Skip to content
2000
image of Arsenic Exposure Induces Cognitive Impairment in Mice with Increased Acetylcholinesterase Activity and Inflammation in the Cortex and Hippocampus: Implications for Alzheimer’s Disease

Abstract

Introduction

Arsenic, a metalloid, is well associated as a risk factor for the development and progression of neurodegenerative diseases, including Alzheimer’s Disease (AD), which is characterized by impairment in cognition. However, specific effects of arsenic on Acetylcholinesterase (AChE) activity and inflammatory markers in different brain regions, as well as its impact on behaviour, are not yet fully understood.

Methods

Arsenic was administered (20 mg/kg by gavage for 4 weeks) to male and female mice, and its effects on behaviour were assessed by using the object recognition memory test and light-dark box test. AChE activity and neuronal Nitric Oxide (nNOS) were assessed by histoenzymology, and immunohistochemistry was employed for assessment of Glial Fibrillary Acidic Protein (GFAP).

Results

Both the behavioural tests showed significant impairment of learning and memory functions and development of psychiatric abnormalities in arsenic-fed mice. The histoenzymology and immunohistochemistry analysis of the cortex and hippocampus region of these arsenic-fed mice revealed the increment of AChE activity and inflammatory markers, viz. GFAP and nNOS.

Discussion

The observed increment in AChE activity in the cortex and hippocampus of arsenic-fed mice may contribute to the impairment of learning and memory functions, as well as to the development of psychiatric abnormalities. Furthermore, the enhancement of inflammatory processes in these brain regions may be either a consequence or a contributing factor to the elevated AChE activity, thus establishing a self-fuelling cycle of neuroinflammation and increased AChE activity.

Conclusion

Given the gender bias in neurodegenerative diseases, our findings indicate that arsenic exposure does not lead to significant differences in neuropathological and neurobehavioural outcomes between male and female mice. Moreover, current outcomes underscore the potential of arsenic to act as a neurotoxic agent in AD development.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050390649250904100840
2025-09-08
2025-11-02
Loading full text...

Full text loading...

