Skip to content
2000
image of Lithium Chloride Improves Electrophysiological and Memory Deficits in Rats with Streptozotocin-Induced Alzheimer's Disease

Abstract

Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system characterized by complex pathological manifestations and an unclear pathogenesis. Lithium chloride (LiCl) exhibits certain neuroprotective effects. However, its performance and mechanisms in different types of AD models remain unclear.

Methods

The streptozotocin (STZ)-induced AD rat model was used to evaluate the ameliorating effects of LiCl. LiCl was administered orally for one month, and then evaluations were conducted in terms of nerve electrophysiology, behavioral science, and molecular biology.

Results

In this study, STZ was found to significantly affect the electrophysiological functions and behavioral performances of rats. However, LiCl was able to mitigate these effects. Specifically, it led to the restoration of electrophysiological functions, with long-term potentiation (LTP) being successfully induced. LiCl also demonstrated favorable therapeutic effects in rats, as confirmed by the nest-building tests, Y-maze, and Morris water maze. Further research revealed that LiCl promoted the phosphorylation of GSK-3β in the hippocampal region of rats.

Discussion

These findings indicated that LiCl demonstrated beneficial effects on AD-like pathological changes in STZ-induced AD rats, possibly by activating GSK-3β phosphorylation in the hippocampus, improving electrophysiological functions, and further restoring behavioral characteristics.

Conclusion

In conclusion, LiCl demonstrated therapeutic potential for AD by improving neurophysiological and behavioral deficits hippocampal GSK-3β phosphorylation.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050399032250715043316
2025-07-31
2025-09-10
Loading full text...

Full text loading...

