Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system characterized by complex pathological manifestations and an unclear pathogenesis. Lithium chloride (LiCl) exhibits certain neuroprotective effects. However, its performance and mechanisms in different types of AD models remain unclear.

Methods

The streptozotocin (STZ)-induced AD rat model was used to evaluate the ameliorating effects of LiCl. LiCl was administered orally for one month, and then evaluations were conducted in terms of nerve electrophysiology, behavioral science, and molecular biology.

Results

In this study, STZ was found to significantly affect the electrophysiological functions and behavioral performances of rats. However, LiCl was able to mitigate these effects. Specifically, it led to the restoration of electrophysiological functions, with long-term potentiation (LTP) being successfully induced. LiCl also demonstrated favorable therapeutic effects in rats, as confirmed by the nest-building tests, Y-maze, and Morris water maze. Further research revealed that LiCl promoted the phosphorylation of GSK-3β in the hippocampal region of rats.

Discussion

These findings indicated that LiCl demonstrated beneficial effects on AD-like pathological changes in STZ-induced AD rats, possibly by activating GSK-3β phosphorylation in the hippocampus, improving electrophysiological functions, and further restoring behavioral characteristics.

Conclusion

In conclusion, LiCl demonstrated therapeutic potential for AD by improving neurophysiological and behavioral deficits hippocampal GSK-3β phosphorylation.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050399032250715043316
2025-07-31
2026-02-03
Loading full text...

Full text loading...