References

  1. Herrera A. Pineda J. Antonio M.T. Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environ. Toxicol. Pharmacol. 2013 36 1 73 79 10.1016/j.etap.2013.03.018 23619517
    [Google Scholar]
  2. Chung J.Y Do Yu S. Hong Y.S. Environmental source of arsenic exposure. J. Prev. Med. Public Health 2014 47 5 253 10.3961/jpmph.14.036
    [Google Scholar]
  3. Patlolla A.K. Tchounwou P.B. Serum acetyl cholinesterase as a biomarker of arsenic induced neurotoxicity in Sprague-Dawley rats. Int. J. Environ. Res. Public Health 2005 2 1 80 10.3390/ijerph2005010080
    [Google Scholar]
  4. Vaidya N. Holla B. Heron J. Neurocognitive analysis of low-level arsenic exposure and executive function mediated by brain anomalies among children, adolescents, and young adults in India. JAMA Netw. Open 2023 6 5 e2312810 10.1001/jamanetworkopen.2023.12810 37171822
    [Google Scholar]
  5. Nahar M.N. Inaoka T. Fujimura M. A consecutive study on arsenic exposure and intelligence quotient (IQ) of children in Bangladesh. Environ. Health Prev. Med. 2014 19 3 194 199 10.1007/s12199‑013‑0374‑2 24368742
    [Google Scholar]
  6. O’Bryant S.E. Edwards M. Menon C.V. Gong G. Barber R. Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int. J. Environ. Res. Public Health 2011 8 3 861 874 10.3390/ijerph8030861 21556183
    [Google Scholar]
  7. Tyler C.R. Allan A.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Curr. Environ. Health Rep. 2014 1 2 132 147 10.1007/s40572‑014‑0012‑1 24860722
    [Google Scholar]
  8. Sen D. Sarathi B.P. Arsenicosis: Is it a protective or predisposing factor for mental illness? Iran. J. Psychiatry 2012 7 4 180 183 23408762
    [Google Scholar]
  9. Mehta K. Pandey K.K. Kaur B. Dhar P. Kaler S. Resveratrol attenuates arsenic-induced cognitive deficits via modulation of Estrogen-NMDAR-BDNF signalling pathway in female mouse hippocampus. Psychopharmacology (Berl.) 2021 238 9 2485 2502 10.1007/s00213‑021‑05871‑2 34050381
    [Google Scholar]
  10. Taheri Z.Z. Esmaeilpour K. Aminzadeh A. Heidari M.R. Joushi S. Resveratrol attenuates learning, memory, and social interaction impairments in rats exposed to arsenic. BioMed Res. Int. 2021 2021 1 9993873 10.1155/2021/9993873 34621902
    [Google Scholar]
  11. Srivastava P. Yadav R.S. Chandravanshi L.P. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol. Appl. Pharmacol. 2014 279 3 428 440 10.1016/j.taap.2014.06.006 24952339
    [Google Scholar]
  12. Mónaco N.M. Bartos M. Dominguez S. Low arsenic concentrations impair memory in rat offpring exposed during pregnancy and lactation: Role of α7 nicotinic receptor, glutamate and oxidative stress. Neurotoxicology 2018 67 37 45 10.1016/j.neuro.2018.04.011 29678590
    [Google Scholar]
  13. Chu F. Yang W. Li Y. Subchronic arsenic exposure induces behavioral impairments and hippocampal damage in rats. Toxics 2023 11 12 970 10.3390/toxics11120970 38133371
    [Google Scholar]
  14. Ullas K.S. Chaturvedi A. Bhaskar Y.D. Kundapura N. Amin N. Devaramane V. Increased levels of acetylcholinesterase, paraoxonase 1, and copper in patients with moderate depression- A preliminary study. Rep. Biochem. Mol. Biol. 2019 7 2 174 180 30805397
    [Google Scholar]
  15. Moreta M.P.G. Burgos-Alonso N. Torrecilla M. Marco-Contelles J. Bruzos-Cidón C. Efficacy of acetylcholinesterase inhibitors on cognitive function in alzheimer’s disease. Review of reviews. Biomedicines 2021 9 11 1689 10.3390/biomedicines9111689 34829917
    [Google Scholar]
  16. Samad N. Jabeen S. Imran I. Zulfiqar I. Bilal K. Protective effect of gallic acid against arsenic-induced anxiety−/depression- like behaviors and memory impairment in male rats. Metab. Brain Dis. 2019 34 4 1091 1102 10.1007/s11011‑019‑00432‑1 31119507
    [Google Scholar]
  17. Yadav R.S. Chandravanshi L.P. Shukla R.K. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 2011 32 6 760 768 10.1016/j.neuro.2011.07.004 21839772
    [Google Scholar]
