Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. The etiology of AD is complex and multifactorial, with contributions from genetic, lifestyle, and environmental factors. Recent advances in genetics, epigenetics, and animal models have shed light on the underlying mechanisms of brain aging and the development of AD, revealing potential targets for therapeutic intervention. In this comprehensive review, we examine the current understanding of the genetic, lifestyle, and epigenetic factors that shape the landscape of brain aging and AD. We discuss recent findings in the field of AD genetics, including the role of the APOE gene, and the potential of novel genome-wide association studies to identify new genetic risk factors. We also review the impact of lifestyle factors, such as diet, exercise, and social engagement, on brain aging and AD, and explore the role of epigenetic mechanisms, such as DNA methylation and histone modifications, in shaping AD risk.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050393583250718145103
2025-08-01
2026-02-03
Loading full text...

Full text loading...

References

  1. ZhangX.X. TianY. WangZ.T. MaY.H. TanL. YuJ.T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention.J. Prev. Alzheimers Dis.20218331332110.14283/jpad.2021.1534101789
    [Google Scholar]
  2. A ArmstrongR. Risk factors for Alzheimer’s disease.Folia Neuropathol.20195728710510.5114/fn.2019.8592931556570
    [Google Scholar]
  3. Serrano-PozoA. DasS. HymanB.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches.Lancet Neurol.2021201688010.1016/S1474‑4422(20)30412‑933340485
    [Google Scholar]
  4. JiangT. YuJ.T. TianY. TanL. Epidemiology and etiology of Alzheimer’s disease: From genetic to non-genetic factors.Curr. Alzheimer Res.201310885286710.2174/1567205011310999015523919770
    [Google Scholar]
  5. PanG. KingA. WuF. Simpson-YapS. WoodhouseA. PhippsA. VickersJ.C. The potential roles of genetic factors in predicting ageing-related cognitive change and Alzheimer’s disease.Ageing Res. Rev.20217010140210.1016/j.arr.2021.10140234242808
    [Google Scholar]
  6. De PlanoL.M. SaittaA. OddoS. CaccamoA. Epigenetic changes in Alzheimer’s disease: DNA methylation and histone modification.Cells202413871910.3390/cells1308071938667333
    [Google Scholar]
  7. MiglioreL. CoppedèF. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases.Mutat. Res.20096671-2829710.1016/j.mrfmmm.2008.10.01119026668
    [Google Scholar]
  8. NakaiT. YamadaK. MizoguchiH. Alzheimer’s disease animal models: Elucidation of biomarkers and therapeutic approaches for cognitive impairment.Int. J. Mol. Sci.20212211554910.3390/ijms2211554934074018
    [Google Scholar]
  9. BellenguezC. Grenier-BoleyB. LambertJ.C. Genetics of Alzheimer’s disease: Where we are, and where we are going.Curr. Opin. Neurobiol.202061404810.1016/j.conb.2019.11.02431863938
    [Google Scholar]
  10. Stevenson-HoareJ. HeslegraveA. LeonenkoG. FathallaD. BellouE. LuckcuckL. MarshallR. SimsR. MorganB.P. HardyJ. de StrooperB. WilliamsJ. ZetterbergH. Escott-PriceV. Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer’s disease.Brain2023146269069910.1093/brain/awac12835383826
    [Google Scholar]
  11. GalJ. KatsumataY. ZhuH. SrinivasanS. ChenJ. JohnsonL.A. WangW.X. GoldenL.R. WilcockD.M. JichaG.A. CykowskiM.D. NelsonP.T. Apolipoprotein E proteinopathy is a major dementia-associated pathologic biomarker in individuals with or without the APOE epsilon 4 Allele.Am. J. Pathol.2022192356457810.1016/j.ajpath.2021.11.01334954207
    [Google Scholar]
  12. QianJ. BetenskyR.A. HymanB.T. Serrano-PozoA. Association of APOE genotype with heterogeneity of cognitive decline rate in Alzheimer disease.Neurology20219619e2414e242810.1212/WNL.000000000001188333771840
