Skip to content
2000
image of Exploring the Interconnections of Genetic, Lifestyle, and Epigenetic Influences on Brain Aging: A Comprehensive Review

Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. The etiology of AD is complex and multifactorial, with contributions from genetic, lifestyle, and environmental factors. Recent advances in genetics, epigenetics, and animal models have shed light on the underlying mechanisms of brain aging and the development of AD, revealing potential targets for therapeutic intervention. In this comprehensive review, we examine the current understanding of the genetic, lifestyle, and epigenetic factors that shape the landscape of brain aging and AD. We discuss recent findings in the field of AD genetics, including the role of the APOE gene, and the potential of novel genome-wide association studies to identify new genetic risk factors. We also review the impact of lifestyle factors, such as diet, exercise, and social engagement, on brain aging and AD, and explore the role of epigenetic mechanisms, such as DNA methylation and histone modifications, in shaping AD risk.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050393583250718145103
2025-08-01
2025-09-10
Loading full text...

Full text loading...

References

  1. Zhang X.X. Tian Y. Wang Z.T. Ma Y.H. Tan L. Yu J.T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J. Prev. Alzheimers Dis. 2021 8 3 313 321 10.14283/jpad.2021.15 34101789
    [Google Scholar]
  2. A Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019 57 2 87 105 10.5114/fn.2019.85929 31556570
    [Google Scholar]
  3. Serrano-Pozo A. Das S. Hyman B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 20 1 68 80 10.1016/S1474‑4422(20)30412‑9 33340485
    [Google Scholar]
  4. Jiang T. Yu J.T. Tian Y. Tan L. Epidemiology and etiology of Alzheimer’s disease: From genetic to non-genetic factors. Curr. Alzheimer Res. 2013 10 8 852 867 10.2174/15672050113109990155 23919770
    [Google Scholar]
  5. Pan G. King A. Wu F. Simpson-Yap S. Woodhouse A. Phipps A. Vickers J.C. The potential roles of genetic factors in predicting ageing-related cognitive change and Alzheimer’s disease. Ageing Res. Rev. 2021 70 101402 10.1016/j.arr.2021.101402 34242808
    [Google Scholar]
  6. De Plano L.M. Saitta A. Oddo S. Caccamo A. Epigenetic changes in Alzheimer’s disease: DNA methylation and histone modification. Cells 2024 13 8 719 10.3390/cells13080719 38667333
    [Google Scholar]
  7. Migliore L. Coppedè F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res. 2009 667 1-2 82 97 10.1016/j.mrfmmm.2008.10.011 19026668
    [Google Scholar]
  8. Nakai T. Yamada K. Mizoguchi H. Alzheimer’s disease animal models: Elucidation of biomarkers and therapeutic approaches for cognitive impairment. Int. J. Mol. Sci. 2021 22 11 5549 10.3390/ijms22115549 34074018
    [Google Scholar]
  9. Bellenguez C. Grenier-Boley B. Lambert J.C. Genetics of Alzheimer’s disease: Where we are, and where we are going. Curr. Opin. Neurobiol. 2020 61 40 48 10.1016/j.conb.2019.11.024 31863938
    [Google Scholar]
  10. Stevenson-Hoare J. Heslegrave A. Leonenko G. Fathalla D. Bellou E. Luckcuck L. Marshall R. Sims R. Morgan B.P. Hardy J. de Strooper B. Williams J. Zetterberg H. Escott-Price V. Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer’s disease. Brain 2023 146 2 690 699 10.1093/brain/awac128 35383826
    [Google Scholar]
  11. Gal J. Katsumata Y. Zhu H. Srinivasan S. Chen J. Johnson L.A. Wang W.X. Golden L.R. Wilcock D.M. Jicha G.A. Cykowski M.D. Nelson P.T. Apolipoprotein E proteinopathy is a major dementia-associated pathologic biomarker in individuals with or without the APOE epsilon 4 Allele. Am. J. Pathol. 2022 192 3 564 578 10.1016/j.ajpath.2021.11.013 34954207
    [Google Scholar]