References

  1. Zhang D. Zhang W. Ming C. Gao X. Yuan H. Lin X. Mao X. Wang C. Guo X. Du Y. Shao L. Yang R. Lin Z. Wu X. Huang T.Y. Wang Z. Zhang Y. Xu H. Zhao Y. P- tau217 correlates with neurodegeneration in Alzheimer’s disease, and targeting p-tau217 with immunotherapy ameliorates murine tauopathy. Neuron 2024 112 10 1676 1693.e12 10.1016/j.neuron.2024.02.017 38513667
    [Google Scholar]
  2. Zheng Q. Wang X. Alzheimer’s disease: Insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025 16 2 83 120 10.1093/procel/pwae026 38733347
    [Google Scholar]
  3. Crapser J.D. Spangenberg E.E. Barahona R.A. Arreola M.A. Hohsfield L.A. Green K.N. Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain. EBioMedicine 2020 58 102919 10.1016/j.ebiom.2020.102919 32745992
    [Google Scholar]
  4. Sharma M. Pal P. Gupta S.K. Advances in Alzheimer’s disease: A multifaceted review of potential therapies and diagnostic techniques for early detection. Neurochem. Int. 2024 177 105761 10.1016/j.neuint.2024.105761 38723902
    [Google Scholar]
  5. Jucker M. Walker L.C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 2023 186 20 4260 4270 10.1016/j.cell.2023.08.021 37729908
    [Google Scholar]
  6. Wei J. Wen W. Dai Y. Qin L. Wen Y. Duan D.D. Xu S. Drinking water temperature affects cognitive function and progression of Alzheimer’s disease in a mouse model. Acta Pharmacol. Sin. 2021 42 1 45 54 10.1038/s41401‑020‑0407‑5 32451415
    [Google Scholar]
  7. George S. Maiti R. Mishra B.R. Jena M. Mohapatra D. Effect of regulated add-on sodium chloride intake on stabilization of serum lithium concentration in bipolar disorder: A randomized controlled trial. Bipolar Disord. 2023 25 1 66 75 10.1111/bdi.13276 36409058
    [Google Scholar]
  8. Mody P.H. Marvin K.N. Hynds D.L. Hanson L.K. Cytomegalovirus infection induces Alzheimer’s disease-associated alterations in tau. J. Neurovirol. 2023 29 4 400 415 10.1007/s13365‑022‑01109‑9 37436577
    [Google Scholar]
  9. Xiang J. Cao K. Dong Y.T. Xu Y. Li Y. Song H. Zeng X.X. Ran L.Y. Hong W. Guan Z.Z. Lithium chloride reduced the level of oxidative stress in brains and serums of APP/PS1 double transgenic mice via the regulation of GSK3β/Nrf2/HO-1 pathway. Int. J. Neurosci. 2020 130 6 564 573 10.1080/00207454.2019.1688808 31679397
    [Google Scholar]
  10. Lockwood D.R. Cassell J.A. Smith J.C. Houpt T.A. Patterns of ingestion of rats during chronic oral administration of lithium chloride. Physiol. Behav. 2024 275 114454 10.1016/j.physbeh.2023.114454 38161042
    [Google Scholar]
  11. Serrano-Pozo A. Das S. Hyman B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 20 1 68 80 10.1016/S1474‑4422(20)30412‑9 33340485
    [Google Scholar]
  12. Lei P. Ayton S. Bush A.I. The essential elements of Alzheimer’s disease. J. Biol. Chem. 2021 296 100105 10.1074/jbc.REV120.008207 33219130
    [Google Scholar]
  13. Ossenkoppele R. van der Kant R. Hansson O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022 21 8 726 734 10.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  14. Kosel F. Pelley J.M.S. Franklin T.B. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer’s disease-related pathology. Neurosci. Biobehav. Rev. 2020 112 634 647 10.1016/j.neubiorev.2020.02.012 32070692
    [Google Scholar]
  15. Yoo Y. Neumayer G. Shibuya Y. Mader M.M.D. Wernig M. A cell therapy approach to restore microglial Trem2 function in a mouse model of Alzheimer’s disease. Cell Stem Cell 2023 30 8 1043 1053.e6 10.1016/j.stem.2023.07.006 37541210
    [Google Scholar]
  16. Liu S. Fan M. Xu J.X. Yang L.J. Qi C.C. Xia Q.R. Ge J.F. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J. Neuroinflammation 2022 19 1 35 10.1186/s12974‑022‑02393‑2 35130907
    [Google Scholar]
  17. Moreira A.P. Vizuete A.F.K. Zin L.E.F. de Marques C.O. Pacheco R.F. Leal M.B. Gonçalves C.A. The Methylglyoxal/RAGE/NOX-2 pathway is persistently activated in the hippocampus of rats with stz-induced sporadic Alzheimer’s disease. Neurotox. Res. 2022 40 2 395 409 10.1007/s12640‑022‑00476‑9 35106732
