Skip to content
2000
image of Effects of Cognitive Demand and Imaginability on Semantic Cognition in Patients with Primary Progressive Aphasia

Abstract

Introduction/Objective

Primary progressive aphasia (PPA) is a clinical syndrome characterized by progressive language impairment. Three subtypes have been identified: semantic (svPPA), nonfluent (nfPPA), and logopenic (lvPPA). Although clinical criteria exist to classify these subtypes, the specific ways in which semantic cognition is impaired across these variants have not yet been fully elucidated. This cross-sectional study aimed to analyze the effects of cognitive demand and imaginability on semantic cognition in patients with PPA.

Methods

Fifteen patients with PPA (five per variant) and 20 healthy controls completed a semantic association task comprising 20 items. The task included two levels of cognitive demand (low and high) and two types of concepts (concrete and abstract). Participants selected the word with the strongest semantic link to a probe word, based on synonymy, categorical relations, or shared features. Accuracy and reaction times were recorded and analyzed using nonparametric statistics.

Results

All PPA groups performed significantly worse than controls, showing fewer correct responses and longer reaction times. svPPA patients exhibited the greatest impairment across all conditions. nfPPA patients performed similarly to controls with concrete concepts but showed deficits with abstract words. lvPPA patients experienced greater difficulty under high cognitive demand, particularly with abstract words, indicating impaired semantic control.

Discussion

These findings suggest that svPPA is characterized by global impairment of conceptual knowledge, whereas nfPPA and lvPPA exhibit more selective deficits depending on concept type and cognitive demand.

Conclusion

The research herein highlights the importance of considering cognitive demand and imaginability when assessing semantic cognition in PPA.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050395866250904102045
2025-09-15
2025-11-02
Loading full text...

Full text loading...