References

  1. ZhangD. ZhangW. MingC. GaoX. YuanH. LinX. MaoX. WangC. GuoX. DuY. ShaoL. YangR. LinZ. WuX. HuangT.Y. WangZ. ZhangY. XuH. ZhaoY. P- tau217 correlates with neurodegeneration in Alzheimer’s disease, and targeting p-tau217 with immunotherapy ameliorates murine tauopathy.Neuron20241121016761693.e1210.1016/j.neuron.2024.02.01738513667
    [Google Scholar]
  2. ZhengQ. WangX. Alzheimer’s disease: Insights into pathology, molecular mechanisms, and therapy.Protein Cell20251628312010.1093/procel/pwae02638733347
    [Google Scholar]
  3. CrapserJ.D. SpangenbergE.E. BarahonaR.A. ArreolaM.A. HohsfieldL.A. GreenK.N. Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain.EBioMedicine20205810291910.1016/j.ebiom.2020.10291932745992
    [Google Scholar]
  4. SharmaM. PalP. GuptaS.K. Advances in Alzheimer’s disease: A multifaceted review of potential therapies and diagnostic techniques for early detection.Neurochem. Int.202417710576110.1016/j.neuint.2024.10576138723902
    [Google Scholar]
  5. JuckerM. WalkerL.C. Alzheimer’s disease: From immunotherapy to immunoprevention.Cell2023186204260427010.1016/j.cell.2023.08.02137729908
    [Google Scholar]
  6. WeiJ. WenW. DaiY. QinL. WenY. DuanD.D. XuS. Drinking water temperature affects cognitive function and progression of Alzheimer’s disease in a mouse model.Acta Pharmacol. Sin.2021421455410.1038/s41401‑020‑0407‑532451415
    [Google Scholar]
  7. GeorgeS. MaitiR. MishraB.R. JenaM. MohapatraD. Effect of regulated add-on sodium chloride intake on stabilization of serum lithium concentration in bipolar disorder: A randomized controlled trial.Bipolar Disord.2023251667510.1111/bdi.1327636409058
    [Google Scholar]
  8. ModyP.H. MarvinK.N. HyndsD.L. HansonL.K. Cytomegalovirus infection induces Alzheimer’s disease-associated alterations in tau.J. Neurovirol.202329440041510.1007/s13365‑022‑01109‑937436577
    [Google Scholar]
  9. XiangJ. CaoK. DongY.T. XuY. LiY. SongH. ZengX.X. RanL.Y. HongW. GuanZ.Z. Lithium chloride reduced the level of oxidative stress in brains and serums of APP/PS1 double transgenic mice via the regulation of GSK3β/Nrf2/HO-1 pathway.Int. J. Neurosci.2020130656457310.1080/00207454.2019.168880831679397
    [Google Scholar]
  10. LockwoodD.R. CassellJ.A. SmithJ.C. HouptT.A. Patterns of ingestion of rats during chronic oral administration of lithium chloride.Physiol. Behav.202427511445410.1016/j.physbeh.2023.11445438161042
    [Google Scholar]
  11. Serrano-PozoA. DasS. HymanB.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches.Lancet Neurol.2021201688010.1016/S1474‑4422(20)30412‑933340485
    [Google Scholar]
  12. LeiP. AytonS. BushA.I. The essential elements of Alzheimer’s disease.J. Biol. Chem.202129610010510.1074/jbc.REV120.00820733219130
    [Google Scholar]
  13. OssenkoppeleR. van der KantR. HanssonO. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials.Lancet Neurol.202221872673410.1016/S1474‑4422(22)00168‑535643092
    [Google Scholar]
  14. KoselF. PelleyJ.M.S. FranklinT.B. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer’s disease-related pathology.Neurosci. Biobehav. Rev.202011263464710.1016/j.neubiorev.2020.02.01232070692
    [Google Scholar]
  15. YooY. NeumayerG. ShibuyaY. MaderM.M.D. WernigM. A cell therapy approach to restore microglial Trem2 function in a mouse model of Alzheimer’s disease.Cell Stem Cell202330810431053.e610.1016/j.stem.2023.07.00637541210
    [Google Scholar]
  16. LiuS. FanM. XuJ.X. YangL.J. QiC.C. XiaQ.R. GeJ.F. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology.J. Neuroinflammation20221913510.1186/s12974‑022‑02393‑235130907
    [Google Scholar]