    [Google Scholar]
  18. Kadhim H.J. Al-Mumen H. Nahi H.H. Hamidi S.M. Streptozotocin-induced Alzheimer’s disease investigation by one-dimensional plasmonic grating chip. Sci. Rep. 2022 12 1 21878 10.1038/s41598‑022‑26607‑y 36536049
    [Google Scholar]
  19. Silva S.S.L. Tureck L.V. Souza L.C. Mello-Hortega J.V. Piumbini A.L. Teixeira M.D. Furtado-Alle L. Vital M.A.B.F. Souza R.L.R. Animal model of Alzheimer’s disease induced by streptozotocin: New insights about cholinergic pathway. Brain Res. 2023 1799 148175 10.1016/j.brainres.2022.148175 36436686
    [Google Scholar]
  20. Twarowski B. Herbet M. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review. Int. J. Mol. Sci. 2023 24 7 6518 10.3390/ijms24076518 37047492
    [Google Scholar]
  21. Yu T. Liu X. Wu J. Wang Q. Electrophysiological biomarkers of epileptogenicity in Alzheimer's disease. Front. Hum. Neurosci. 2021 15 747077 10.3389/fnhum.2021.747077
    [Google Scholar]
  22. Gerzson M.F.B. Bona N.P. Soares M.S.P. Teixeira F.C. Rahmeier F.L. Carvalho F.B. da Cruz Fernandes M. Onzi G. Lenz G. Gonçales R.A. Spanevello R.M. Stefanello F.M. Tannic acid ameliorates stz-induced Alzheimer’s disease-like impairment of memory, neuroinflammation, neuronal death and modulates akt expression. Neurotox. Res. 2020 37 4 1009 1017 10.1007/s12640‑020‑00167‑3 31997154
    [Google Scholar]
  23. Moosavi M. soukhaklari R. Bagheri-Mohammadi S. Firouzan B. Javadpour P. Ghasemi R. Nanocurcumin prevents memory impairment, hippocampal apoptosis, Akt and CaMKII-α signaling disruption in the central STZ model of Alzheimer’s disease in rat. Behav. Brain Res. 2024 471 115129 10.1016/j.bbr.2024.115129 38942084
    [Google Scholar]
  24. Su Y. Liu N. Sun R. Ma J. Li Z. Wang P. Ma H. Sun Y. Song J. Zhang Z. Radix rehmanniae praeparata (Shu Dihuang) exerts neuroprotective effects on ICV-STZ-induced Alzheimer’s disease mice through modulation of INSR/IRS-1/AKT/GSK-3β signaling pathway and intestinal microbiota. Front. Pharmacol. 2023 14 1115387 10.3389/fphar.2023.1115387 36843923
    [Google Scholar]
  25. Saleh S.R. Abd-Elmegied A. Aly Madhy S. Khattab S.N. Sheta E. Elnozahy F.Y. Mehanna R.A. Ghareeb D.A. Abd-Elmonem N.M. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer’s disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int. J. Pharm. 2024 658 124218 10.1016/j.ijpharm.2024.124218 38734273
    [Google Scholar]
  26. Gomaa A.A. Farghaly H.S.M. Ahmed A.M. El-Mokhtar M.A. Hemida F.K. Advancing combination treatment with cilostazol and caffeine for Alzheimer’s disease in high fat-high fructose-STZ induced model of amnesia. Eur. J. Pharmacol. 2022 921 174873 10.1016/j.ejphar.2022.174873 35283111
    [Google Scholar]
  27. Zhao B. Wei D. Long Q. Chen Q. Wang F. Chen L. Li Z. Li T. Ma T. Liu W. Wang L. Yang C. Zhang X. Wang P. Zhang Z. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer’s disease models and therapeutic potential of Dengzhan Shengmai capsules intervention. J. Pharm. Anal. 2024 14 3 348 370 10.1016/j.jpha.2023.10.006 38618251
    [Google Scholar]
  28. Zhang H. Han Y. Zhang L. Jia X. Niu Q. The GSK-3β/β-catenin signaling–mediated brain–derived neurotrophic factor pathway is involved in aluminum-induced impairment of hippocampal LTP in vivo. Biol. Trace Elem. Res. 2021 199 12 4635 4645 10.1007/s12011‑021‑02582‑9 33462795
    [Google Scholar]
  29. Chiu D.N. Carter B.C. Synaptic NMDA receptor activity at resting membrane potentials. Front. Cell. Neurosci. 2022 16 916626 10.3389/fncel.2022.916626
    [Google Scholar]
  30. Saha R. Faramarzi S. Bloom R.P. Benally O.J. Wu K. di Girolamo A. Tonini D. Keirstead S.A. Low W.C. Netoff T.I. Wang J.P. Strength-frequency curve for micromagnetic neurostimulation through excitatory postsynaptic potentials (EPSPs) on rat hippocampal neurons and numerical modeling of magnetic microcoil (μcoil). J. Neural Eng. 2022 19 1 016018 10.1088/1741‑2552/ac4baf 35030549