References

  1. Tulving E. Episodic and semantic memory. Organization of memory New York Academic Press 1972 381 403
    [Google Scholar]
  2. Ralph M.A.L. Jefferies E. Patterson K. Rogers T.T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 2017 18 1 42 55 10.1038/nrn.2016.150 27881854
    [Google Scholar]
  3. Patterson K. Nestor P.J. Rogers T.T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 2007 8 12 976 987 10.1038/nrn2277 18026167
    [Google Scholar]
  4. Davey J. Thompson H.E. Hallam G. Karapanagiotidis T. Murphy C. De Caso I. Krieger-Redwood K. Bernhardt B.C. Smallwood J. Jefferies E. Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. Neuroimage 2016 137 165 177 10.1016/j.neuroimage.2016.05.051 27236083
    [Google Scholar]
  5. Davey J. Rueschemeyer S.A. Costigan A. Murphy N. Krieger-Redwood K. Hallam G. Jefferies E. Shared neural processes support semantic control and action understanding. Brain Lang. 2015 142 24 35 10.1016/j.bandl.2015.01.002 25658631
    [Google Scholar]
  6. Noonan K.A. Jefferies E. Visser M. Ralph L.M.A. Going beyond inferior prefrontal involvement in semantic control: evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. J. Cogn. Neurosci. 2013 25 11 1824 1850 10.1162/jocn_a_00442 23859646
    [Google Scholar]
  7. Noonan K.A. Jefferies E. Corbett F. Lambon Ralph M.A. Elucidating the nature of deregulated semantic cognition in semantic aphasia: evidence for the roles of prefrontal and temporo-parietal cortices. J. Cogn. Neurosci. 2010 22 7 1597 1613 10.1162/jocn.2009.21289 19580383
    [Google Scholar]
  8. Badre D. Poldrack R.A. Paré-Blagoev E.J. Insler R.Z. Wagner A.D. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 2005 47 6 907 918 10.1016/j.neuron.2005.07.023 16157284
    [Google Scholar]
  9. Hoffman P. Binney R.J. Ralph L.M.A. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex 2015 63 250 266 10.1016/j.cortex.2014.09.001 25303272
    [Google Scholar]
  10. Whitney C. Kirk M. O’Sullivan J. Ralph L.M.A. Jefferies E. The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cereb. Cortex 2011 21 5 1066 1075 10.1093/cercor/bhq180 20851853
    [Google Scholar]
  11. Hodges JR Patterson K Oxbury S Funnell E Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain 1992 115 6 1783 1806 1486461 10.1093/brain/115.6.1783
    [Google Scholar]
  12. Jefferies E. Ralph L.M.A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 2006 129 8 2132 2147 10.1093/brain/awl153 16815878
    [Google Scholar]
  13. Tessaro B. Hameau S. Salis C. Nickels L. Semantic impairment in aphasia: A problem of control? Int. J. Speech Lang. Pathol. 2023 25 6 903 914 10.1080/17549507.2022.2125072 36255123
    [Google Scholar]
  14. Bose A. Patra A. Antoniou G.E. Stickland R.C. Belke E. Verbal fluency difficulties in aphasia: A combination of lexical and executive control deficits. Int. J. Lang. Commun. Disord. 2022 57 3 593 614 10.1111/1460‑6984.12710 35318784
    [Google Scholar]
  15. Bose A. Wood R. Kiran S. Semantic fluency in aphasia: Clustering and switching in the course of 1 minute. Int. J. Lang. Commun. Disord. 2017 52 3 334 345 10.1111/1460‑6984.12276 27767243
    [Google Scholar]
  16. Corbett F. Jefferies E. Ehsan S. Ralph L.M.A. Different impairments of semantic cognition in semantic dementia and semantic aphasia: evidence from the non-verbal domain. Brain 2009 132 9 2593 2608 10.1093/brain/awp146 19506072
    [Google Scholar]
  17. Jefferies E. Baker S.S. Doran M. Ralph M.A.L. Refractory effects in stroke aphasia: A consequence of poor semantic control. Neuropsychologia 2007 45 5 1065 1079 10.1016/j.neuropsychologia.2006.09.009 17074373
    [Google Scholar]
  18. Mesulam M.M. Slowly progressive aphasia without generalized dementia. Ann. Neurol. 1982 11 6 592 598 10.1002/ana.410110607 7114808
    [Google Scholar]
  19. Gorno-Tempini M.L. Hillis A.E. Weintraub S. Kertesz A. Mendez M. Cappa S.F. Ogar J.M. Rohrer J.D. Black S. Boeve B.F. Manes F. Dronkers N.F. Vandenberghe R. Rascovsky K. Patterson K. Miller B.L. Knopman D.S. Hodges J.R. Mesulam M.M. Grossman M. Classification of primary progressive aphasia and its variants. Neurology 2011 76 11 1006 1014 10.1212/WNL.0b013e31821103e6 21325651
    [Google Scholar]
  20. Bozeat S. Ralph L.M.A. Patterson K. Garrard P. Hodges J.R. Non-verbal semantic impairment in semantic dementia. Neuropsychologia 2000 38 9 1207 1215 10.1016/S0028‑3932(00)00034‑8 10865096
    [Google Scholar]