    [Google Scholar]
  13. SantosL.R. AlmeidaJ.F.F. PimassoniL.H.S. MorelatoR.L. PaulaF. The combined risk effect among BIN1, CLU, and APOE genes in Alzheimer’s disease.Genet. Mol. Biol.2020431e2018032010.1590/1678‑4685‑gmb‑2018‑032031469155
    [Google Scholar]
  14. Abd ElrahmanH.G. RamadanA. SalehE.M. SalehA.A. SabryN.A. MohamedM.R. Association study of polymorphisms in ABCA7, clusterin, and MS4A6A genes with Alzheimer’s disease in the egyptian population.Turk Biyokim. Derg.202045675776510.1515/tjb‑2020‑0135
    [Google Scholar]
  15. HamiltonL.K. Moquin-BeaudryG. MangahasC.L. PratesiF. AubinM. AumontA. JoppéS.E. LégiotA. VachonA. PlourdeM. MounierC. TétreaultM. FernandesK.J.L. Stearoyl-CoA desaturase inhibition reverses immune, synaptic and cognitive impairments in an Alzheimer’s disease mouse model.Nat. Commun.2022131206110.1038/s41467‑022‑29506‑y35443751
    [Google Scholar]
  16. Bello-MedinaP.C. González-FrancoD.A. Vargas-RodríguezI. Díaz-CintraS. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease.Neurología20223768269010.1016/j.nrl.2019.06.002
    [Google Scholar]
  17. ChandyT. Intervention of next-generation sequencing in diagnosis of Alzheimer’s disease: Challenges and future prospects.Dement. Neuropsychol.202317e2022002510.1590/1980‑5764‑dn‑2022‑002537577182
    [Google Scholar]
  18. ShademanB. Biray AvciC. NikanfarM. NourazarianA. Application of next-generation sequencing in neurodegenerative diseases: Opportunities and challenges.Neuromolecular Med.202123222523510.1007/s12017‑020‑08601‑732399804
    [Google Scholar]
  19. ShigemizuD. AsanomiY. AkiyamaS. MitsumoriR. NiidaS. OzakiK. Whole-genome sequencing reveals novel ethnicity-specific rare variants associated with Alzheimer’s disease.Mol. Psychiatry20222752554256210.1038/s41380‑022‑01483‑035264725
    [Google Scholar]
  20. ClarkK. LeungY.Y. LeeW.P. VoightB. WangL.S. Polygenic risk scores in Alzheimer’s disease genetics: Methodology, applications, inclusion, and diversity.J. Alzheimers Dis.202289111210.3233/JAD‑22002535848019
    [Google Scholar]
  21. BakerE. Escott-PriceV. Polygenic risk scores in Alzheimer’s disease: Current applications and future directions.Front. Digit. Health202021410.3389/fdgth.2020.0001434713027
    [Google Scholar]
  22. RubinskiA. FrerichS. MalikR. FranzmeierN. RamirezA. DichgansM. EwersM. Polygenic effect on tau pathology progression in Alzheimer’s disease.Ann. Neurol.202393481982910.1002/ana.2658836571564
    [Google Scholar]
  23. ChackoL. ChaudharyA. SinghB. DewanjeeS. KandimallaR. CRISPR-Cas9 in Alzheimer’s disease: Therapeutic trends, modalities, and challenges.Drug Discov. Today202328810365210.1016/j.drudis.2023.10365237290639
    [Google Scholar]
  24. MichaelsonD.M. APOE ε4: The most prevalent yet understudied risk factor for Alzheimer’s disease.Alzheimers Dement.201410686186810.1016/j.jalz.2014.06.01525217293
    [Google Scholar]
  25. CacciagliaR. MolinuevoJ.L. FalcónC. Brugulat-SerratA. Sánchez-BenavidesG. GramuntN. EstellerM. MoránS. MinguillónC. FauriaK. GispertJ.D. Effects of APOE -ε4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer’s disease.Alzheimers Dement.201814790291210.1016/j.jalz.2018.01.01629605385
    [Google Scholar]
  26. TeterB. CampagnaJ. ZhuC. McCauleyG.E. SpilmanP. KohnD.B. Successful gene editing of apolipoprotein E4 to E3 in brain of Alzheimer model mice after a single IV dose of synthetic exosome-delivered CRISPR.bioRxiv2024.04202410.1101/2024.04.23.590784
    [Google Scholar]
  27. CuyversE. SleegersK. Genetic variations underlying Alzheimer’s disease: Evidence from genome-wide association studies and beyond.Lancet Neurol.201615885786810.1016/S1474‑4422(16)00127‑727302364