    [Google Scholar]
  31. Lian W. Wang Z. Zhou F. Yuan X. Xia C. Wang W. Yan Y. Cheng Y. Yang H. Xu J. He J. Zhang W. Cornuside ameliorates cognitive impairments via RAGE/TXNIP/NF-κB signaling in Aβ1-42 induced Alzheimer’s disease mice. J. Neuroimmune Pharmacol. 2024 19 1 24 10.1007/s11481‑024‑10120‑2 38780885
    [Google Scholar]
  32. Qian W. Yuan L. Zhuge W. Gu L. Chen Y. Zhuge Q. Ni H. Lv X. Regulating Lars2 in mitochondria: A potential Alzheimer’s therapy by inhibiting tau phosphorylation. Neurotherapeutics 2024 21 4 00353 10.1016/j.neurot.2024.e00353 38575503
    [Google Scholar]
  33. Zhu L. Hou X. Che X. Zhou T. Liu X. Wu C. Yang J. Pseudoginsenoside-F11 attenuates cognitive dysfunction and tau phosphorylation in sporadic Alzheimer’s disease rat model. Acta Pharmacol. Sin. 2021 42 9 1401 1408 10.1038/s41401‑020‑00562‑8 33277592
    [Google Scholar]
  34. Yang S. xie Z. Pei T. Zeng Y. Xiong Q. Wei H. Wang Y. Cheng W. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer’s disease mice and glutamate-injured HT22 cells. Chin. Med. 2022 17 1 82 10.1186/s13020‑022‑00634‑3 35787281
    [Google Scholar]
  35. Pentkowski N.S. Rogge-Obando K.K. Donaldson T.N. Bouquin S.J. Clark B.J. Anxiety and Alzheimer’s disease: Behavioral analysis and neural basis in rodent models of Alzheimer’s-related neuropathology. Neurosci. Biobehav. Rev. 2021 127 647 658 10.1016/j.neubiorev.2021.05.005 33979573
    [Google Scholar]
  36. Dang Y. He Q. Yang S. Sun H. Liu Y. Li W. Tang Y. Zheng Y. Wu T. FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer’s disease: Evidence from single-cell transcriptomic analysis. Pharmaceuticals 2022 15 10 1177 10.3390/ph15101177 36297287
    [Google Scholar]
  37. Gao J. Zhang X. Shu G. Chen N. Zhang J. Xu F. Li F. Liu Y. Wei Y. He Y. Shi J. Gong Q. Trilobatin rescues cognitive impairment of Alzheimer’s disease by targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway. Acta Pharmacol. Sin. 2022 43 10 2482 2494 10.1038/s41401‑022‑00888‑5 35292770
    [Google Scholar]
  38. Lou S. Gong D. Yang M. Qiu Q. Luo J. Chen T. Curcumin improves neurogenesis in Alzheimer’s disease mice via the upregulation of Wnt/β-catenin and BDNF. Int. J. Mol. Sci. 2024 25 10 5123 10.3390/ijms25105123 38791161
    [Google Scholar]
  39. Mifflin M.A. Winslow W. Surendra L. Tallino S. Vural A. Velazquez R. Sex differences in the intellicage and the morris water maze in the app/ps1 mouse model of amyloidosis. Neurobiol. Aging 2021 101 130 140 10.1016/j.neurobiolaging.2021.01.018 33610962
    [Google Scholar]
  40. Sreelatha I. Choi G.Y. Lee I.S. Inturu O. Lee H.S. Park Y.N. Lee C.W. Yang I. Maeng S. Park J.H. Neuroprotective properties of rutin hydrate against scopolamine-induced deficits in BDNF/TrkB/ERK/CREB/Bcl2 pathways. Neurol. Int. 2024 16 5 1094 1111 10.3390/neurolint16050082 39452684
    [Google Scholar]
  41. Xing Z. Zhao C. Wu S. Yang D. Zhang C. Wei X. Wei X. Su H. Liu H. Fan Y. Hydrogel loaded with VEGF/TFEB-engineered extracellular vesicles for rescuing critical limb ischemia by a dual-pathway activation strategy. Adv. Healthc. Mater. 2022 11 5 2100334 10.1002/adhm.202100334 34297471
    [Google Scholar]
  42. Xing Z. Zhang X. Zhao C. Zhang L. Qian S. Chu Y. Yang W. Wang Y. Xia J. Wang J. Microenvironment-responsive recombinant collagen XVII-based composite microneedles for the treatment of androgenetic alopecia. Acta Biomater. 2025 1 5 10.1016/j.actbio.2025.05.039
    [Google Scholar]
  43. Liu Y. Tan Y. Zhang Z. Yi M. Zhu L. Peng W. The interaction between ageing and Alzheimer’s disease: Insights from the hallmarks of ageing. Transl. Neurodegener. 2024 13 1 7 10.1186/s40035‑024‑00397‑x 38254235
    [Google Scholar]