  21. Gorno-Tempini M.L. Dronkers N.F. Rankin K.P. Ogar J.M. Phengrasamy L. Rosen H.J. Johnson J.K. Weiner M.W. Miller B.L. Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 2004 55 3 335 346 10.1002/ana.10825 14991811
    [Google Scholar]
  22. Grossman M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol. 2012 11 6 545 555 10.1016/S1474‑4422(12)70099‑6 22608668
    [Google Scholar]
  23. Ogar J.M. Dronkers N.F. Brambati S.M. Miller B.L. Gorno-Tempini M.L. Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis. Assoc. Disord. 2007 21 4 S23 S30 10.1097/WAD.0b013e31815d19fe 18090419
    [Google Scholar]
  24. Cordella C. Dickerson B.C. Quimby M. Yunusova Y. Green J.R. Slowed articulation rate is a sensitive diagnostic marker for identifying non-fluent primary progressive aphasia. Aphasiology 2017 31 2 241 260 10.1080/02687038.2016.1191054 28757671
    [Google Scholar]
  25. Josephs K.A. Duffy J.R. Strand E.A. Whitwell J.L. Layton K.F. Parisi J.E. Hauser M.F. Witte R.J. Boeve B.F. Knopman D.S. Dickson D.W. Jack C.R. Jr Petersen R.C. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006 129 6 1385 1398 10.1093/brain/awl078 16613895
    [Google Scholar]
  26. Tetzloff K.A. Duffy J.R. Clark H.M. Strand E.A. Machulda M.M. Schwarz C.G. Senjem M.L. Reid R.I. Spychalla A.J. Tosakulwong N. Lowe V.J. Jack C.R. Jr Josephs K.A. Whitwell J.L. Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain 2018 141 1 302 317 10.1093/brain/awx293 29228180
    [Google Scholar]
  27. Mirbod M. Ayubcha C. Redden H.W.K. Teichner E. Subtirelu R.C. Patel R. Raynor W. Werner T. Alavi A. Revheim M.E. FDG-PET in the diagnosis of primary progressive aphasia: A systematic review. Ann. Nucl. Med. 2024 38 9 673 687 10.1007/s12149‑024‑01958‑w 39028529
    [Google Scholar]
  28. Conca F. Esposito V. Giusto G. Cappa S.F. Catricalà E. Characterization of the logopenic variant of Primary Progressive Aphasia: A systematic review and meta-analysis. Ageing Res. Rev. 2022 82 101760 10.1016/j.arr.2022.101760 36244629
    [Google Scholar]
  29. Gorno-Tempini M.L. Brambati S.M. Ginex V. Ogar J. Dronkers N.F. Marcone A. Perani D. Garibotto V. Cappa S.F. Miller B.L. The logopenic/phonological variant of primary progressive aphasia. Neurology 2008 71 16 1227 1234 10.1212/01.wnl.0000320506.79811.da 18633132
    [Google Scholar]
  30. Wilson S.M. Henry M.L. Besbris M. Ogar J.M. Dronkers N.F. Jarrold W. Miller B.L. Gorno-Tempini M.L. Connected speech production in three variants of primary progressive aphasia. Brain 2010 133 7 2069 2088 10.1093/brain/awq129 20542982
    [Google Scholar]
  31. Ramanan S. Irish M. Patterson K. Rowe J.B. Gorno-Tempini M.L. Lambon Ralph M.A. Understanding the multidimensional cognitive deficits of logopenic variant primary progressive aphasia. Brain 2022 145 9 2955 2966 10.1093/brain/awac208 35857482
    [Google Scholar]
  32. Madhavan A. Whitwell J.L. Weigand S.D. Duffy J.R. Strand E.A. Machulda M.M. Tosakulwong N. Senjem M.L. Gunter J.L. Lowe V.J. Petersen R.C. Jack C.R. Jr Josephs K.A. FDG PET and MRI in logopenic primary progressive aphasia versus dementia of the Alzheimer’s type. PLoS One 2013 8 4 e62471 10.1371/journal.pone.0062471 23626825
    [Google Scholar]
  33. Harris J.M. Saxon J.A. Jones M. Snowden J.S. Thompson J.C. Neuropsychological differentiation of progressive aphasic disorders. J. Neuropsychol. 2019 13 2 214 239 10.1111/jnp.12149 29424041
    [Google Scholar]
  34. Ramanan S Halai AD Garcia-Penton L Perry AG Patel N Peterson KA The neural substrates of transdiagnostic cognitive‑linguistic heterogeneity in primary progressive aphasia. Alzheimers Res. Ther. 2023 15 1 1 18 38102724 10.1186/s13195‑023‑01350‑2
    [Google Scholar]
  35. Paivio A. Yuille J.C. Madigan S.A. Concreteness, imagery, and meaningfulness values for 925 nouns. J. Exp. Psychol. 1968 76 1, Pt.2 1 25 10.1037/h0025327 5672258
    [Google Scholar]
  36. Paivio A. Dual coding theory: Retrospect and current status. Can. J. Psychol. 1991 45 3 255 287 10.1037/h0084295
    [Google Scholar]
  37. Wang J. Conder J.A. Blitzer D.N. Shinkareva S.V. Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Hum. Brain Mapp. 2010 31 10 1459 1468 10.1002/hbm.20950 20108224
    [Google Scholar]
  38. Hoffman P. The meaning of ‘life’ and other abstract words: Insights from neuropsychology. J. Neuropsychol. 2016 10 2 317 343 10.1111/jnp.12065 25708527
    [Google Scholar]