    [Google Scholar]
  28. Escott-PriceV. HardyJ. Genome-wide association studies for Alzheimer’s disease: Bigger is not always better.Brain Commun.202243fcac12510.1093/braincomms/fcac12535663382
    [Google Scholar]
  29. KambohM.I. DemirciF.Y. WangX. MinsterR.L. CarrasquilloM.M. PankratzV.S. YounkinS.G. SaykinA.J. JunG. BaldwinC. LogueM.W. BurosJ. FarrerL. Pericak-VanceM.A. HainesJ.L. SweetR.A. GanguliM. FeingoldE. DeKoskyS.T. LopezO.L. BarmadaM.M. Genome-wide association study of Alzheimer’s disease.Transl. Psychiatry201225e11710.1038/tp.2012.4522832961
    [Google Scholar]
  30. ShenL. JiaJ. An overview of genome-wide association studies in Alzheimer’s disease.Neurosci. Bull.201632218319010.1007/s12264‑016‑0011‑326810783
    [Google Scholar]
  31. AroraS. SantiagoJ.A. BernsteinM. PotashkinJ.A. Diet and lifestyle impact the development and progression of Alzheimer’s dementia.Front Nutr.202310121322310.3389/fnut.2023.121322337457976
    [Google Scholar]
  32. KhemkaS. ReddyA. GarciaR.I. JacobsM. ReddyR.P. RoghaniA.K. PattoorV. BasuT. SeharU. ReddyP.H. Role of diet and exercise in aging, Alzheimer’s disease, and other chronic diseases.Ageing Res. Rev.20239110209110.1016/j.arr.2023.10209137832608
    [Google Scholar]
  33. EverlyJ. PlummerJ. LohmanM. Neils-StrunjasJ. A tutorial for speech-language pathologists: Physical activity and social engagement to prevent or slow cognitive decline in older adults.Am. J. Speech Lang. Pathol.2023321839510.1044/2022_AJSLP‑22‑0003536450149
    [Google Scholar]
  34. BallariniT. Melo van LentD. BrunnerJ. SchröderA. WolfsgruberS. AltensteinS. BrosseronF. BuergerK. DechentP. DobischL. DüzelE. Ertl-WagnerB. FliessbachK. FreieslebenS.D. FrommannI. GlanzW. HauserD. HaynesJ.D. HenekaM.T. JanowitzD. KilimannI. LaskeC. MaierF. MetzgerC.D. MunkM.H. PerneczkyR. PetersO. PrillerJ. RamirezA. RauchmannB.S. RoyN. SchefflerK. SchneiderA. SpottkeA. SpruthE.J. TeipelS.J. VukovichR. WiltfangJ. JessenF. WagnerM. DELCODE study group Mediterranean diet, Alzheimer disease biomarkers, and brain atrophy in old age.Neurology20219624e2920e293210.1212/WNL.000000000001206733952652
    [Google Scholar]
  35. Guasch-FerréM. WillettW.C. The mediterranean diet and health: A comprehensive overview.J. Intern. Med.2021290354956610.1111/joim.1333334423871
    [Google Scholar]
  36. YuF. VockD.M. ZhangL. SalisburyD. NelsonN.W. ChowL.S. SmithG. BarclayT.R. DyskenM. WymanJ.F. Cognitive effects of aerobic exercise in Alzheimer’s disease: A pilot randomized controlled trial.J. Alzheimers Dis.202180123324410.3233/JAD‑20110033523004
    [Google Scholar]
  37. Zimand SheinerD. KolO. LevyS. It makes a difference! Impact of social and personal message appeals on engagement with sponsored posts.J. Res. Interact. Mark.202115464166010.1108/JRIM‑12‑2019‑0210
    [Google Scholar]
  38. XygkouA. AngC.S. SiriarayaP. KopeckiJ.P. CovaciA. KanjoE. MindTalker: Navigating the Complexities of AI-Enhanced social engagement for people with early-stage dementia.Proceedings of the CHI Conference on Human Factors in Computing Systems2024 May 11 (pp. 1-15)10.1145/3613904.3642538
    [Google Scholar]
  39. ZhengD. YuanX. MaC. LiuY. VanEveryH. SunY. WuS. GaoX. Alcohol consumption and sleep quality: A community-based study.Public Health Nutr.202124154851485810.1017/S136898002000455333183388
    [Google Scholar]
  40. DuC. ZanM.C.H. ChoM.J. FentonJ.I. HsiaoP.Y. HsiaoR. KeaverL. LaiC.C. LeeH. LudyM.J. ShenW. SweeW.C.S. ThrivikramanJ. TsengK.W. TsengW.C. DoakS. FolkS.Y.L. TuckerR.M. The effects of sleep quality and resilience on perceived stress, dietary behaviors, and alcohol misuse: a mediation-moderation analysis of higher education students from Asia, Europe, and North America during the COVID-19 pandemic.Nutrients202113244210.3390/nu1302044233572863