  44. Bhuiyan P. Zhang W. Liang G. Jiang B. Vera R. Chae R. Kim K. Louis L.S. Wang Y. Liu J. Chuang D.M. Wei H. Intranasal delivery of lithium salt suppresses inflammatory pyroptosis in the brain and ameliorates memory loss and depression-like behavior in 5xfad mice. J. Neuroimmune Pharmacol. 2025 20 1 26 10.1007/s11481‑025‑10185‑7 40095208
    [Google Scholar]
  45. Zhang W. Ding F. Rong X. Ren Q. Hasegawa T. Liu H. Li M. Aβ -induced excessive mitochondrial fission drives type H blood vessels injury to aggravate bone loss in APP/PS1 mice with Alzheimer’s diseases. Aging Cell 2025 24 2 14374 10.1111/acel.14374 39411913
    [Google Scholar]
  46. Xu Q.Q. Su Z.R. Yang W. Zhong M. Xian Y.F. Lin Z.X. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer’s disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J. Neuroinflammation 2023 20 1 19 10.1186/s12974‑023‑02704‑1 36717922
    [Google Scholar]
  47. Zheng K. Hu F. Zhou Y. Zhang J. Zheng J. Lai C. Xiong W. Cui K. Hu Y.Z. Han Z.T. Zhang H.H. Chen J.G. Man H.Y. Liu D. Lu Y. Zhu L.Q. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat. Commun. 2021 12 1 1903 10.1038/s41467‑021‑22196‑y 33771994
    [Google Scholar]
  48. Rostagno A.A. Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2023 1 6 36613544
    [Google Scholar]
  49. Naomi R. Embong H. Othman F. Ghazi H.F. Maruthey N. Bahari H. Probiotics for Alzheimer’s disease: A systematic review. Nutrients 2022 1 5 35010895
    [Google Scholar]
  50. Se Thoe E. Fauzi A. Tang Y.Q. Chamyuang S. Chia A.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021 276 119129 10.1016/j.lfs.2021.119129 33515559
    [Google Scholar]
  51. Xiao L. Yang X. Sharma V.K. Abebe D. Loh Y.P. Hippocampal delivery of neurotrophic factor-α1/carboxypeptidase E gene prevents neurodegeneration, amyloidosis, memory loss in Alzheimer’s Disease male mice. Mol. Psychiatry 2023 28 8 3332 3342 10.1038/s41380‑023‑02135‑7 37369719
    [Google Scholar]
  52. Rajasethupathy P. Sankaran S. Marshel J.H. Kim C.K. Ferenczi E. Lee S.Y. Berndt A. Ramakrishnan C. Jaffe A. Lo M. Liston C. Deisseroth K. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015 526 7575 653 659 10.1038/nature15389 26436451
    [Google Scholar]
  53. Su W. Wang Y. Shao S. Ye X. Crocin ameliorates neuroinflammation and cognitive impairment in mice with Alzheimer’s disease by activating PI3K/AKT pathway. Brain Behav. 2024 14 5 3503 10.1002/brb3.3503 38775292
    [Google Scholar]
  54. Castellano J.M. Mosher K.I. Abbey R.J. McBride A.A. James M.L. Berdnik D. Shen J.C. Zou B. Xie X.S. Tingle M. Hinkson I.V. Angst M.S. Wyss-Coray T. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 2017 544 7651 488 492 10.1038/nature22067 28424512
    [Google Scholar]
  55. Hayashi Y. Molecular mechanism of hippocampal long-term potentiation – Towards multiscale understanding of learning and memory. Neurosci. Res. 2022 175 3 15 10.1016/j.neures.2021.08.001 34375719
    [Google Scholar]
  56. Rampon M. Carponcy J. Missaire M. Bouet R. Parmentier R. Comte J.C. Malleret G. Salin P.A. Synapse-specific modulation of synaptic responses by brain states in hippocampal pathways. J. Neurosci. 2023 43 7 1191 1210 10.1523/JNEUROSCI.0772‑22.2022 36631268
    [Google Scholar]
  57. Südhof T.C. Cerebellin–neurexin complexes instructing synapse properties. Curr. Opin. Neurobiol. 2023 81 102727 10.1016/j.conb.2023.102727 37209532
    [Google Scholar]
  58. Kang H. Schuman E.M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995 267 5204 1658 1662 10.1126/science.7886457 7886457
    [Google Scholar]
  59. Lee S.H. Bolshakov V.Y. Shen J. Presenilins regulate synaptic plasticity in the perforant pathways of the hippocampus. Mol. Brain 2023 16 1 17 10.1186/s13041‑023‑01009‑x 36710361
    [Google Scholar]
  60. Kim Y. Kim S. Ho W.K. Lee S.H. Burst firing is required for induction of Hebbian LTP at lateral perforant path to hippocampal granule cell synapses. Mol. Brain 2023 16 1 45 10.1186/s13041‑023‑01034‑w 37217996
    [Google Scholar]