  12. Qian J. Betensky R.A. Hyman B.T. Serrano-Pozo A. Association of APOE genotype with heterogeneity of cognitive decline rate in Alzheimer disease. Neurology 2021 96 19 e2414 e2428 10.1212/WNL.0000000000011883 33771840
    [Google Scholar]
  13. Santos L.R. Almeida J.F.F. Pimassoni L.H.S. Morelato R.L. Paula F. The combined risk effect among BIN1, CLU, and APOE genes in Alzheimer’s disease. Genet. Mol. Biol. 2020 43 1 e20180320 10.1590/1678‑4685‑gmb‑2018‑0320 31469155
    [Google Scholar]
  14. Abd Elrahman H.G. Ramadan A. Saleh E.M. Saleh A.A. Sabry N.A. Mohamed M.R. Association study of polymorphisms in ABCA7, clusterin, and MS4A6A genes with Alzheimer’s disease in the egyptian population. Turk Biyokim. Derg. 2020 45 6 757 765 10.1515/tjb‑2020‑0135
    [Google Scholar]
  15. Hamilton L.K. Moquin-Beaudry G. Mangahas C.L. Pratesi F. Aubin M. Aumont A. Joppé S.E. Légiot A. Vachon A. Plourde M. Mounier C. Tétreault M. Fernandes K.J.L. Stearoyl-CoA desaturase inhibition reverses immune, synaptic and cognitive impairments in an Alzheimer’s disease mouse model. Nat. Commun. 2022 13 1 2061 10.1038/s41467‑022‑29506‑y 35443751
    [Google Scholar]
  16. Bello-Medina P.C. González-Franco D.A. Vargas-Rodríguez I. Díaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurología 2022 37 682 690 10.1016/j.nrl.2019.06.002
    [Google Scholar]
  17. Chandy T. Intervention of next-generation sequencing in diagnosis of Alzheimer’s disease: Challenges and future prospects. Dement. Neuropsychol. 2023 17 e20220025 10.1590/1980‑5764‑dn‑2022‑0025 37577182
    [Google Scholar]
  18. Shademan B. Biray Avci C. Nikanfar M. Nourazarian A. Application of next-generation sequencing in neurodegenerative diseases: Opportunities and challenges. Neuromolecular Med. 2021 23 2 225 235 10.1007/s12017‑020‑08601‑7 32399804
    [Google Scholar]
  19. Shigemizu D. Asanomi Y. Akiyama S. Mitsumori R. Niida S. Ozaki K. Whole-genome sequencing reveals novel ethnicity-specific rare variants associated with Alzheimer’s disease. Mol. Psychiatry 2022 27 5 2554 2562 10.1038/s41380‑022‑01483‑0 35264725
    [Google Scholar]
  20. Clark K. Leung Y.Y. Lee W.P. Voight B. Wang L.S. Polygenic risk scores in Alzheimer’s disease genetics: Methodology, applications, inclusion, and diversity. J. Alzheimers Dis. 2022 89 1 1 12 10.3233/JAD‑220025 35848019
    [Google Scholar]
  21. Baker E. Escott-Price V. Polygenic risk scores in Alzheimer’s disease: Current applications and future directions. Front. Digit. Health 2020 2 14 10.3389/fdgth.2020.00014 34713027
    [Google Scholar]
  22. Rubinski A. Frerich S. Malik R. Franzmeier N. Ramirez A. Dichgans M. Ewers M. Polygenic effect on tau pathology progression in Alzheimer’s disease. Ann. Neurol. 2023 93 4 819 829 10.1002/ana.26588 36571564
    [Google Scholar]
  23. Chacko L. Chaudhary A. Singh B. Dewanjee S. Kandimalla R. CRISPR-Cas9 in Alzheimer’s disease: Therapeutic trends, modalities, and challenges. Drug Discov. Today 2023 28 8 103652 10.1016/j.drudis.2023.103652 37290639
    [Google Scholar]
  24. Michaelson D.M. APOE ε4: The most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. 2014 10 6 861 868 10.1016/j.jalz.2014.06.015 25217293
    [Google Scholar]
  25. Cacciaglia R. Molinuevo J.L. Falcón C. Brugulat-Serrat A. Sánchez-Benavides G. Gramunt N. Esteller M. Morán S. Minguillón C. Fauria K. Gispert J.D. Effects of APOE ‐ε4 allele load on brain morphology in a cohort of middle‐aged healthy individuals with enriched genetic risk for Alzheimer’s disease. Alzheimers Dement. 2018 14 7 902 912 10.1016/j.jalz.2018.01.016 29605385
    [Google Scholar]
  26. Teter B. Campagna J. Zhu C. McCauley G.E. Spilman P. Kohn D.B. Successful gene editing of apolipoprotein E4 to E3 in brain of Alzheimer model mice after a single IV dose of synthetic exosome-delivered CRISPR. bioRxiv 2024.04 2024 10.1101/2024.04.23.590784
    [Google Scholar]
