14998 10.1038/s41598‑022‑18987‑y 36056059
    [Google Scholar]
  11. Pineda AM Ramos FM Betting LE Campanharo AS Use of complex networks for the automatic detection and the diagnosis of Alzheimer’s disease. Advances in Computational Intelligence: 15th International Work-Conference on Artificial Neural Networks, IWANN 2019. Gran Canaria, Spain, 2019 vol. 11506 115 126
    [Google Scholar]
  12. Mohammadian F. Noroozian M. Sadeghi A.Z. Effective connectivity evaluation of resting-state brain networks in alzheimer’s disease, amnestic mild cognitive impairment, and normal aging: An exploratory study. Brain Sci. 2023 13 2 265 10.3390/brainsci13020265 36831808
    [Google Scholar]
  13. Wang L Sheng J Zhang Q Functional brain network measures for Alzheimer’s disease classification. IEEE Access 2023 11 111832 45 10.1109/ACCESS.2023.3323250
    [Google Scholar]
  14. Pluta R. A look at the etiology of Alzheimer’s Disease based on the brain ischemia model. Curr. Alzheimer Res. 2024 21 3 166 182 10.2174/0115672050320921240627050736 38963100
    [Google Scholar]
  15. Wang J. Zhao J. Chen X. Yin B. Li X. Xie P. Alzheimer’s disease diagnosis using rhythmic power changes and phase differences: A low-density EEG study. Front. Aging Neurosci. 2025 16 1485132 10.3389/fnagi.2024.1485132 39897456
    [Google Scholar]
  16. Bassett D.S. Sporns O. Network neuroscience. Nat. Neurosci. 2017 20 3 353 364 10.1038/nn.4502 28230844
    [Google Scholar]
  17. Bassett D.S. Zurn P. Gold J.I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 2018 19 9 566 578 10.1038/s41583‑018‑0038‑8 30002509
    [Google Scholar]
  18. Wang D. EEG and brain network analysis in the early diagnosis of Alzheimer’s disease. TNS 2024 58 1 60 65 10.54254/2753‑8818/58/20241336
    [Google Scholar]
  19. Vaiana M. Muldoon S.F. Multilayer brain networks. J. Nonlinear Sci. 2020 30 5 2147 2169 10.1007/s00332‑017‑9436‑8
    [Google Scholar]
  20. Stelzer G.T. Lima-Filho R.A.S. Amyloid-β as a key player in cerebrovascular dysfunction in Alzheimer’s disease. J. Neurosci. 2024 44 27 0663242024 10.1523/JNEUROSCI.0663‑24.2024 8960709
    [Google Scholar]
  21. Amoroso N. La Rocca M. Bruno S. Multiplex networks for early diagnosis of alzheimer’s disease. Front. Aging Neurosci. 2018 10 365 10.3389/fnagi.2018.00365 30487745
    [Google Scholar]
  22. Guillon J. Multilayer approach to brain connectivity in Alzheimer’s disease. Doctoral dissertation, Sorbonne Université 2018
    [Google Scholar]
  23. Bianconi G. Multilayer Networks: Structure and Function. Oxford Oxford University Press 2018 10.1093/oso/9780198753919.001.0001
    [Google Scholar]
  24. Gu S. Pasqualetti F. Cieslak M. Controllability of structural brain networks. Nat. Commun. 2015 6 1 8414 10.1038/ncomms9414 26423222
    [Google Scholar]
  25. Filippi M. Spinelli E.G. Cividini C. Ghirelli A. Basaia S. Agosta F. The human functional connectome in neurodegenerative diseases: Relationship to pathology and clinical progression. Expert Rev. Neurother. 2023 23 1 59 73 10.1080/14737175.2023.2174016 6710600
    [Google Scholar]
  26. Liu Y-Y. Slotine J-J. Barab’asi A-L. Controllability of complex networks. Nature 2011 473 167 173 10.1038/nature10011
    [Google Scholar]
  27. Yuan Z. Zhao C. Di Z. Wang W.X. Lai Y.C. Exact controllability of complex networks. Nat. Commun. 2013 4 1 2447 10.1038/ncomms3447 24025746
    [Google Scholar]
  28. Tang E. Bassett D.S. Colloquium: Control of dynamics in brain networks. Rev. Mod. Phys. 2018 90 3 031003 10.1103/RevModPhys.90.031003
    [Google Scholar]
  29. Wu L. Li M. Wang J.X. Wu F.X. Controllability and its applications to biological networks. J. Comput. Sci. Technol. 2019 34 1 16 34 10.1007/s11390‑019‑1896‑x
    [Google Scholar]