  18. Tutkun L. Gunduzoz M. Turksoy V.A. Arsenic-induced inflammation in workers. Mol. Biol. Rep. 2019 46 2 2371 2378 10.1007/s11033‑019‑04694‑x 30783936
    [Google Scholar]
  19. Sun X. He Y. Guo Y. Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues. BMC Vet. Res. 2017 13 1 157 10.1186/s12917‑017‑1066‑8 28583123
    [Google Scholar]
  20. Jing H. Yan N. Fan R. Arsenic activates the NLRP3 inflammasome and disturbs the Th1/Th2/Th17/Treg balance in the hippocampus in mice. Biol. Trace Elem. Res. 2023 201 7 3395 3403 10.1007/s12011‑022‑03421‑1 36100822
    [Google Scholar]
  21. Bustaffa E. Stoccoro A. Bianchi F. Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch. Toxicol. 2014 88 5 1043 1067 10.1007/s00204‑014‑1233‑7 24691704
    [Google Scholar]
  22. Thakur M. Rachamalla M. Niyogi S. Datusalia A.K. Flora S.J.S. Molecular mechanism of arsenic-induced neurotoxicity including neuronal dysfunctions. Int. J. Mol. Sci. 2021 22 18 10077 10.3390/ijms221810077 34576240
    [Google Scholar]
  23. Dringen R. Spiller S. Neumann S. Koehler Y. Uptake, metabolic effects and toxicity of arsenate and arsenite in astrocytes. Neurochem. Res. 2016 41 3 465 475 10.1007/s11064‑015‑1570‑9 25862194
    [Google Scholar]
  24. Ducourneau V.R.R. Dolique T. Hachem-Delaunay S. Cancer pain is not necessarily correlated with spinal overexpression of reactive glia markers. Pain 2014 155 2 275 291 10.1016/j.pain.2013.10.008 24120461
    [Google Scholar]
  25. Zhang B. Wang G. He J. Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner. J. Neuroinflammation 2019 16 1 92 10.1186/s12974‑019‑1472‑x 31010422
    [Google Scholar]
  26. Rathnasamy G. Sivakumar V. Rangarajan P. Foulds W.S. Ling E.A. Kaur C. NF-κB-mediated nitric oxide production and activation of caspase-3 cause retinal ganglion cell death in the hypoxic neonatal retina. Invest. Ophthalmol. Vis. Sci. 2014 55 9 5878 5889 10.1167/iovs.13‑13718 25139733
    [Google Scholar]
  27. Dutta A. Phukan B.C. Roy R. Garcinia morella extract confers dopaminergic neuroprotection by mitigating mitochondrial dysfunctions and inflammation in mouse model of Parkinson’s disease. Metab. Brain Dis. 2022 37 6 1887 1900 10.1007/s11011‑022‑01001‑9 35622265
    [Google Scholar]
  28. Rosado J.L. Ronquillo D. Kordas K. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ. Health Perspect. 2007 115 9 1371 1375 10.1289/ehp.9961 17805430
    [Google Scholar]
  29. Pandey R. Garg A. Gupta K. Arsenic induces differential neurotoxicity in male, female, and E2-deficient females: Comparative effects on hippocampal neurons and cognition in adult rats. Mol. Neurobiol. 2022 59 5 2729 2744 10.1007/s12035‑022‑02770‑1 35175559
    [Google Scholar]
  30. Vogel-Ciernia A. Matheos D.P. Barrett R.M. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 2013 16 5 552 561 10.1038/nn.3359 23525042
    [Google Scholar]
  31. Mazumder M.K. Giri A. Kumar S. Borah A. A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption. Life Sci. 2016 161 27 36 10.1016/j.lfs.2016.07.020 27493078
    [Google Scholar]
  32. Mazumder M.K. Paul R. Bhattacharya P. Borah A. Neurological sequel of chronic kidney disease: From diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Sci. Rep. 2019 9 1 3097 10.1038/s41598‑018‑37935‑3 30816118
    [Google Scholar]
  33. Paul R. Borah A. Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Sci. Rep. 2017 7 1 17922 10.1038/s41598‑017‑17911‑z 29263397
    [Google Scholar]
  34. Schindelin J. Arganda-Carreras I. Frise E. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012 9 7 676 682 10.1038/nmeth.2019 22743772
    [Google Scholar]
  35. Dutta A. Roy R. Pandey M. Arsenic-induced mice model of Parkinson’s disease: Revealing the neurotoxicity of arsenic through mitochondrial complexes inhibition and dopaminergic neurodegeneration in the substantia nigra region of brain. Brain Res. 2025 1851 149493 10.1016/j.brainres.2025.149493 39909295
    [Google Scholar]
  36. Madathil K.S. Karuppagounder S.S. Haobam R. Varghese M. Rajamma U. Mohanakumar K.P. Nitric oxide synthase inhibitors protect against rotenone-induced, oxidative stress mediated parkinsonism in rats. Neurochem. Int. 2013 62 5 674 683 10.1016/j.neuint.2013.01.007 23353925