  17. MoreiraA.P. VizueteA.F.K. ZinL.E.F. de MarquesC.O. PachecoR.F. LealM.B. GonçalvesC.A. The Methylglyoxal/RAGE/NOX-2 pathway is persistently activated in the hippocampus of rats with stz-induced sporadic Alzheimer’s disease.Neurotox. Res.202240239540910.1007/s12640‑022‑00476‑935106732
    [Google Scholar]
  18. KadhimH.J. Al-MumenH. NahiH.H. HamidiS.M. Streptozotocin-induced Alzheimer’s disease investigation by one-dimensional plasmonic grating chip.Sci. Rep.20221212187810.1038/s41598‑022‑26607‑y36536049
    [Google Scholar]
  19. SilvaS.S.L. TureckL.V. SouzaL.C. Mello-HortegaJ.V. PiumbiniA.L. TeixeiraM.D. Furtado-AlleL. VitalM.A.B.F. SouzaR.L.R. Animal model of Alzheimer’s disease induced by streptozotocin: New insights about cholinergic pathway.Brain Res.2023179914817510.1016/j.brainres.2022.14817536436686
    [Google Scholar]
  20. TwarowskiB. HerbetM. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review.Int. J. Mol. Sci.2023247651810.3390/ijms2407651837047492
    [Google Scholar]
  21. YuT. LiuX. WuJ. WangQ. Electrophysiological biomarkers of epileptogenicity in Alzheimer's disease.Front. Hum. Neurosci.20211574707710.3389/fnhum.2021.747077
    [Google Scholar]
  22. GerzsonM.F.B. BonaN.P. SoaresM.S.P. TeixeiraF.C. RahmeierF.L. CarvalhoF.B. da Cruz FernandesM. OnziG. LenzG. GonçalesR.A. SpanevelloR.M. StefanelloF.M. Tannic acid ameliorates stz-induced Alzheimer’s disease-like impairment of memory, neuroinflammation, neuronal death and modulates akt expression.Neurotox. Res.20203741009101710.1007/s12640‑020‑00167‑331997154
    [Google Scholar]
  23. MoosaviM. soukhaklariR. Bagheri-MohammadiS. FirouzanB. JavadpourP. GhasemiR. Nanocurcumin prevents memory impairment, hippocampal apoptosis, Akt and CaMKII-α signaling disruption in the central STZ model of Alzheimer’s disease in rat.Behav. Brain Res.202447111512910.1016/j.bbr.2024.11512938942084
    [Google Scholar]
  24. SuY. LiuN. SunR. MaJ. LiZ. WangP. MaH. SunY. SongJ. ZhangZ. Radix rehmanniae praeparata (Shu Dihuang) exerts neuroprotective effects on ICV-STZ-induced Alzheimer’s disease mice through modulation of INSR/IRS-1/AKT/GSK-3β signaling pathway and intestinal microbiota.Front. Pharmacol.202314111538710.3389/fphar.2023.111538736843923
    [Google Scholar]
  25. SalehS.R. Abd-ElmegiedA. Aly MadhyS. KhattabS.N. ShetaE. ElnozahyF.Y. MehannaR.A. GhareebD.A. Abd-ElmonemN.M. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer’s disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis.Int. J. Pharm.202465812421810.1016/j.ijpharm.2024.12421838734273
    [Google Scholar]
  26. GomaaA.A. FarghalyH.S.M. AhmedA.M. El-MokhtarM.A. HemidaF.K. Advancing combination treatment with cilostazol and caffeine for Alzheimer’s disease in high fat-high fructose-STZ induced model of amnesia.Eur. J. Pharmacol.202292117487310.1016/j.ejphar.2022.17487335283111
    [Google Scholar]
  27. ZhaoB. WeiD. LongQ. ChenQ. WangF. ChenL. LiZ. LiT. MaT. LiuW. WangL. YangC. ZhangX. WangP. ZhangZ. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer’s disease models and therapeutic potential of Dengzhan Shengmai capsules intervention.J. Pharm. Anal.202414334837010.1016/j.jpha.2023.10.00638618251
    [Google Scholar]
  28. ZhangH. HanY. ZhangL. JiaX. NiuQ. The GSK-3β/β-catenin signaling–mediated brain–derived neurotrophic factor pathway is involved in aluminum-induced impairment of hippocampal LTP in vivo.Biol. Trace Elem. Res.2021199124635464510.1007/s12011‑021‑02582‑933462795
    [Google Scholar]
  29. ChiuD.N. CarterB.C. Synaptic NMDA receptor activity at resting membrane potentials.Front. Cell. Neurosci.20221691662610.3389/fncel.2022.916626
    [Google Scholar]
  30. SahaR. FaramarziS. BloomR.P. BenallyO.J. WuK. di GirolamoA. ToniniD. KeirsteadS.A. LowW.C. NetoffT.I. WangJ.P. Strength-frequency curve for micromagnetic neurostimulation through excitatory postsynaptic potentials (EPSPs) on rat hippocampal neurons and numerical modeling of magnetic microcoil (μcoil).J. Neural Eng.202219101601810.1088/1741‑2552/ac4baf35030549