  39. Bottini R. Morucci P. D’Urso A. Collignon O. Crepaldi D. The concreteness advantage in lexical decision does not depend on perceptual simulations. J. Exp. Psychol. Gen. 2022 151 3 731 738 10.1037/xge0001090 34498912
    [Google Scholar]
  40. Jessen F. Heun R. Erb M. Granath D.O. Klose U. Papassotiropoulos A. Grodd W. The concreteness effect: Evidence for dual coding and context availability. Brain Lang. 2000 74 1 103 112 10.1006/brln.2000.2340 10924219
    [Google Scholar]
  41. Hoffman P. Rogers T.T. Lambon Ralph M.A. Semantic diversity accounts for the “missing” word frequency effect in stroke aphasia: Insights using a novel method to quantify contextual variability in meaning. J. Cogn. Neurosci. 2011 23 9 2432 2446 10.1162/jocn.2011.21614 21254804
    [Google Scholar]
  42. Kiran S. Sandberg C. Abbott K. Treatment for lexical retrieval using abstract and concrete words in persons with aphasia: Effect of complexity. Aphasiology 2009 23 7-8 835 853 10.1080/02687030802588866 19816590
    [Google Scholar]
  43. Bonner M.F. Vesely L. Price C. Anderson C. Richmond L. Farag C. Avants B. Grossman M. Reversal of the concreteness effect in semantic dementia. Cogn. Neuropsychol. 2009 26 6 568 579 10.1080/02643290903512305 20183015
    [Google Scholar]
  44. Papagno C. Capasso R. Miceli G. Reversed concreteness effect for nouns in a subject with semantic dementia. Neuropsychologia 2009 47 4 1138 1148 10.1016/j.neuropsychologia.2009.01.019 19350708
    [Google Scholar]
  45. Yi H.A. Moore P. Grossman M. Reversal of the concreteness effect for verbs in patients with semantic dementia. Neuropsychology 2007 21 1 9 19 10.1037/0894‑4105.21.1.9 17201526
    [Google Scholar]
  46. Pollock L. Statistical and methodological problems with concreteness and other semantic variables: A list memory experiment case study. Behav. Res. Methods 2018 50 3 1198 1216 10.3758/s13428‑017‑0938‑y 28707214
    [Google Scholar]
  47. Oldfield R.C. Wingfield A. Response latencies in naming objects. Q. J. Exp. Psychol. 1965 17 4 273 281 10.1080/17470216508416445 5852918
    [Google Scholar]
  48. Funnell E. Sheridan J. Categories of knowledge? unfamiliar aspects of living and nonliving things. Cogn. Neuropsychol. 1992 9 2 135 153 10.1080/02643299208252056
    [Google Scholar]
  49. Kiran S. Thompson C.K. The role of semantic complexity in treatment of naming deficits: training semantic categories in fluent aphasia by controlling exemplar typicality. J. Speech Lang. Hear. Res. 2003 46 4 773 787 10.1044/1092‑4388(2003/061) 12959459
    [Google Scholar]
  50. Moreno-Martínez F.J. Montoro P.R. Rodríguez-Rojo I.C. Spanish norms for age of acquisition, concept familiarity, lexical frequency, manipulability, typicality, and other variables for 820 words from 14 living/nonliving concepts. Behav. Res. Methods 2014 46 4 1088 1097 10.3758/s13428‑013‑0435‑x 24415408
    [Google Scholar]
  51. Braza M.D. Porter H.L. Buss E. Calandruccio L. McCreery R.W. Leibold L.J. Effects of word familiarity and receptive vocabulary size on speech-in-noise recognition among young adults with normal hearing. PLoS One 2022 17 3 e0264581 10.1371/journal.pone.0264581 35271608
    [Google Scholar]
  52. Woollams A.M. Apples are not the only fruit: The effects of concept typicality on semantic representation in the anterior temporal lobe. Front. Hum. Neurosci. 2012 6 85 10.3389/fnhum.2012.00085 22529789
    [Google Scholar]
  53. Rogers T.T. Patterson K. Object categorization: Reversals and explanations of the basic-level advantage. J. Exp. Psychol. Gen. 2007 136 3 451 469 10.1037/0096‑3445.136.3.451 17696693
    [Google Scholar]
  54. Calzavarini F. The empirical status of semantic perceptualism. Mind Lang. 2023 38 4 1000 1020 10.1111/mila.12444
    [Google Scholar]
  55. Mordhorst S. Coulehan K. Roseman E.C. Neuropsychology Assessment in Dementia and Neurodegenerative Disease. Hybrid PET/MR Neuroimaging. Cham Springer International Publishing 2022 247 255 10.1007/978‑3‑030‑82367‑2_21
    [Google Scholar]
  56. Howard D. Patterson K. The pyramids and palm trees test: a test of semantic access from words and pictures. Thames Valley Publishing 1992
    [Google Scholar]
  57. Shao Z. Janse E. Visser K. Meyer A.S. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 2014 5 772 10.3389/fpsyg.2014.00772 25101034
    [Google Scholar]
  58. Rofes A. de Aguiar V. Ficek B. Wendt H. Webster K. Tsapkini K. The role of word properties in performance on fluency tasks in people with primary progressive aphasia. J. Alzheimers Dis. 2019 68 4 1521 1534 10.3233/JAD‑180990 30909222