  27. Cuyvers E. Sleegers K. Genetic variations underlying Alzheimer’s disease: Evidence from genome-wide association studies and beyond. Lancet Neurol. 2016 15 8 857 868 10.1016/S1474‑4422(16)00127‑7 27302364
    [Google Scholar]
  28. Escott-Price V. Hardy J. Genome-wide association studies for Alzheimer’s disease: Bigger is not always better. Brain Commun. 2022 4 3 fcac125 10.1093/braincomms/fcac125 35663382
    [Google Scholar]
  29. Kamboh M.I. Demirci F.Y. Wang X. Minster R.L. Carrasquillo M.M. Pankratz V.S. Younkin S.G. Saykin A.J. Jun G. Baldwin C. Logue M.W. Buros J. Farrer L. Pericak-Vance M.A. Haines J.L. Sweet R.A. Ganguli M. Feingold E. DeKosky S.T. Lopez O.L. Barmada M.M. Genome-wide association study of Alzheimer’s disease. Transl. Psychiatry 2012 2 5 e117 10.1038/tp.2012.45 22832961
    [Google Scholar]
  30. Shen L. Jia J. An overview of genome-wide association studies in Alzheimer’s disease. Neurosci. Bull. 2016 32 2 183 190 10.1007/s12264‑016‑0011‑3 26810783
    [Google Scholar]
  31. Arora S. Santiago J.A. Bernstein M. Potashkin J.A. Diet and lifestyle impact the development and progression of Alzheimer’s dementia. Front Nutr. 2023 10 1213223 10.3389/fnut.2023.1213223 37457976
    [Google Scholar]
  32. Khemka S. Reddy A. Garcia R.I. Jacobs M. Reddy R.P. Roghani A.K. Pattoor V. Basu T. Sehar U. Reddy P.H. Role of diet and exercise in aging, Alzheimer’s disease, and other chronic diseases. Ageing Res. Rev. 2023 91 102091 10.1016/j.arr.2023.102091 37832608
    [Google Scholar]
  33. Everly J. Plummer J. Lohman M. Neils-Strunjas J. A tutorial for speech-language pathologists: Physical activity and social engagement to prevent or slow cognitive decline in older adults. Am. J. Speech Lang. Pathol. 2023 32 1 83 95 10.1044/2022_AJSLP‑22‑00035 36450149
    [Google Scholar]
  34. Ballarini T. Melo van Lent D. Brunner J. Schröder A. Wolfsgruber S. Altenstein S. Brosseron F. Buerger K. Dechent P. Dobisch L. Düzel E. Ertl-Wagner B. Fliessbach K. Freiesleben S.D. Frommann I. Glanz W. Hauser D. Haynes J.D. Heneka M.T. Janowitz D. Kilimann I. Laske C. Maier F. Metzger C.D. Munk M.H. Perneczky R. Peters O. Priller J. Ramirez A. Rauchmann B.S. Roy N. Scheffler K. Schneider A. Spottke A. Spruth E.J. Teipel S.J. Vukovich R. Wiltfang J. Jessen F. Wagner M. DELCODE study group Mediterranean diet, Alzheimer disease biomarkers, and brain atrophy in old age. Neurology 2021 96 24 e2920 e2932 10.1212/WNL.0000000000012067 33952652
    [Google Scholar]
  35. Guasch-Ferré M. Willett W.C. The mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021 290 3 549 566 10.1111/joim.13333 34423871
    [Google Scholar]
  36. Yu F. Vock D.M. Zhang L. Salisbury D. Nelson N.W. Chow L.S. Smith G. Barclay T.R. Dysken M. Wyman J.F. Cognitive effects of aerobic exercise in Alzheimer’s disease: A pilot randomized controlled trial. J. Alzheimers Dis. 2021 80 1 233 244 10.3233/JAD‑201100 33523004
    [Google Scholar]
  37. Zimand Sheiner D. Kol O. Levy S. It makes a difference! Impact of social and personal message appeals on engagement with sponsored posts. J. Res. Interact. Mark. 2021 15 4 641 660 10.1108/JRIM‑12‑2019‑0210
    [Google Scholar]
  38. Xygkou A. Ang C.S. Siriaraya P. Kopecki J.P. Covaci A. Kanjo E. MindTalker: Navigating the Complexities of AI-Enhanced social engagement for people with early-stage dementia. Proceedings of the CHI Conference on Human Factors in Computing Systems 2024 May 11 (pp. 1-15) 10.1145/3613904.3642538
    [Google Scholar]
  39. Zheng D. Yuan X. Ma C. Liu Y. VanEvery H. Sun Y. Wu S. Gao X. Alcohol consumption and sleep quality: A community-based study. Public Health Nutr. 2021 24 15 4851 4858 10.1017/S1368980020004553 33183388
    [Google Scholar]