  30. Tahmassebi A. Meyer-B¨ase U. Meyer-B¨ase A. Modeling disease spreading process induced by disease agent mobility in dementia networks.Pattern Recognition and Tracking XXXI. SPIE 2020 11400 30 36 10.1117/12.2557814
    [Google Scholar]
  31. Tahmassebi A. Meyer-Baese U. Meyer-Baese A. Structural target controllability of brain networks in dementia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021 2021 3978 3981 10.1109/EMBC46164.2021.9630496 4892102
    [Google Scholar]
  32. Van Popering L. Tahmassebi A. Meyer-Baese U. Identifying the diffusion source of dementia spreading in structural brain networks. Medical Imaging 2021. Biomedical Applications in Molecular, Structural, and Functional Imaging. 2021 Vol 11600 58 63 10.1117/12.2582200
    [Google Scholar]
  33. McGowan A.L. Parkes L. He X. Controllability of structural brain networks and the waxing and waning of negative affect in daily life. Biol. Psychiatry Glob. Open Sci. 2022 2 4 432 439 10.1016/j.bpsgos.2021.11.008 36324655
    [Google Scholar]
  34. García-Planas M. García-Camba M. Controllability of brain neural networks in learning disorders, a geometric approach. Mathematics 2022 10 3 331 10.3390/math10030331
    [Google Scholar]
  35. Battiston F. Nicosia V. Latora V. Structural measures for multiplex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014 89 3 032804 10.1103/PhysRevE.89.032804 24730896
    [Google Scholar]
  36. Guillon J. Attal Y. Colliot O. Loss of brain inter-frequency hubs in Alzheimer’s disease. Sci. Rep. 2017 7 1 10879 10.1038/s41598‑017‑07846‑w 28883408
    [Google Scholar]
  37. Ihmels J. Friedlander G. Bergmann S. Sarig O. Ziv Y. Barkai N. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 2002 31 4 370 377 10.1038/ng941 12134151
    [Google Scholar]
  38. Newman M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006 103 23 8577 8582 10.1073/pnas.0601602103 16723398
    [Google Scholar]
  39. Wagner G.P. Pavlicev M. Cheverud J.M. The road to modularity. Nat. Rev. Genet. 2007 8 12 921 931 10.1038/nrg2267 18007649
    [Google Scholar]
  40. Chen Z.J. He Y. Rosa-Neto P. Germann J. Evans A.C. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 2008 18 10 2374 2381 10.1093/cercor/bhn003 18267952
    [Google Scholar]
  41. Bassett D.S. Greenfield D.L. Meyer-Lindenberg A. Weinberger D.R. Moore S.W. Bullmore E.T. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLOS Comput. Biol. 2010 6 4 1000748 10.1371/journal.pcbi.1000748 20421990
    [Google Scholar]
  42. Meunier D. Lambiotte R. Bullmore E.T. Modular and hierarchically modular organization of brain networks. Front. Neurosci. 2010 4 200 10.3389/fnins.2010.00200 21151783
    [Google Scholar]
  43. Oldham M.C. Konopka G. Iwamoto K. Functional organization of the transcriptome in human brain. Nat. Neurosci. 2008 11 11 1271 1282 10.1038/nn.2207 18849986
    [Google Scholar]
  44. Crossley N.A. Mechelli A. Vértes P.E. Cognitive relevance of the community structure of the human brain functional coactivation network. Proc. Natl. Acad. Sci. USA 2013 110 28 11583 11588 10.1073/pnas.1220826110 23798414
    [Google Scholar]
  45. Fukushima M Betzel RF He Y Fluctuations between highand low-modularity topology in time-resolved functional connectivity. Neuroimage 2018 180 (PT B) 406 16 10.1016/j.neuroimage.2017.08.044 28823827
    [Google Scholar]
  46. Freeman L.C. Centrality in social networks conceptual clarification. Soc. Networks 1978 1 3 215 239 10.1016/0378‑8733(78)90021‑7
    [Google Scholar]
  47. Rubinov M. Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010 52 3 1059 1069 10.1016/j.neuroimage.2009.10.003 19819337
    [Google Scholar]
  48. Stam C.J. de Haan W. Daffertshofer A. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 2009 132 1 213 224 10.1093/brain/awn262 18952674