    [Google Scholar]
  41. SunY.Y. WangZ. ZhouH.Y. HuangH.C. Sleep–wake disorders in Alzheimer’s disease: A review.ACS Chem. Neurosci.202213101467147810.1021/acschemneuro.2c0009735507669
    [Google Scholar]
  42. JuszczykG. MikulskaJ. KasperekK. PietrzakD. MrozekW. HerbetM. Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment.Antioxidants2021109143910.3390/antiox1009143934573069
    [Google Scholar]
  43. MachadoA. HerreraA.J. de PablosR.M. Espinosa-OlivaA.M. SarmientoM. AyalaA. VeneroJ.L. SantiagoM. VillaránR.F. Delgado-CortésM.J. ArgüellesS. CanoJ. Chronic stress as a risk factor for Alzheimer’s disease.Rev. Neurosci.201425678580410.1515/revneuro‑2014‑003525178904
    [Google Scholar]
  44. BishtK. SharmaK. TremblayM.È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress.Neurobiol. Stress2018992110.1016/j.ynstr.2018.05.00329992181
    [Google Scholar]
  45. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement. (N. Y.)20184157559010.1016/j.trci.2018.06.01430406177
    [Google Scholar]
  46. McGrattanA.M. McGuinnessB. McKinleyM.C. KeeF. PassmoreP. WoodsideJ.V. McEvoyC.T. Diet and inflammation in cognitive ageing and Alzheimer’s disease.Curr. Nutr. Rep.201982536510.1007/s13668‑019‑0271‑430949921
    [Google Scholar]
  47. KaddoumiA. DenneyT.S.Jr DeshpandeG. RobinsonJ.L. BeyersR.J. ReddenD.T. PraticòD. KyriakidesT.C. LuB. KirbyA.N. BeckD.T. MernerN.D. Extra-virgin olive oil enhances the blood–brain barrier function in mild cognitive impairment: A randomized controlled trial.Nutrients20221423510210.3390/nu1423510236501136
    [Google Scholar]
  48. XieY. YanL. ZengH. ChenW. LuJ.H. WanJ.B. SuH. YaoX. Fish oil protects the blood–brain barrier integrity in a mouse model of Alzheimer’s disease.Chin. Med.20201512910.1186/s13020‑020‑00314‑032256685
    [Google Scholar]
  49. NaS.Y. JanakiramanM. LeliavskiA. KrishnamoorthyG. High-salt diet suppresses autoimmune demyelination by regulating the blood–brain barrier permeability.Proc. Natl. Acad. Sci. USA202111812e202594411810.1073/pnas.202594411833723078
    [Google Scholar]
  50. TeymooriF. FarhadnejadH. MoslehiN. MirmiranP. MokhtariE. AziziF. The association of dietary insulin and glycemic indices with the risk of type 2 diabetes.Clin. Nutr.20214042138214410.1016/j.clnu.2020.09.03833092900
    [Google Scholar]
  51. CuiY. TangT.Y. LuC.Q. JuS. Insulin resistance and cognitive impairment: Evidence from neuroimaging.J. Magn. Reson. Imaging20225661621164910.1002/jmri.2835835852470
    [Google Scholar]
  52. PiconeP. Di CarloM. NuzzoD. Obesity and Alzheimer’s disease: Molecular bases.Eur. J. Neurosci.20205283944395010.1111/ejn.1475832323378
    [Google Scholar]
  53. KhanM.S.H. HegdeV. Obesity and diabetes mediated chronic inflammation: A potential biomarker in Alzheimer’s disease.J. Pers. Med.20201024210.3390/jpm1002004232455946
    [Google Scholar]
  54. WeiB.Z. LiL. DongC.W. TanC.C. XuW. The relationship of omega-3 fatty acids with dementia and cognitive decline: Evidence from prospective cohort studies of supplementation, dietary intake, and blood markers.Am. J. Clin. Nutr.202311761096110910.1016/j.ajcnut.2023.04.00137028557
    [Google Scholar]
  55. ShengL.T. JiangY.W. PanX.F. FengL. YuanJ.M. PanA. KohW.P. Association between dietary intakes of B vitamins in midlife and cognitive impairment in late-life: The singapore chinese health study.J. Gerontol. A Biol. Sci. Med. Sci.20207561222122710.1093/gerona/glz12531094422
    [Google Scholar]