    [Google Scholar]
  37. Flora S.J.S. Gupta R. Beneficial effects of Centella asiatica aqueous extract against arsenic-induced oxidative stress and essential metal status in rats. Phytother. Res. 2007 21 10 980 988 10.1002/ptr.2208
    [Google Scholar]
  38. Gupta R. Flora S.J.S. Protective value of Aloe vera against some toxic effects of arsenic in rats. Phytother. Res. 2005 19 1 23 28 10.1002/ptr.1560
    [Google Scholar]
  39. Yadav R.S. Sankhwar M.L. Shukla R.K. Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol. Appl. Pharmacol. 2009 240 3 367 376 10.1016/j.taap.2009.07.017 19631675
    [Google Scholar]
  40. Niño S.A. Martel-Gallegos G. Castro-Zavala A. Chronic arsenic exposure Increases Aβ (1-42) production and receptor for advanced glycation end products expression in rat brain. Chem. Res. Toxicol. 2018 31 1 13 21 10.1021/acs.chemrestox.7b00215 29155576
    [Google Scholar]
  41. Delgado J.M. Dufour L. Grimaldo J.I. Carrizales L. Rodríguez V.M. Jiménez-Capdeville M.E. Effects of arsenite on central monoamines and plasmatic levels of adrenocorticotropic hormone (ACTH) in mice. Toxicol. Lett. 2000 117 1-2 61 67 10.1016/S0378‑4274(00)00240‑X 11033234
    [Google Scholar]
  42. Kyi-Tha-Thu C. Htway S.M. Suzuki T. Nohara K. Win-Shwe T.T. Gestational arsenic exposure induces anxiety-like behaviors in F1 female mice by dysregulation of neurological and immunological markers. Environ. Health Prev. Med. 2023 28 0 43 10.1265/ehpm.23‑00046 37407491
    [Google Scholar]
  43. Chandravanshi L.P. Shukla R.K. Sultana S. Pant A.B. Khanna V.K. Early life arsenic exposure and brain dopaminergic alterations in rats. Int. J. Dev. Neurosci. 2014 38 1 91 104 10.1016/j.ijdevneu.2014.08.009 25179238
    [Google Scholar]
  44. Nair A. Morsy M.A. Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev. Res. 2018 79 8 373 382 10.1002/ddr.21461 30343496
    [Google Scholar]
  45. Yunus F. Khan S. Chowdhury P. Milton A. Hussain S. Rahman M. A Review of groundwater arsenic contamination in Bangladesh: The millennium development goal era and beyond. Int. J. Environ. Res. Public Health 2016 13 2 215 10.3390/ijerph13020215 26891310
    [Google Scholar]
  46. Mehta K. Kaur B. Pandey K.K. Kaler S. Dhar P. Curcumin supplementation shows modulatory influence on functional and morphological features of hippocampus in mice subjected to arsenic trioxide exposure. Anat. Cell Biol. 2020 53 3 355 365 10.5115/acb.18.169 32929054
    [Google Scholar]
  47. Ben-Ari S. Toiber D. Sas A.S. Soreq H. Ben-Shaul Y. Modulated splicing‐associated gene expression in P19 cells expressing distinct acetylcholinesterase splice variants. J. Neurochem. 2006 97 s1 24 34 10.1111/j.1471‑4159.2006.03725.x 16635247
    [Google Scholar]
  48. Yousef M.I. El-Demerdash F.M. Radwan F.M.E. Sodium arsenite induced biochemical perturbations in rats: Ameliorating effect of curcumin. Food Chem. Toxicol. 2008 46 11 3506 3511 10.1016/j.fct.2008.08.031 18809455
    [Google Scholar]
  49. Roy S. Chattoraj A. Bhattacharya S. Arsenic-induced changes in optic tectal histoarchitecture and acetylcholinesterase-acetylcholine profile in Channa punctatus: Amelioration by selenium. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006 144 1 16 24 10.1016/j.cbpc.2006.04.018 16916622
    [Google Scholar]
  50. Sharma A. Kshetrimayum C. Sadhu H.G. Kumar S. Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants Vitamin E and Coenzyme Q10. Environ. Sci. Pollut. Res. Int. 2018 25 24 23946 23953 10.1007/s11356‑018‑2398‑z 29948670
    [Google Scholar]
  51. Suarez-Lopez J.R. Hood N. Suárez-Torres J. Gahagan S. Gunnar M.R. López-Paredes D. Associations of acetylcholinesterase activity with depression and anxiety symptoms among adolescents growing up near pesticide spray sites. Int. J. Hyg. Environ. Health 2019 222 7 981 990 10.1016/j.ijheh.2019.06.001 31202795
    [Google Scholar]