    [Google Scholar]
  49. Taguas I. Doval S. Maestú F. López-Sanz D. Toward a more comprehensive understanding of network centrality disruption in amnestic mild cognitive impairment: A MEG multilayer approach. Alzheimers Res. Ther. 2024 16 1 216 10.1186/s13195‑024‑01576‑8 39385281
    [Google Scholar]
  50. Daianu M. Jahanshad N. Nir T. Disrupted rich club network in alzheimer’s disease: A structural connectome study. Brain Struct. Funct. 2015 220 2 1051 1066 [PMID: 24442866
    [Google Scholar]
  51. Rahmede C. Iacovacci J. Arenas A. Bianconi G. Centralities of nodes and influences of layers in large multiplex networks. J. Complex Netw. 2018 6 5 733 752 10.1093/comnet/cnx050
    [Google Scholar]
  52. Aerts H. Fias W. Caeyenberghs K. Marinazzo D. Brain networks under attack: Robustness properties and the impact of lesions. Brain 2016 139 Pt 12 3063 3083 10.1093/brain/aww194
    [Google Scholar]
  53. Fu L. Liu L. Zhang J. Xu B. Fan Y. Tian J. Brain network alterations in Alzheimer’s disease identified by early-phase PIB-PET. Contrast Media Mol. Imaging 2018 2018 1 1 10 10.1155/2018/6830105 29531506
    [Google Scholar]
  54. Gracia-Tabuenca Z. Moreno M.F. Barrios F.A. Alcauter S. Distinct network topology in Alzheimer’s Disease and behavioral variant frontotemporal dementia. Brain 2018 141 5 1466 1481
    [Google Scholar]
  55. De Domenico M. Multilayer modeling and analysis of human brain networks. Gigascience 2017 6 5 1 8 10.1093/gigascience/gix004 28327916
    [Google Scholar]
  56. Stella M Citraro S Rossetti G Marinazzo D Kenett YN Vitevitch MS Cognitive modelling with multilayer networks: Insights, advancements and future challenges. arXiv Preprint 2022
    [Google Scholar]
  57. Boccaletti S. Latora V. Moreno Y. Chavez M. Hwang D. Complex networks: Structure and dynamics. Phys. Rep. 2006 424 4-5 175 308 10.1016/j.physrep.2005.10.009
    [Google Scholar]
  58. Milo R. Shen-Orr S. Itzkovitz S. Kashtan N. Chklovskii D. Alon U. Network motifs: Simple building blocks of complex networks. Science 2002 298 5594 824 827 10.1126/science.298.5594.824 12399590
    [Google Scholar]
  59. Sporns O. Kötter R. Motifs in brain networks. PLoS Biol. 2004 2 11 369 10.1371/journal.pbio.0020369 15510229
    [Google Scholar]
  60. Stam C.J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 2014 15 10 683 695 10.1038/nrn3801 25186238
    [Google Scholar]
  61. Alizadeh S. Pósfai M. Ghasemi A. Input node placement restricting the longest control chain in controllability of complex networks. Sci. Rep. 2023 13 1 3752 10.1038/s41598‑023‑30810‑w 36882620
    [Google Scholar]
  62. Chen Y.Z. Wang L.Z. Wang W.X. Lai Y.C. Energy scaling and reduction in controlling complex networks. R. Soc. Open Sci. 2016 3 4 160064 10.1098/rsos.160064 27152220
    [Google Scholar]
  63. Klickstein I. Sorrentino F. Control distance and energy scaling of complex networks. IEEE Trans. Netw. Sci. Eng. 2020 7 2 726 736 10.1109/TNSE.2018.2887042
    [Google Scholar]
  64. Srivastava P. Nozari E. Kim J.Z. Models of communication and control for brain networks: Distinctions, convergence, and future outlook. Netw. Neurosci. 2020 4 4 1122 1159 10.1162/netn_a_00158 33195951
    [Google Scholar]
  65. Müller P.C. Weber H.I. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica 1972 8 3 237 246 10.1016/0005‑1098(72)90044‑1
    [Google Scholar]
  66. Alizadeh Darbandi S.S. Fornito A. Ghasemi A. The impact of input node placement in the controllability of structural brain networks. Sci. Rep. 2024 14 1 6902 10.1038/s41598‑024‑57181‑0 38519624
    [Google Scholar]
/content/journals/car/10.2174/0115672050399190250815070642
Loading
/content/journals/car/10.2174/0115672050399190250815070642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test