  56. PritamP. DekaR. BhardwajA. SrivastavaR. KumarD. JhaA.K. JhaN.K. VillaC. JhaS.K. Antioxidants in Alzheimer’s disease: Current therapeutic significance and future prospects.Biology202211221210.3390/biology1102021235205079
    [Google Scholar]
  57. ZhuL. LiL. WangL. JinX. ZhangH. Physical activity for executive function and activities of daily living in AD patients: A systematic review and meta-analysis.Front. Psychol.20201156046110.3389/fpsyg.2020.56046133343442
    [Google Scholar]
  58. HoffmannC.M. PetrovM.E. LeeR.E. Aerobic physical activity to improve memory and executive function in sedentary adults without cognitive impairment: A systematic review and meta-analysis.Prev. Med. Rep.20212310149610.1016/j.pmedr.2021.10149634377632
    [Google Scholar]
  59. RibaričS. Physical exercise, a potential non-pharmacological intervention for attenuating neuroinflammation and cognitive decline in Alzheimer’s disease patients.Int. J. Mol. Sci.2022236324510.3390/ijms2306324535328666
    [Google Scholar]
  60. WangM. ZhangH. LiangJ. HuangJ. ChenN. Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease.J. Neuroinflammation20232017610.1186/s12974‑023‑02753‑636935511
    [Google Scholar]
  61. LiuW. ZhangJ. WangY. LiJ. ChangJ. JiaQ. Effect of physical exercise on cognitive function of Alzheimer’s disease patients: A systematic review and meta-analysis of randomized controlled trial.Front. Psychiatry20221392712810.3389/fpsyt.2022.92712835782450
    [Google Scholar]
  62. GaitánJ.M. MoonH.Y. StremlauM. DubalD.B. CookD.B. OkonkwoO.C. van PraagH. Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer’s disease.Front. Endocrinol. (Lausanne)20211266018110.3389/fendo.2021.66018134093436
    [Google Scholar]
  63. ChenW.W. ZhangX. HuangW.J. Role of physical exercise in Alzheimer’s disease.Biomed. Rep.20164440340710.3892/br.2016.60727073621
    [Google Scholar]
  64. BiddleK.D. d’Oleire UquillasF. JacobsH.I.L. ZideB. KirnD.R. RentzD.M. JohnsonK.A. SperlingR.A. DonovanN.J. Social engagement and amyloid-β-related cognitive decline in cognitively normal older adults.Am. J. Geriatr. Psychiatry201927111247125610.1016/j.jagp.2019.05.00531248770
    [Google Scholar]
  65. SpositoG. NeriA.L. YassudaM.S. Cognitive performance and engagement in physical, social and intellectual activities in older adults: The Fibra study.Dement. Neuropsychol.20159327027810.1590/1980‑57642015dn9300001029213972
    [Google Scholar]
  66. ZhouS. SongS. JinY. ZhengZ.J. Prospective association between social engagement and cognitive impairment among middle-aged and older adults: evidence from the China Health and Retirement Longitudinal Study.BMJ Open20201011e04093610.1136/bmjopen‑2020‑04093633208332
    [Google Scholar]
  67. PhillipsC. Lifestyle modulators of neuroplasticity: how physical activity, mental engagement, and diet promote cognitive health during aging.Neural Plast.2017201712210.1155/2017/358927128695017
    [Google Scholar]
  68. OpendakM. BrionesB.A. GouldE. Social behavior, hormones and adult neurogenesis.Front. Neuroendocrinol.201641718610.1016/j.yfrne.2016.02.00226996817
    [Google Scholar]
  69. ColonnelloV. PetrocchiN. FarinelliM. OttavianiC. Positive social interactions in a lifespan perspective with a focus on opioidergic and oxytocinergic systems: Implications for neuroprotection.Curr. Neuropharmacol.201715454356110.2174/1570159X1466616081612020927538784
    [Google Scholar]
  70. NucciD. SommarivaA. DegoniL.M. GalloG. MancarellaM. NatarelliF. SavoiaA. CataliniA. FerrantiR. PregliascoF.E. CastaldiS. GianfrediV. Association between mediterranean diet and dementia and Alzheimer disease: A systematic review with meta-analysis.Aging Clin. Exp. Res.20243617710.1007/s40520‑024‑02718‑638519775
    [Google Scholar]