  40. Du C. Zan M.C.H. Cho M.J. Fenton J.I. Hsiao P.Y. Hsiao R. Keaver L. Lai C.C. Lee H. Ludy M.J. Shen W. Swee W.C.S. Thrivikraman J. Tseng K.W. Tseng W.C. Doak S. Folk S.Y.L. Tucker R.M. The effects of sleep quality and resilience on perceived stress, dietary behaviors, and alcohol misuse: a mediation-moderation analysis of higher education students from Asia, Europe, and North America during the COVID-19 pandemic. Nutrients 2021 13 2 442 10.3390/nu13020442 33572863
    [Google Scholar]
  41. Sun Y.Y. Wang Z. Zhou H.Y. Huang H.C. Sleep–wake disorders in Alzheimer’s disease: A review. ACS Chem. Neurosci. 2022 13 10 1467 1478 10.1021/acschemneuro.2c00097 35507669
    [Google Scholar]
  42. Juszczyk G. Mikulska J. Kasperek K. Pietrzak D. Mrozek W. Herbet M. Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants 2021 10 9 1439 10.3390/antiox10091439 34573069
    [Google Scholar]
  43. Machado A. Herrera A.J. de Pablos R.M. Espinosa-Oliva A.M. Sarmiento M. Ayala A. Venero J.L. Santiago M. Villarán R.F. Delgado-Cortés M.J. Argüelles S. Cano J. Chronic stress as a risk factor for Alzheimer’s disease. Rev. Neurosci. 2014 25 6 785 804 10.1515/revneuro‑2014‑0035 25178904
    [Google Scholar]
  44. Bisht K. Sharma K. Tremblay M.È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. Stress 2018 9 9 21 10.1016/j.ynstr.2018.05.003 29992181
    [Google Scholar]
  45. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  46. McGrattan A.M. McGuinness B. McKinley M.C. Kee F. Passmore P. Woodside J.V. McEvoy C.T. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr. Nutr. Rep. 2019 8 2 53 65 10.1007/s13668‑019‑0271‑4 30949921
    [Google Scholar]
  47. Kaddoumi A. Denney T.S. Jr Deshpande G. Robinson J.L. Beyers R.J. Redden D.T. Praticò D. Kyriakides T.C. Lu B. Kirby A.N. Beck D.T. Merner N.D. Extra-virgin olive oil enhances the blood–brain barrier function in mild cognitive impairment: A randomized controlled trial. Nutrients 2022 14 23 5102 10.3390/nu14235102 36501136
    [Google Scholar]
  48. Xie Y. Yan L. Zeng H. Chen W. Lu J.H. Wan J.B. Su H. Yao X. Fish oil protects the blood–brain barrier integrity in a mouse model of Alzheimer’s disease. Chin. Med. 2020 15 1 29 10.1186/s13020‑020‑00314‑0 32256685
    [Google Scholar]
  49. Na S.Y. Janakiraman M. Leliavski A. Krishnamoorthy G. High-salt diet suppresses autoimmune demyelination by regulating the blood–brain barrier permeability. Proc. Natl. Acad. Sci. USA 2021 118 12 e2025944118 10.1073/pnas.2025944118 33723078
    [Google Scholar]
  50. Teymoori F. Farhadnejad H. Moslehi N. Mirmiran P. Mokhtari E. Azizi F. The association of dietary insulin and glycemic indices with the risk of type 2 diabetes. Clin. Nutr. 2021 40 4 2138 2144 10.1016/j.clnu.2020.09.038 33092900
    [Google Scholar]
  51. Cui Y. Tang T.Y. Lu C.Q. Ju S. Insulin resistance and cognitive impairment: Evidence from neuroimaging. J. Magn. Reson. Imaging 2022 56 6 1621 1649 10.1002/jmri.28358 35852470
    [Google Scholar]
  52. Picone P. Di Carlo M. Nuzzo D. Obesity and Alzheimer’s disease: Molecular bases. Eur. J. Neurosci. 2020 52 8 3944 3950 10.1111/ejn.14758 32323378
    [Google Scholar]
  53. Khan M.S.H. Hegde V. Obesity and diabetes mediated chronic inflammation: A potential biomarker in Alzheimer’s disease. J. Pers. Med. 2020 10 2 42 10.3390/jpm10020042 32455946
    [Google Scholar]
  54. Wei B.Z. Li L. Dong C.W. Tan C.C. Xu W. The relationship of omega-3 fatty acids with dementia and cognitive decline: Evidence from prospective cohort studies of supplementation, dietary intake, and blood markers. Am. J. Clin. Nutr. 2023 117 6 1096 1109 10.1016/j.ajcnut.2023.04.001 37028557
    [Google Scholar]
  55. Sheng L.T. Jiang Y.W. Pan X.F. Feng L. Yuan J.M. Pan A. Koh W.P. Association between dietary intakes of B vitamins in midlife and cognitive impairment in late-life: The singapore chinese health study. J. Gerontol. A Biol. Sci. Med. Sci. 2020 75 6 1222 1227 10.1093/gerona/glz125 31094422