  52. Wang X. Li P. Ding Q. Wu C. Zhang W. Tang B. Observation of Acetylcholinesterase in stress-induced depression phenotypes by two-photon fluorescence imaging in the mouse brain. J. Am. Chem. Soc. 2019 141 5 2061 2068 10.1021/jacs.8b11414 30638380
    [Google Scholar]
  53. Reitz C. Brayne C. Mayeux R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 2011 7 3 137 152 10.1038/nrneurol.2011.2 21304480
    [Google Scholar]
  54. Dong S. Duan Y. Hu Y. Zhao Z. Advances in the pathogenesis of Alzheimer’s disease: A re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 2012 1 1 18 10.1186/2047‑9158‑1‑18 23210692
    [Google Scholar]
  55. Singh J.C.H. Kakalij R.M. Kshirsagar R.P. Kumar B.H. Komakula S.S.B. Diwan P.V. Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharm. Biol. 2015 53 5 630 636 10.3109/13880209.2014.935866 25472801
    [Google Scholar]
  56. Chellammal H.S.J. Menon B.V.V. Hasan M.H. Neuropharmacological studies of ethanolic extract of Vaccinium corymbosum on Alzheimer’s type dementia and catatonia in Swiss albino mice. J HerbMed Pharmacol 2021 10 2 241 248 10.34172/jhp.2021.27
    [Google Scholar]
  57. Wisessaowapak C. Visitnonthachai D. Watcharasit P. Satayavivad J. Prolonged arsenic exposure increases tau phosphorylation in differentiated SH-SY5Y cells: The contribution of GSK3 and ERK1/2. Environ. Toxicol. Pharmacol. 2021 84 103626 10.1016/j.etap.2021.103626 33621689
    [Google Scholar]
  58. Ariafar S. Makhdoomi S. Mohammadi M. Arsenic and tau phosphorylation: A mechanistic review. Biol. Trace Elem. Res. 2023 201 12 5708 5720 10.1007/s12011‑023‑03634‑y 37211576
    [Google Scholar]
  59. Sharma R. Abubakar M.D. Bisht P. Arsenic exposure and amyloid precursor protein Processing: A focus on alzheimer’s disease. Curr. Mol. Pharmacol. 2023 Epub ahead of print10.2174/0118761429272806231020045840 37921143
    [Google Scholar]
  60. Ahmed G. Rahaman S. Perez E. Khan K.M. Associations of environmental exposure to arsenic, manganese, lead, and associations of environmental exposure to arsenic, manganese, lead, and cadmium with alzheimer ’ s disease: A review of recent evidence from mechanistic studies. J. Xenobiot. 2025 15 2 47 10.3390/jox15020047
    [Google Scholar]
  61. Duan X. Xu G. Li J. Arsenic induces continuous inflammation and regulates Th1/Th2/Th17/Treg balance in liver and kidney in vivo. Mediators Inflamm. 2022 2022 1 14 10.1155/2022/8414047 35210942
    [Google Scholar]
  62. Pekny M. Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev. 2014 94 4 1077 1098 10.1152/physrev.00041.2013 25287860
    [Google Scholar]
  63. Hope B.T. Michael G.J. Knigge K.M. Vincent S.R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA 1991 88 7 2811 2814 10.1073/pnas.88.7.2811 1707173
    [Google Scholar]
  64. Firdaus F. Zafeer M.F. Anis E. Ahmad M. Afzal M. Ellagic acid attenuates arsenic induced neuro-inflammation and mitochondrial dysfunction associated apoptosis. Toxicol. Rep. 2018 5 411 417 10.1016/j.toxrep.2018.02.017 29854611
    [Google Scholar]
  65. Das U.N. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med. Sci. Monit. 2007 13 12 RA214 RA221 18049445
    [Google Scholar]
  66. Karim M.R. Salam M. Ali N. Quamruzzaman Q. Association between arsenic exposure and plasma cholinesterase activity: A population based study in Bangladesh. Environ. Health 2010 9 1 8 10.1186/1476‑069X‑9‑36
    [Google Scholar]
  67. Teodorak B.P. Ferreira G.K. Ferreira G. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats. An Acad Bras Cienc 2015 87 1389 10.1590/0001‑3765201520140638
  68. Biswas S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016 2016 1 5698931 10.1155/2016/5698931 26881031
    [Google Scholar]
/content/journals/car/10.2174/0115672050390649250904100840
Loading
/content/journals/car/10.2174/0115672050390649250904100840
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: acetylcholinesterase ; cognition ; GFAP ; Alzheimer’s disease ; Arsenic neurotoxicity ; Nnos
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test