  71. Trabado-FernándezA. García-ColomoA. Cuadrado-SotoE. Peral-SuárezÁ. Salas-GonzálezM.D. Lorenzo-MoraA.M. AparicioA. Delgado-LosadaM.L. Maestú-UnturbeF. López-SobalerA.M. Association of a Dash diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer’s disease.Geroscience20244721747175910.1007/s11357‑024‑01361‑339354239
    [Google Scholar]
  72. BransbyL. BuckleyR.F. RosenichE. FranksK.H. YassiN. MaruffP. PaseM.P. LimY.Y. The relationship between cognitive engagement and better memory in midlife.Alzheimers Dement.2022141e1227810.1002/dad2.1227835155733
    [Google Scholar]
  73. CasagrandeM. ForteG. FavieriF. CorboI. Sleep quality and aging: A systematic review on healthy older people, mild cognitive impairment and Alzheimer’s disease.Int. J. Environ. Res. Public Health20221914845710.3390/ijerph1914845735886309
    [Google Scholar]
  74. MohammadiS. ZandiM. KatajP.D. ZandiL.K. Chronic stress and Alzheimer’s disease.Biotechnol. Appl. Biochem.20226941451145810.1002/bab.221634152660
    [Google Scholar]
  75. XieC. FengY. Alcohol consumption and risk of Alzheimer’s disease: A dose–response meta-analysis.Geriatr. Gerontol. Int.202222427828510.1111/ggi.1435735171516
    [Google Scholar]
  76. DurazzoT.C. MattssonN. WeinerM.W. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms.Alzheimers Dement.2014103SupplS122S14510.1016/j.jalz.2014.04.00924924665
    [Google Scholar]
  77. MehrabadiS. Effects of chronic administration of nickel on memory function, hippocampal neuronal morphology and oxidative stress factors in male adult rats.Arch. Adv. Biosci.2022131810.22037/aab.v13i2.35890
    [Google Scholar]
  78. OlayinkaO. OlayinkaO.O. AlemuB.T. Akpinar-ElciM. GrossbergG.T. Toxic environmental risk factors for Alzheimer’s disease: A systematic review.Aging Med. Healthc201910141710.33879/amh.2019.1727
    [Google Scholar]
  79. YegambaramM. ManivannanB. BeachT. HaldenR. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review.Curr. Alzheimer Res.201512211614610.2174/156720501266615020412171925654508
    [Google Scholar]
  80. MirR.H. SawhneyG. PottooF.H. Mohi-ud-dinR. MadishettiS. JachakS.M. AhmedZ. MasoodiM.H. Role of environmental pollutants in Alzheimer’s disease: A review.Environ. Sci. Pollut. Res. Int.20202736447244474210.1007/s11356‑020‑09964‑x32715424
    [Google Scholar]
  81. Tecalco-CruzA.C. Ramírez-JarquínJ.O. Alvarez-SánchezM.E. Zepeda-CervantesJ. Epigenetic basis of Alzheimer disease.World J. Biol. Chem.2020112627510.4331/wjbc.v11.i2.6233024518
    [Google Scholar]
  82. Nikolac PerkovicM. PaskaA.V. KonjevodM. KouterK. StracD.S. ErjavecG.N. PivacN. Epigenetics of Alzheimer’s disease.Biomolecules202111219510.3390/biom1102019533573255
    [Google Scholar]
  83. PoonC.H. TseL.S.R. LimL.W. DNA methylation in the pathology of Alzheimer’s disease: From gene to cognition.Ann. N. Y. Acad. Sci.202014751153310.1111/nyas.1437332491215
    [Google Scholar]
  84. Castillo-OrdoñezW.O. Cajas-SalazarN. Velasco-ReyesM.A. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer’s agents.Neural Regen. Res.202419484685410.4103/1673‑5374.38223237843220
    [Google Scholar]
  85. VetterV.M. DreweliesJ. SommererY. KaliesC.H. Regitz-ZagrosekV. BertramL. GerstorfD. DemuthI. Epigenetic aging and perceived psychological stress in old age.Transl. Psychiatry202212141010.1038/s41398‑022‑02181‑936163242
    [Google Scholar]
  86. MiglioreL. CoppedèF. Gene–environment interactions in Alzheimer disease: The emerging role of epigenetics.Nat. Rev. Neurol.2022181164366010.1038/s41582‑022‑00714‑w36180553
    [Google Scholar]
  87. LinF.C. ChenC.Y. LinC.W. WuM.T. ChenH.Y. HuangP. Air pollution is associated with cognitive deterioration of Alzheimer’s disease.Gerontology2022681536110.1159/00051516233882496