    [Google Scholar]
  56. Pritam P. Deka R. Bhardwaj A. Srivastava R. Kumar D. Jha A.K. Jha N.K. Villa C. Jha S.K. Antioxidants in Alzheimer’s disease: Current therapeutic significance and future prospects. Biology 2022 11 2 212 10.3390/biology11020212 35205079
    [Google Scholar]
  57. Zhu L. Li L. Wang L. Jin X. Zhang H. Physical activity for executive function and activities of daily living in AD patients: A systematic review and meta-analysis. Front. Psychol. 2020 11 560461 10.3389/fpsyg.2020.560461 33343442
    [Google Scholar]
  58. Hoffmann C.M. Petrov M.E. Lee R.E. Aerobic physical activity to improve memory and executive function in sedentary adults without cognitive impairment: A systematic review and meta-analysis. Prev. Med. Rep. 2021 23 101496 10.1016/j.pmedr.2021.101496 34377632
    [Google Scholar]
  59. Ribarič S. Physical exercise, a potential non-pharmacological intervention for attenuating neuroinflammation and cognitive decline in Alzheimer’s disease patients. Int. J. Mol. Sci. 2022 23 6 3245 10.3390/ijms23063245 35328666
    [Google Scholar]
  60. Wang M. Zhang H. Liang J. Huang J. Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. J. Neuroinflammation 2023 20 1 76 10.1186/s12974‑023‑02753‑6 36935511
    [Google Scholar]
  61. Liu W. Zhang J. Wang Y. Li J. Chang J. Jia Q. Effect of physical exercise on cognitive function of Alzheimer’s disease patients: A systematic review and meta-analysis of randomized controlled trial. Front. Psychiatry 2022 13 927128 10.3389/fpsyt.2022.927128 35782450
    [Google Scholar]
  62. Gaitán J.M. Moon H.Y. Stremlau M. Dubal D.B. Cook D.B. Okonkwo O.C. van Praag H. Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer’s disease. Front. Endocrinol. (Lausanne) 2021 12 660181 10.3389/fendo.2021.660181 34093436
    [Google Scholar]
  63. Chen W.W. Zhang X. Huang W.J. Role of physical exercise in Alzheimer’s disease. Biomed. Rep. 2016 4 4 403 407 10.3892/br.2016.607 27073621
    [Google Scholar]
  64. Biddle K.D. d’Oleire Uquillas F. Jacobs H.I.L. Zide B. Kirn D.R. Rentz D.M. Johnson K.A. Sperling R.A. Donovan N.J. Social engagement and amyloid-β-related cognitive decline in cognitively normal older adults. Am. J. Geriatr. Psychiatry 2019 27 11 1247 1256 10.1016/j.jagp.2019.05.005 31248770
    [Google Scholar]
  65. Sposito G. Neri A.L. Yassuda M.S. Cognitive performance and engagement in physical, social and intellectual activities in older adults: The Fibra study. Dement. Neuropsychol. 2015 9 3 270 278 10.1590/1980‑57642015dn93000010 29213972
    [Google Scholar]
  66. Zhou S. Song S. Jin Y. Zheng Z.J. Prospective association between social engagement and cognitive impairment among middle-aged and older adults: evidence from the China Health and Retirement Longitudinal Study. BMJ Open 2020 10 11 e040936 10.1136/bmjopen‑2020‑040936 33208332
    [Google Scholar]
  67. Phillips C. Lifestyle modulators of neuroplasticity: how physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plast. 2017 2017 1 22 10.1155/2017/3589271 28695017
    [Google Scholar]
  68. Opendak M. Briones B.A. Gould E. Social behavior, hormones and adult neurogenesis. Front. Neuroendocrinol. 2016 41 71 86 10.1016/j.yfrne.2016.02.002 26996817
    [Google Scholar]
  69. Colonnello V. Petrocchi N. Farinelli M. Ottaviani C. Positive social interactions in a lifespan perspective with a focus on opioidergic and oxytocinergic systems: Implications for neuroprotection. Curr. Neuropharmacol. 2017 15 4 543 561 10.2174/1570159X14666160816120209 27538784
    [Google Scholar]
  70. Nucci D. Sommariva A. Degoni L.M. Gallo G. Mancarella M. Natarelli F. Savoia A. Catalini A. Ferranti R. Pregliasco F.E. Castaldi S. Gianfredi V. Association between mediterranean diet and dementia and Alzheimer disease: A systematic review with meta-analysis. Aging Clin. Exp. Res. 2024 36 1 77 10.1007/s40520‑024‑02718‑6 38519775