    [Google Scholar]
  31. LianW. WangZ. ZhouF. YuanX. XiaC. WangW. YanY. ChengY. YangH. XuJ. HeJ. ZhangW. Cornuside ameliorates cognitive impairments via RAGE/TXNIP/NF-κB signaling in Aβ1-42 induced Alzheimer’s disease mice.J. Neuroimmune Pharmacol.20241912410.1007/s11481‑024‑10120‑238780885
    [Google Scholar]
  32. QianW. YuanL. ZhugeW. GuL. ChenY. ZhugeQ. NiH. LvX. Regulating Lars2 in mitochondria: A potential Alzheimer’s therapy by inhibiting tau phosphorylation.Neurotherapeutics20242140035310.1016/j.neurot.2024.e0035338575503
    [Google Scholar]
  33. ZhuL. HouX. CheX. ZhouT. LiuX. WuC. YangJ. Pseudoginsenoside-F11 attenuates cognitive dysfunction and tau phosphorylation in sporadic Alzheimer’s disease rat model.Acta Pharmacol. Sin.20214291401140810.1038/s41401‑020‑00562‑833277592
    [Google Scholar]
  34. YangS. XieZ. PeiT. ZengY. XiongQ. WeiH. WangY. ChengW. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer’s disease mice and glutamate-injured HT22 cells.Chin. Med.20221718210.1186/s13020‑022‑00634‑335787281
    [Google Scholar]
  35. PentkowskiN.S. Rogge-ObandoK.K. DonaldsonT.N. BouquinS.J. ClarkB.J. Anxiety and Alzheimer’s disease: Behavioral analysis and neural basis in rodent models of Alzheimer’s-related neuropathology.Neurosci. Biobehav. Rev.202112764765810.1016/j.neubiorev.2021.05.00533979573
    [Google Scholar]
  36. DangY. HeQ. YangS. SunH. LiuY. LiW. TangY. ZhengY. WuT. FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer’s disease: Evidence from single-cell transcriptomic analysis.Pharmaceuticals20221510117710.3390/ph1510117736297287
    [Google Scholar]
  37. GaoJ. ZhangX. ShuG. ChenN. ZhangJ. XuF. LiF. LiuY. WeiY. HeY. ShiJ. GongQ. Trilobatin rescues cognitive impairment of Alzheimer’s disease by targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway.Acta Pharmacol. Sin.202243102482249410.1038/s41401‑022‑00888‑535292770
    [Google Scholar]
  38. LouS. GongD. YangM. QiuQ. LuoJ. ChenT. Curcumin improves neurogenesis in Alzheimer’s disease mice via the upregulation of Wnt/β-catenin and BDNF.Int. J. Mol. Sci.20242510512310.3390/ijms2510512338791161
    [Google Scholar]
  39. MifflinM.A. WinslowW. SurendraL. TallinoS. VuralA. VelazquezR. Sex differences in the intellicage and the morris water maze in the app/ps1 mouse model of amyloidosis.Neurobiol. Aging202110113014010.1016/j.neurobiolaging.2021.01.01833610962
    [Google Scholar]
  40. SreelathaI. ChoiG.Y. LeeI.S. InturuO. LeeH.S. ParkY.N. LeeC.W. YangI. MaengS. ParkJ.H. Neuroprotective properties of rutin hydrate against scopolamine-induced deficits in BDNF/TrkB/ERK/CREB/Bcl2 pathways.Neurol. Int.20241651094111110.3390/neurolint1605008239452684
    [Google Scholar]
  41. XingZ. ZhaoC. WuS. YangD. ZhangC. WeiX. WeiX. SuH. LiuH. FanY. Hydrogel loaded with VEGF/TFEB-engineered extracellular vesicles for rescuing critical limb ischemia by a dual-pathway activation strategy.Adv. Healthc. Mater.2022115210033410.1002/adhm.20210033434297471
    [Google Scholar]
  42. XingZ. ZhangX. ZhaoC. ZhangL. QianS. ChuY. YangW. WangY. XiaJ. WangJ. Microenvironment-responsive recombinant collagen XVII-based composite microneedles for the treatment of androgenetic alopecia.Acta Biomater.20251510.1016/j.actbio.2025.05.039
    [Google Scholar]
  43. LiuY. TanY. ZhangZ. YiM. ZhuL. PengW. The interaction between ageing and Alzheimer’s disease: Insights from the hallmarks of ageing.Transl. Neurodegener.2024131710.1186/s40035‑024‑00397‑x38254235
    [Google Scholar]