    [Google Scholar]
  88. AtluriV.S.R. TiwariS. RodriguezM. KaushikA. YndartA. KolishettiN. YathamM. NairM. Inhibition of amyloid-beta production, associated neuroinflammation, and histone deacetylase 2-mediated epigenetic modifications prevent neuropathology in Alzheimer’s disease in vitro model.Front. Aging Neurosci.20201134210.3389/fnagi.2019.0034232009938
    [Google Scholar]
  89. KaurG. RathodS.S.S. GhoneimM.M. AlshehriS. AhmadJ. MishraA. AlhakamyN.A. DNA methylation: A promising approach in management of Alzheimer’s disease and other neurodegenerative disorders.Biology20221119010.3390/biology1101009035053088
    [Google Scholar]
  90. PaniriA. HosseiniM.M. Akhavan-NiakiH. Alzheimer’s disease-related epigenetic changes: Novel therapeutic targets.Mol. Neurobiol.20246131282131710.1007/s12035‑023‑03626‑y37700216
    [Google Scholar]
  91. VillaC. StoccoroA. Epigenetic peripheral biomarkers for early diagnosis of Alzheimer’s disease.Genes2022138130810.3390/genes1308130835893045
    [Google Scholar]
  92. XiaoX. LiuX. JiaoB. Epigenetics: Recent advances and its role in the treatment of Alzheimer’s disease.Front. Neurol.20201153830110.3389/fneur.2020.53830133178099
    [Google Scholar]
  93. WeiX. ZhangL. ZengY. DNA methylation in Alzheimer’s disease: In brain and peripheral blood.Mech. Ageing Dev.202019111131910.1016/j.mad.2020.11131932721406
    [Google Scholar]
  94. ShiZ. ZhangK. ZhouH. JiangL. XieB. WangR. XiaW. YinY. GaoZ. CuiD. ZhangR. XuS. Increased miR-34c mediates synaptic deficits by targeting synaptotagmin 1 through ROS-JNK-p53 pathway in Alzheimer’s Disease.Aging Cell2020193e1312510.1111/acel.1312532092796
    [Google Scholar]
  95. Sae-LeeC. BiasiJ.D. RobinsonN. BarrowT.M. MathersJ.C. KoutsidisG. ByunH.M. DNA methylation patterns of LINE-1 and Alu for pre-symptomatic dementia in type 2 diabetes.PLoS One2020156e023457810.1371/journal.pone.023457832525932
    [Google Scholar]
  96. KoenigsbergS.H. ChangC.J. IshJ. XuZ. KresovichJ.K. LawrenceK.G. KaufmanJ.D. SandlerD.P. TaylorJ.A. WhiteA.J. Air pollution and epigenetic aging among Black and White women in the US.Environ. Int.202318110827010.1016/j.envint.2023.10827037890265
    [Google Scholar]
  97. WoodI.C. The contribution and therapeutic potential of epigenetic modifications in Alzheimer’s disease.Front. Neurosci.20181264910.3389/fnins.2018.0064930283297
    [Google Scholar]
  98. CherblancF. Chapman-RotheN. BrownR. FuchterM.J. Current limitations and future opportunities for epigenetic therapies.Future Med. Chem.20124442544610.4155/fmc.12.722416773
    [Google Scholar]
  99. DawsonM.A. The cancer epigenome: Concepts, challenges, and therapeutic opportunities.Science201735563301147115210.1126/science.aam730428302822
    [Google Scholar]
  100. LiQ. LeiY. ZhangP. LiuY. LuQ. ChangC. Future challenges and prospects for personalized epigenetics.Translational Epigenetics, Personalized Epigenetics (Second Edition).Academic Press TollefsbolT. 202472174410.1016/B978‑0‑443‑23802‑4.00019‑3
    [Google Scholar]
  101. ZhongM.Z. PengT. DuarteM.L. WangM. CaiD. Updates on mouse models of Alzheimer’s disease.Mol. Neurodegener.20241912310.1186/s13024‑024‑00712‑038462606
    [Google Scholar]
  102. B SzaboA. CattaudV. BezzinaC. DardR.F. SayeghF. GauzinS. LejardsC. ValtonL. RamponC. VerretL. DahanL. Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer’s disease - the influence of sleep and noradrenergic transmission.Neurobiol. Aging2023123354810.1016/j.neurobiolaging.2022.11.01736634385
    [Google Scholar]
  103. EvansC.E. MinersJ.S. PivaG. WillisC.L. HeardD.M. KiddE.J. GoodM.A. KehoeP.G. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease.Acta Neuropathol.2020139348550210.1007/s00401‑019‑02098‑631982938