    [Google Scholar]
  71. Trabado-Fernández A. García-Colomo A. Cuadrado-Soto E. Peral-Suárez Á. Salas-González M.D. Lorenzo-Mora A.M. Aparicio A. Delgado-Losada M.L. Maestú-Unturbe F. López-Sobaler A.M. Association of a Dash diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer’s disease. Geroscience 2024 47 2 1747 1759 10.1007/s11357‑024‑01361‑3 39354239
    [Google Scholar]
  72. Bransby L. Buckley R.F. Rosenich E. Franks K.H. Yassi N. Maruff P. Pase M.P. Lim Y.Y. The relationship between cognitive engagement and better memory in midlife. Alzheimers Dement. 2022 14 1 e12278 10.1002/dad2.12278 35155733
    [Google Scholar]
  73. Casagrande M. Forte G. Favieri F. Corbo I. Sleep quality and aging: A systematic review on healthy older people, mild cognitive impairment and Alzheimer’s disease. Int. J. Environ. Res. Public Health 2022 19 14 8457 10.3390/ijerph19148457 35886309
    [Google Scholar]
  74. Mohammadi S. Zandi M. Kataj P.D. Zandi L.K. Chronic stress and Alzheimer’s disease. Biotechnol. Appl. Biochem. 2022 69 4 1451 1458 10.1002/bab.2216 34152660
    [Google Scholar]
  75. Xie C. Feng Y. Alcohol consumption and risk of Alzheimer’s disease: A dose–response meta‐analysis. Geriatr. Gerontol. Int. 2022 22 4 278 285 10.1111/ggi.14357 35171516
    [Google Scholar]
  76. Durazzo T.C. Mattsson N. Weiner M.W. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimers Dement. 2014 10 3Suppl S122 S145 10.1016/j.jalz.2014.04.009 24924665
    [Google Scholar]
  77. Mehrabadi S. Effects of chronic administration of nickel on memory function, hippocampal neuronal morphology and oxidative stress factors in male adult rats. Arch. Adv. Biosci. 2022 13 1 8 10.22037/aab.v13i2.35890
    [Google Scholar]
  78. Olayinka O. Olayinka O.O. Alemu B.T. Akpinar-Elci M. Grossberg G.T. Toxic environmental risk factors for Alzheimer’s disease: A systematic review. Aging Med. Healthc 2019 10 1 4 17 10.33879/amh.2019.1727
    [Google Scholar]
  79. Yegambaram M. Manivannan B. Beach T. Halden R. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Curr. Alzheimer Res. 2015 12 2 116 146 10.2174/1567205012666150204121719 25654508
    [Google Scholar]
  80. Mir R.H. Sawhney G. Pottoo F.H. Mohi-ud-din R. Madishetti S. Jachak S.M. Ahmed Z. Masoodi M.H. Role of environmental pollutants in Alzheimer’s disease: A review. Environ. Sci. Pollut. Res. Int. 2020 27 36 44724 44742 10.1007/s11356‑020‑09964‑x 32715424
    [Google Scholar]
  81. Tecalco-Cruz A.C. Ramírez-Jarquín J.O. Alvarez-Sánchez M.E. Zepeda-Cervantes J. Epigenetic basis of Alzheimer disease. World J. Biol. Chem. 2020 11 2 62 75 10.4331/wjbc.v11.i2.62 33024518
    [Google Scholar]
  82. Nikolac Perkovic M. Paska A.V. Konjevod M. Kouter K. Strac D.S. Erjavec G.N. Pivac N. Epigenetics of Alzheimer’s disease. Biomolecules 2021 11 2 195 10.3390/biom11020195 33573255
    [Google Scholar]
  83. Poon C.H. Tse L.S.R. Lim L.W. DNA methylation in the pathology of Alzheimer’s disease: From gene to cognition. Ann. N. Y. Acad. Sci. 2020 1475 1 15 33 10.1111/nyas.14373 32491215
    [Google Scholar]
  84. Castillo-Ordoñez W.O. Cajas-Salazar N. Velasco-Reyes M.A. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer’s agents. Neural Regen. Res. 2024 19 4 846 854 10.4103/1673‑5374.382232 37843220
    [Google Scholar]
  85. Vetter V.M. Drewelies J. Sommerer Y. Kalies C.H. Regitz-Zagrosek V. Bertram L. Gerstorf D. Demuth I. Epigenetic aging and perceived psychological stress in old age. Transl. Psychiatry 2022 12 1 410 10.1038/s41398‑022‑02181‑9 36163242
    [Google Scholar]
  86. Migliore L. Coppedè F. Gene–environment interactions in Alzheimer disease: The emerging role of epigenetics. Nat. Rev. Neurol. 2022 18 11 643 660 10.1038/s41582‑022‑00714‑w 36180553
    [Google Scholar]