    [Google Scholar]
  59. Beaman S.R. Beaman P.E. Garcia-Peña C. Villa M.A. Heres J. Córdova A. Jagger C. Validation of a Modified version of the mini-mental state Examination (MMSE) in Spanish. Neuropsychol. Dev. Cogn. B. Aging Neuropsychol. Cogn. 2004 11 1 1 11 10.1076/anec.11.1.1.29366
    [Google Scholar]
  60. Nasreddine Z.S. Phillips N.A. Bédirian V. Charbonneau S. Whitehead V. Collin I. Cummings J.L. Chertkow H. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005 53 4 695 699 10.1111/j.1532‑5415.2005.53221.x 15817019
    [Google Scholar]
  61. Islam N. Hashem R. Gad M. Brown A. Levis B. Renoux C. Thombs B.D. McInnes M.D.F. Accuracy of the montreal cognitive assessment tool for detecting mild cognitive impairment: A systematic review and meta-analysis. Alzheimers Dement. 2023 19 7 3235 3243 10.1002/alz.13040 36934438
    [Google Scholar]
  62. Lawton M.P. Brody E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969 9 3 Part 1 179 186 10.1093/geront/9.3_Part_1.179 5349366
    [Google Scholar]
  63. Duchon A. Perea M. Sebastián-Gallés N. Martí A. Carreiras M. EsPal: One-stop shopping for Spanish word properties. Behav. Res. Methods 2013 45 4 1246 1258 10.3758/s13428‑013‑0326‑1 23468181
    [Google Scholar]
  64. Tomczak M. Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014 1 19 25
    [Google Scholar]
  65. Willson V.L. Critical values of the rank-biserial correlation coefficient. Educ. Psychol. Meas. 1976 36 2 297 300 10.1177/001316447603600207
    [Google Scholar]
  66. Visser M. Jefferies E. Ralph L.M.A. Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 2010 22 6 1083 1094 10.1162/jocn.2009.21309 19583477
    [Google Scholar]
  67. Hoffman P. Jones R.W. Ralph L.M.A. Be concrete to be comprehended: Consistent imageability effects in semantic dementia for nouns, verbs, synonyms and associates. Cortex 2013 49 5 1206 1218 10.1016/j.cortex.2012.05.007 22721956
    [Google Scholar]
  68. Jefferies E. Patterson K. Jones R.W. Ralph L.M.A. Comprehension of concrete and abstract words in semantic dementia. Neuropsychology 2009 23 4 492 499 10.1037/a0015452 19586212
    [Google Scholar]
  69. Hodgson V.J. Ralph L.M.A. Jackson R.L. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb. Cortex 2023 33 8 4990 5006 10.1093/cercor/bhac394 36269034
    [Google Scholar]
  70. Vonk J.M.J. Jonkers R. Hubbard H.I. Gorno-Tempini M.L. Brickman A.M. Obler L.K. Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia. J. Int. Neuropsychol. Soc. 2019 25 10 1011 1022 10.1017/S1355617719000948 31511121
    [Google Scholar]
  71. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 2010 14 4 172 179 10.1016/j.tics.2010.01.004 20171926
    [Google Scholar]
  72. Davey J. Cornelissen P.L. Thompson H.E. Sonkusare S. Hallam G. Smallwood J. Jefferies E. Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J. Neurosci. 2015 35 46 15230 15239 10.1523/JNEUROSCI.4705‑14.2015 26586812
    [Google Scholar]
  73. Owens T.E. Machulda M.M. Duffy J.R. Strand E.A. Clark H.M. Boland S. Martin P.R. Lowe V.J. Jack C.R. Jr Whitwell J.L. Josephs K.A. Patterns of neuropsychological dysfunction and cortical volume changes in logopenic aphasia. J. Alzheimers Dis. 2018 66 3 1015 1025 10.3233/JAD‑171175 30372673
    [Google Scholar]
  74. Leyton C.E. Hodges J.R. McLean C.A. Kril J.J. Piguet O. Ballard K.J. Is the logopenic-variant of primary progressive aphasia a unitary disorder? Cortex 2015 67 122 133 10.1016/j.cortex.2015.03.011 25955499
    [Google Scholar]
  75. Sebastian R. Thompson C.B. Wang N.Y. Wright A. Meyer A. Friedman R.B. Hillis A.E. Tippett D.C. Patterns of decline in naming and semantic knowledge in primary progressive aphasia. Aphasiology 2018 32 9 1010 1030 10.1080/02687038.2018.1490388 30613121
    [Google Scholar]
  76. Mandelli M.L. Lorca-Puls D.L. Lukic S. Montembeault M. Gajardo-Vidal A. Licata A. Scheffler A. Battistella G. Grasso S.M. Bogley R. Ratnasiri B.M. La Joie R. Mundada N.S. Europa E. Rabinovici G. Miller B.L. De Leon J. Henry M.L. Miller Z. Gorno-Tempini M.L. Network anatomy in logopenic variant of primary progressive aphasia. Hum. Brain Mapp. 2023 44 11 4390 4406 10.1002/hbm.26388 37306089
    [Google Scholar]
/content/journals/car/10.2174/0115672050395866250904102045
Loading
/content/journals/car/10.2174/0115672050395866250904102045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test