  44. BhuiyanP. ZhangW. LiangG. JiangB. VeraR. ChaeR. KimK. LouisL.S. WangY. LiuJ. ChuangD.M. WeiH. Intranasal delivery of lithium salt suppresses inflammatory pyroptosis in the brain and ameliorates memory loss and depression-like behavior in 5xfad mice.J. Neuroimmune Pharmacol.20252012610.1007/s11481‑025‑10185‑740095208
    [Google Scholar]
  45. ZhangW. DingF. RongX. RenQ. HasegawaT. LiuH. LiM. Aβ -induced excessive mitochondrial fission drives type H blood vessels injury to aggravate bone loss in APP/PS1 mice with Alzheimer’s diseases.Aging Cell20252421437410.1111/acel.1437439411913
    [Google Scholar]
  46. XuQ.Q. SuZ.R. YangW. ZhongM. XianY.F. LinZ.X. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer’s disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway.J. Neuroinflammation20232011910.1186/s12974‑023‑02704‑136717922
    [Google Scholar]
  47. ZhengK. HuF. ZhouY. ZhangJ. ZhengJ. LaiC. XiongW. CuiK. HuY.Z. HanZ.T. ZhangH.H. ChenJ.G. ManH.Y. LiuD. LuY. ZhuL.Q. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease.Nat. Commun.2021121190310.1038/s41467‑021‑22196‑y33771994
    [Google Scholar]
  48. RostagnoA.A. Pathogenesis of Alzheimer’s Disease.Int. J. Mol. Sci.202224110736613544
    [Google Scholar]
  49. NaomiR. EmbongH. OthmanF. GhaziH.F. MarutheyN. BahariH. Probiotics for Alzheimer’s disease: A systematic review.Nutrients20211412035010895
    [Google Scholar]
  50. Se ThoeE. FauziA. TangY.Q. ChamyuangS. ChiaA.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease.Life Sci.202127611912910.1016/j.lfs.2021.11912933515559
    [Google Scholar]
  51. XiaoL. YangX. SharmaV.K. AbebeD. LohY.P. Hippocampal delivery of neurotrophic factor-α1/carboxypeptidase E gene prevents neurodegeneration, amyloidosis, memory loss in Alzheimer’s Disease male mice.Mol. Psychiatry20232883332334210.1038/s41380‑023‑02135‑737369719
    [Google Scholar]
  52. RajasethupathyP. SankaranS. MarshelJ.H. KimC.K. FerencziE. LeeS.Y. BerndtA. RamakrishnanC. JaffeA. LoM. ListonC. DeisserothK. Projections from neocortex mediate top-down control of memory retrieval.Nature2015526757565365910.1038/nature1538926436451
    [Google Scholar]
  53. SuW. WangY. ShaoS. YeX. Crocin ameliorates neuroinflammation and cognitive impairment in mice with Alzheimer’s disease by activating PI3K/AKT pathway.Brain Behav.2024145350310.1002/brb3.350338775292
    [Google Scholar]
  54. CastellanoJ.M. MosherK.I. AbbeyR.J. McBrideA.A. JamesM.L. BerdnikD. ShenJ.C. ZouB. XieX.S. TingleM. HinksonI.V. AngstM.S. Wyss-CorayT. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice.Nature2017544765148849210.1038/nature2206728424512
    [Google Scholar]
  55. HayashiY. Molecular mechanism of hippocampal long-term potentiation – Towards multiscale understanding of learning and memory.Neurosci. Res.202217531510.1016/j.neures.2021.08.00134375719
    [Google Scholar]
  56. RamponM. CarponcyJ. MissaireM. BouetR. ParmentierR. ComteJ.C. MalleretG. SalinP.A. Synapse-specific modulation of synaptic responses by brain states in hippocampal pathways.J. Neurosci.20234371191121010.1523/JNEUROSCI.0772‑22.202236631268
    [Google Scholar]
  57. SüdhofT.C. Cerebellin–neurexin complexes instructing synapse properties.Curr. Opin. Neurobiol.20238110272710.1016/j.conb.2023.10272737209532
    [Google Scholar]
  58. KangH. SchumanE.M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus.Science199526752041658166210.1126/science.78864577886457
    [Google Scholar]
  59. LeeS.H. BolshakovV.Y. ShenJ. Presenilins regulate synaptic plasticity in the perforant pathways of the hippocampus.Mol. Brain20231611710.1186/s13041‑023‑01009‑x36710361
    [Google Scholar]
  60. KimY. KimS. HoW.K. LeeS.H. Burst firing is required for induction of Hebbian LTP at lateral perforant path to hippocampal granule cell synapses.Mol. Brain20231614510.1186/s13041‑023‑01034‑w37217996
    [Google Scholar]