  87. Lin F.C. Chen C.Y. Lin C.W. Wu M.T. Chen H.Y. Huang P. Air pollution is associated with cognitive deterioration of Alzheimer’s disease. Gerontology 2022 68 1 53 61 10.1159/000515162 33882496
    [Google Scholar]
  88. Atluri V.S.R. Tiwari S. Rodriguez M. Kaushik A. Yndart A. Kolishetti N. Yatham M. Nair M. Inhibition of amyloid-beta production, associated neuroinflammation, and histone deacetylase 2-mediated epigenetic modifications prevent neuropathology in Alzheimer’s disease in vitro model. Front. Aging Neurosci. 2020 11 342 10.3389/fnagi.2019.00342 32009938
    [Google Scholar]
  89. Kaur G. Rathod S.S.S. Ghoneim M.M. Alshehri S. Ahmad J. Mishra A. Alhakamy N.A. DNA methylation: A promising approach in management of Alzheimer’s disease and other neurodegenerative disorders. Biology 2022 11 1 90 10.3390/biology11010090 35053088
    [Google Scholar]
  90. Paniri A. Hosseini M.M. Akhavan-Niaki H. Alzheimer’s disease-related epigenetic changes: Novel therapeutic targets. Mol. Neurobiol. 2024 61 3 1282 1317 10.1007/s12035‑023‑03626‑y 37700216
    [Google Scholar]
  91. Villa C. Stoccoro A. Epigenetic peripheral biomarkers for early diagnosis of Alzheimer’s disease. Genes 2022 13 8 1308 10.3390/genes13081308 35893045
    [Google Scholar]
  92. Xiao X. Liu X. Jiao B. Epigenetics: Recent advances and its role in the treatment of Alzheimer’s disease. Front. Neurol. 2020 11 538301 10.3389/fneur.2020.538301 33178099
    [Google Scholar]
  93. Wei X. Zhang L. Zeng Y. DNA methylation in Alzheimer’s disease: In brain and peripheral blood. Mech. Ageing Dev. 2020 191 111319 10.1016/j.mad.2020.111319 32721406
    [Google Scholar]
  94. Shi Z. Zhang K. Zhou H. Jiang L. Xie B. Wang R. Xia W. Yin Y. Gao Z. Cui D. Zhang R. Xu S. Increased miR‐34c mediates synaptic deficits by targeting synaptotagmin 1 through ROS‐JNK‐p53 pathway in Alzheimer’s Disease. Aging Cell 2020 19 3 e13125 10.1111/acel.13125 32092796
    [Google Scholar]
  95. Sae-Lee C. Biasi J.D. Robinson N. Barrow T.M. Mathers J.C. Koutsidis G. Byun H.M. DNA methylation patterns of LINE-1 and Alu for pre-symptomatic dementia in type 2 diabetes. PLoS One 2020 15 6 e0234578 10.1371/journal.pone.0234578 32525932
    [Google Scholar]
  96. Koenigsberg S.H. Chang C.J. Ish J. Xu Z. Kresovich J.K. Lawrence K.G. Kaufman J.D. Sandler D.P. Taylor J.A. White A.J. Air pollution and epigenetic aging among Black and White women in the US. Environ. Int. 2023 181 108270 10.1016/j.envint.2023.108270 37890265
    [Google Scholar]
  97. Wood I.C. The contribution and therapeutic potential of epigenetic modifications in Alzheimer’s disease. Front. Neurosci. 2018 12 649 10.3389/fnins.2018.00649 30283297
    [Google Scholar]
  98. Cherblanc F. Chapman-Rothe N. Brown R. Fuchter M.J. Current limitations and future opportunities for epigenetic therapies. Future Med. Chem. 2012 4 4 425 446 10.4155/fmc.12.7 22416773
    [Google Scholar]
  99. Dawson M.A. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science 2017 355 6330 1147 1152 10.1126/science.aam7304 28302822
    [Google Scholar]
  100. Li Q. Lei Y. Zhang P. Liu Y. Lu Q. Chang C. Future challenges and prospects for personalized epigenetics. Translational Epigenetics, Personalized Epigenetics (Second Edition). Academic Press Tollefsbol T. 2024 721 744 10.1016/B978‑0‑443‑23802‑4.00019‑3
    [Google Scholar]
  101. Zhong M.Z. Peng T. Duarte M.L. Wang M. Cai D. Updates on mouse models of Alzheimer’s disease. Mol. Neurodegener. 2024 19 1 23 10.1186/s13024‑024‑00712‑0 38462606
    [Google Scholar]
  102. B Szabo A. Cattaud V. Bezzina C. Dard R.F. Sayegh F. Gauzin S. Lejards C. Valton L. Rampon C. Verret L. Dahan L. Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer’s disease - the influence of sleep and noradrenergic transmission. Neurobiol. Aging 2023 123 35 48 10.1016/j.neurobiolaging.2022.11.017 36634385