  61. Gannon O.J. Robison L.S. Salinero A.E. Abi-Ghanem C. Mansour F.M. Kelly R.D. Tyagi A. Brawley R.R. Ogg J.D. Zuloaga K.L. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer’s disease and mixed dementia in a sex-dependent manner. J. Neuroinflammation 2022 19 1 110 10.1186/s12974‑022‑02466‑2 35568928
    [Google Scholar]
  62. Jo K.W. Lee D. Cha D.G. Oh E. Choi Y.H. Kim S. Park E.S. Kim J.K. Kim K.T. Gossypetin ameliorates 5xFAD spatial learning and memory through enhanced phagocytosis against Aβ. Alzheimers Res. Ther. 2022 14 1 158 10.1186/s13195‑022‑01096‑3 36271414
    [Google Scholar]
  63. Wang D. Li X. Li W. Duong T. Wang H. Kleschevnikova N. Patel H.H. Breen E. Powell S. Wang S. Head B.P. Nicotine inhalant via E-cigarette facilitates sensorimotor function recovery by upregulating neuronal BDNF–TrkB signalling in traumatic brain injury. Br. J. Pharmacol. 2024 181 17 3082 3097 10.1111/bph.16395 38698493
    [Google Scholar]
  64. Cao Y. Liu B. Xu W. Wang L. Shi F. Li N. Lei Y. Wang J. Tian Q. Zhou X. Inhibition of mTORC1 improves STZ-induced AD-like impairments in mice. Brain Res. Bull. 2020 162 166 179 10.1016/j.brainresbull.2020.06.002 32599128
    [Google Scholar]
  65. Gayger-Dias V. Menezes L. Da Silva V.F. Stiborski A. Silva A.C.R. Sobottka T.M. Quines-Silva V.C. Pakulski-Souto B. Bobermin L.D. Quincozes-Santos A. Leite M.C. Gonçalves C.A. Changes in astroglial water flow in the pre-amyloid phase of the STZ model of AD dementia. Neurochem. Res. 2024 49 7 1851 1862 10.1007/s11064‑024‑04144‑6 38733521
    [Google Scholar]
  66. Isaev N.K. Genrikhs E.E. Voronkov D.N. Kapkaeva M.R. Stelmashook E.V. Streptozotocin toxicity in vitro depends on maturity of neurons. Toxicol. Appl. Pharmacol. 2018 348 99 104 10.1016/j.taap.2018.04.024 29684395
    [Google Scholar]
  67. Yang W. Liu Y. Xu Q-Q. Xian Y-F. Lin Z-X. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the pi3k/akt/gsk-3β pathway in experimental models of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2020 2020 1 4754195 32963694
    [Google Scholar]
  68. Agrawal R. Tyagi E. Shukla R. Nath C. Insulin receptor signaling in rat hippocampus: A study in STZ (ICV) induced memory deficit model. Eur. Neuropsychopharmacol. 2011 21 3 261 273 10.1016/j.euroneuro.2010.11.009 21195590
    [Google Scholar]
  69. Kosaraju J. Madhunapantula S.V. Chinni S. Khatwal R.B. Dubala A. Muthureddy Nataraj S.K. Basavan D. Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer’s disease. Behav. Brain Res. 2014 267 55 65 10.1016/j.bbr.2014.03.026 24667360
    [Google Scholar]
  70. Jastrzębski M.K. Wójcik P. Stępnicki P. Kaczor A.A. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm. Sin. B 2024 14 1 20 37 10.1016/j.apsb.2023.10.007 38239239
    [Google Scholar]
  71. Chen C. Li X.H. Tu Y. Sun H.T. Liang H.Q. Cheng S.X. Zhang S. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience 2014 257 1 10 10.1016/j.neuroscience.2013.10.056 24188791
    [Google Scholar]
  72. Lauretti E. Dincer O. Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer's disease. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 5 118664 10.1016/j.bbamcr.2020.118664
    [Google Scholar]
  73. Gao D. Li P. Gao F. Feng Y. Li X. Li D. Li Y. Xiao Y. Preparation and multitarget anti-ad activity study of chondroitin sulfate lithium in ad mice induced by combination of D-Gal/AlCl 3. Oxid. Med. Cell. Longev. 2022 2022 1 9466166 10.1155/2022/9466166 36411758
    [Google Scholar]
  74. Whitley K.C. Hamstra S.I. Baranowski R.W. Watson C.J.F. MacPherson R.E.K. MacNeil A.J. Roy B.D. Vandenboom R. Fajardo V.A. GSK3 inhibition with low dose lithium supplementation augments murine muscle fatigue resistance and specific force production. Physiol. Rep. 2020 8 14 14517 10.14814/phy2.14517 32729236
    [Google Scholar]
/content/journals/car/10.2174/0115672050399032250715043316
Loading
/content/journals/car/10.2174/0115672050399032250715043316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test