  61. GannonO.J. RobisonL.S. SalineroA.E. Abi-GhanemC. MansourF.M. KellyR.D. TyagiA. BrawleyR.R. OggJ.D. ZuloagaK.L. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer’s disease and mixed dementia in a sex-dependent manner.J. Neuroinflammation202219111010.1186/s12974‑022‑02466‑235568928
    [Google Scholar]
  62. JoK.W. LeeD. ChaD.G. OhE. ChoiY.H. KimS. ParkE.S. KimJ.K. KimK.T. Gossypetin ameliorates 5xFAD spatial learning and memory through enhanced phagocytosis against Aβ.Alzheimers Res. Ther.202214115810.1186/s13195‑022‑01096‑336271414
    [Google Scholar]
  63. WangD. LiX. LiW. DuongT. WangH. KleschevnikovaN. PatelH.H. BreenE. PowellS. WangS. HeadB.P. Nicotine inhalant via E-cigarette facilitates sensorimotor function recovery by upregulating neuronal BDNF–TrkB signalling in traumatic brain injury.Br. J. Pharmacol.2024181173082309710.1111/bph.1639538698493
    [Google Scholar]
  64. CaoY. LiuB. XuW. WangL. ShiF. LiN. LeiY. WangJ. TianQ. ZhouX. Inhibition of mTORC1 improves STZ-induced AD-like impairments in mice.Brain Res. Bull.202016216617910.1016/j.brainresbull.2020.06.00232599128
    [Google Scholar]
  65. Gayger-DiasV. MenezesL. Da SilvaV.F. StiborskiA. SilvaA.C.R. SobottkaT.M. Quines-SilvaV.C. Pakulski-SoutoB. BoberminL.D. Quincozes-SantosA. LeiteM.C. GonçalvesC.A. Changes in astroglial water flow in the pre-amyloid phase of the STZ model of AD dementia.Neurochem. Res.20244971851186210.1007/s11064‑024‑04144‑638733521
    [Google Scholar]
  66. IsaevN.K. GenrikhsE.E. VoronkovD.N. KapkaevaM.R. StelmashookE.V. Streptozotocin toxicity in vitro depends on maturity of neurons.Toxicol. Appl. Pharmacol.20183489910410.1016/j.taap.2018.04.02429684395
    [Google Scholar]
  67. YangW. LiuY. XuQ-Q. XianY-F. LinZ-X. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the pi3k/akt/gsk-3β pathway in experimental models of Alzheimer’s disease.Oxid. Med. Cell. Longev.202020201475419532963694
    [Google Scholar]
  68. AgrawalR. TyagiE. ShuklaR. NathC. Insulin receptor signaling in rat hippocampus: A study in STZ (ICV) induced memory deficit model.Eur. Neuropsychopharmacol.201121326127310.1016/j.euroneuro.2010.11.00921195590
    [Google Scholar]
  69. KosarajuJ. MadhunapantulaS.V. ChinniS. KhatwalR.B. DubalaA. Muthureddy NatarajS.K. BasavanD. Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer’s disease.Behav. Brain Res.2014267556510.1016/j.bbr.2014.03.02624667360
    [Google Scholar]
  70. JastrzębskiM.K. WójcikP. StępnickiP. KaczorA.A. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation.Acta Pharm. Sin. B2024141203710.1016/j.apsb.2023.10.00738239239
    [Google Scholar]
  71. ChenC. LiX.H. TuY. SunH.T. LiangH.Q. ChengS.X. ZhangS. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway.Neuroscience201425711010.1016/j.neuroscience.2013.10.05624188791
    [Google Scholar]
  72. LaurettiE. DincerO. PraticòD. Glycogen synthase kinase-3 signaling in Alzheimer's disease.Biochim. Biophys. Acta Mol. Cell Res.20201867511866410.1016/j.bbamcr.2020.118664
    [Google Scholar]
  73. GaoD. LiP. GaoF. FengY. LiX. LiD. LiY. XiaoY. Preparation and multitarget anti-ad activity study of chondroitin sulfate lithium in ad mice induced by combination of D-Gal/AlCl3.Oxid. Med. Cell. Longev.202220221946616610.1155/2022/946616636411758
    [Google Scholar]
  74. WhitleyK.C. HamstraS.I. BaranowskiR.W. WatsonC.J.F. MacPhersonR.E.K. MacNeilA.J. RoyB.D. VandenboomR. FajardoV.A. GSK3 inhibition with low dose lithium supplementation augments murine muscle fatigue resistance and specific force production.Physiol. Rep.20208141451710.14814/phy2.1451732729236
    [Google Scholar]
/content/journals/car/10.2174/0115672050399032250715043316
Loading
/content/journals/car/10.2174/0115672050399032250715043316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test