    [Google Scholar]
  104. OddoS. CaccamoA. ShepherdJ.D. MurphyM.P. GoldeT.E. KayedR. MetherateR. MattsonM.P. AkbariY. LaFerlaF.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular abeta and synaptic dysfunction.Neuron200339340942110.1016/S0896‑6273(03)00434‑312895417
    [Google Scholar]
  105. PáduaM.S. Guil-GuerreroJ.L. PratesJ.A.M. LopesP.A. Insights on the use of transgenic mice models in Alzheimer’s disease research.Int. J. Mol. Sci.2024255280510.3390/ijms2505280538474051
    [Google Scholar]
  106. ChoeM.S. YeoH.C. KimJ.S. LeeJ. LeeH.J. KimH.R. BaekK.M. JungN.Y. ChoiM. LeeM.Y. Simple modeling of familial Alzheimer’s disease using human pluripotent stem cell-derived cerebral organoid technology.Stem Cell Res. Ther.202415111810.1186/s13287‑024‑03732‑138659053
    [Google Scholar]
  107. LangelandJ.A. BaumannL. DeYoungE.M. VarellaR.A. MwendaN. AguirreA. MooreD.B. Early animal origin of BACE1 APP/Aβ proteolytic function.Biology202413532010.3390/biology1305032038785802
    [Google Scholar]
  108. OhnoM. A strategy for allowing earlier diagnosis and rigorous evaluation of BACE1 inhibitors in preclinical Alzheimer’s disease.J. Alzheimers Dis.202499243144510.3233/JAD‑23145138701146
    [Google Scholar]
  109. HooijmansC.R. Pasker-de JongP.C.M. de VriesR.B.M. Ritskes-HoitingaM. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: A systematic review and meta-analysis.J. Alzheimers Dis.201228119120910.3233/JAD‑2011‑11121722002791
    [Google Scholar]
  110. García-MesaY. López-RamosJ.C. Giménez-LlortL. RevillaS. GuerraR. GruartA. LaFerlaF.M. CristòfolR. Delgado-GarcíaJ.M. SanfeliuC. Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice.J. Alzheimers Dis.201124342145410.3233/JAD‑2011‑10163521297257
    [Google Scholar]
  111. ParkY.H. ShinS.J. KimH. HongS.B. KimS. NamY. KimJ.J. LimK. KimJ.S. KimJ. JeonS.G. MoonM. Omega-3 fatty acid-type docosahexaenoic acid protects against Aβ-mediated mitochondrial deficits and pathomechanisms in Alzheimer’s disease-related animal model.Int. J. Mol. Sci.20202111387910.3390/ijms2111387932486013
    [Google Scholar]
  112. SinghN. GhoshK.K. Recent advances in the antioxidant therapies for Alzheimer’s disease: Emphasis on natural antioxidants.Pathology, Prevention and Therapeutics of Neurodegenerative Disease.SpringerSingapore SinghS. JoshiN. 201910.1007/978‑981‑13‑0944‑1_22
    [Google Scholar]
  113. JuckerM. The benefits and limitations of animal models for translational research in neurodegenerative diseases.Nat. Med.201016111210121410.1038/nm.222421052075
    [Google Scholar]
  114. LaurijssensB. AujardF. RahmanA. Animal models of Alzheimer’s disease and drug development.Drug Discov. Today. Technol.2013103e319e32710.1016/j.ddtec.2012.04.00124050129
    [Google Scholar]
  115. ZhangL. ChenC. MakM.S.H. LuJ. WuZ. ChenQ. HanY. LiY. PiR. Advance of sporadic Alzheimer’s disease animal models.Med. Res. Rev.202040143145810.1002/med.2162431328804
    [Google Scholar]
  116. CavanaughS.E. PippinJ.J. BarnardN.D. Animal models of Alzheimer disease: Historical pitfalls and a path forward.Altern. Anim. Exp.201431327930224793844
    [Google Scholar]
  117. DrummondE. WisniewskiT. Alzheimer’s disease: Experimental models and reality.Acta Neuropathol.2017133215517510.1007/s00401‑016‑1662‑x28025715
    [Google Scholar]
/content/journals/car/10.2174/0115672050393583250718145103
Loading
/content/journals/car/10.2174/0115672050393583250718145103
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's disease; APOE; dementia; epigenetics; genetics; lifestyle factors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test