    [Google Scholar]
  103. Evans C.E. Miners J.S. Piva G. Willis C.L. Heard D.M. Kidd E.J. Good M.A. Kehoe P.G. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol. 2020 139 3 485 502 10.1007/s00401‑019‑02098‑6 31982938
    [Google Scholar]
  104. Oddo S. Caccamo A. Shepherd J.D. Murphy M.P. Golde T.E. Kayed R. Metherate R. Mattson M.P. Akbari Y. LaFerla F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular abeta and synaptic dysfunction. Neuron 2003 39 3 409 421 10.1016/S0896‑6273(03)00434‑3 12895417
    [Google Scholar]
  105. Pádua M.S. Guil-Guerrero J.L. Prates J.A.M. Lopes P.A. Insights on the use of transgenic mice models in Alzheimer’s disease research. Int. J. Mol. Sci. 2024 25 5 2805 10.3390/ijms25052805 38474051
    [Google Scholar]
  106. Choe M.S. Yeo H.C. Kim J.S. Lee J. Lee H.J. Kim H.R. Baek K.M. Jung N.Y. Choi M. Lee M.Y. Simple modeling of familial Alzheimer’s disease using human pluripotent stem cell-derived cerebral organoid technology. Stem Cell Res. Ther. 2024 15 1 118 10.1186/s13287‑024‑03732‑1 38659053
    [Google Scholar]
  107. Langeland J.A. Baumann L. DeYoung E.M. Varella R.A. Mwenda N. Aguirre A. Moore D.B. Early animal origin of BACE1 APP/Aβ proteolytic function. Biology 2024 13 5 320 10.3390/biology13050320 38785802
    [Google Scholar]
  108. Ohno M. A strategy for allowing earlier diagnosis and rigorous evaluation of BACE1 inhibitors in preclinical Alzheimer’s disease. J. Alzheimers Dis. 2024 99 2 431 445 10.3233/JAD‑231451 38701146
    [Google Scholar]
  109. Hooijmans C.R. Pasker-de Jong P.C.M. de Vries R.B.M. Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2012 28 1 191 209 10.3233/JAD‑2011‑111217 22002791
    [Google Scholar]
  110. García-Mesa Y. López-Ramos J.C. Giménez-Llort L. Revilla S. Guerra R. Gruart A. LaFerla F.M. Cristòfol R. Delgado-García J.M. Sanfeliu C. Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J. Alzheimers Dis. 2011 24 3 421 454 10.3233/JAD‑2011‑101635 21297257
    [Google Scholar]
  111. Park Y.H. Shin S.J. Kim H. Hong S.B. Kim S. Nam Y. Kim J.J. Lim K. Kim J.S. Kim J. Jeon S.G. Moon M. Omega-3 fatty acid-type docosahexaenoic acid protects against Aβ-mediated mitochondrial deficits and pathomechanisms in Alzheimer’s disease-related animal model. Int. J. Mol. Sci. 2020 21 11 3879 10.3390/ijms21113879 32486013
    [Google Scholar]
  112. Singh N. Ghosh K.K. Recent advances in the antioxidant therapies for Alzheimer’s disease: Emphasis on natural antioxidants. Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer Singapore Singh S. Joshi N. 2019 10.1007/978‑981‑13‑0944‑1_22
    [Google Scholar]
  113. Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 2010 16 11 1210 1214 10.1038/nm.2224 21052075
    [Google Scholar]
  114. Laurijssens B. Aujard F. Rahman A. Animal models of Alzheimer’s disease and drug development. Drug Discov. Today. Technol. 2013 10 3 e319 e327 10.1016/j.ddtec.2012.04.001 24050129
    [Google Scholar]
  115. Zhang L. Chen C. Mak M.S.H. Lu J. Wu Z. Chen Q. Han Y. Li Y. Pi R. Advance of sporadic Alzheimer’s disease animal models. Med. Res. Rev. 2020 40 1 431 458 10.1002/med.21624 31328804
    [Google Scholar]
  116. Cavanaugh S.E. Pippin J.J. Barnard N.D. Animal models of Alzheimer disease: Historical pitfalls and a path forward. Altern. Anim. Exp. 2014 31 3 279 302 24793844
    [Google Scholar]
  117. Drummond E. Wisniewski T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol. 2017 133 2 155 175 10.1007/s00401‑016‑1662‑x 28025715
    [Google Scholar]
/content/journals/car/10.2174/0115672050393583250718145103
Loading
/content/journals/car/10.2174/0115672050393583250718145103
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Alzheimer's disease ; lifestyle factors ; APOE ; genetics ; epigenetics ; dementia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test