Skip to content
2000
image of Network Pharmacology of miR-146a-5p as a Potential Anti-Inflammatory Agent in Preventing Alzheimer's Disease

Abstract

Introduction

Alzheimer's disease is expressed as chronic neuroinflammation in the brain, which results in neuronal dysfunction, aberrant protein folding, and declining cognitive abilities. miR-146a-5p is a potent anti-inflammatory agent that can attenuate several inflammatory diseases and promote wound healing. Our research aimed to utilize network pharmacology to elucidate the therapeutic potential of miR-146a-5p in treating Alzheimer's disease using a biocomputational approach.

Method

Alzheimer's disease genes were extracted from DisGeNET, OMIM, and GeneCards databases. At the same time, miR-146a-5p candidate genes were sourced from four prediction databases: miRDB, miRWalk, miRNet, and TargetScan.

Results

The overlap between miR-146a-5p and Alzheimer's disease genes was established using STRING, with a score greater than 0.9, revealing a total of 157 nodes in the compound-target disease network.

Discussions

Pathway enrichment analysis further revealed key candidate genes associated with Alzheimer's, including those involved in neuronal death, leukocyte migration, and axon development. EGFR, IL6, NFKB1, TLR4, CXCL8, FN1, CXCR4, and BCL2 were pinpointed as the top 8 key candidate genes of miR-146a-5p. Between these key candidate genes, the miR-146a-5p Regulatory Network also demonstrated that miR-146a-5p downregulates EGFR and CXCR4. Furthermore, this research revealed the regulatory network of miR-146a-5p, which modulates the transcriptional activities of IL6, NFKB1, TLR4, CXCL8, FN1, and BCL2.

Conclusion

Therefore, the current network pharmacology study explored the principal mechanism behind the anti-inflammatory effects of miR-146a-5p in treating Alzheimer's disease, and potentially to be applied to other neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050383519250825060815
2025-09-03
2025-11-02
Loading full text...

Full text loading...

References

  1. National Institute on Aging. What Is Alzheimer’s Disease? 2025 Available from: https://www.nia.nih.gov/health/alzheimers-and-dementia/what-alzheimers-disease
  2. World Health Organisation. The top 10 causes of death. 2025 Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  3. ADI - About Alzheimer’s & Dementia. 2025 Available from: https://www.alzint.org/about/
  4. Querfurth H.W. LaFerla F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010 362 4 329 344 10.1056/NEJMra0909142 20107219
    [Google Scholar]
  5. Scannevin R.H. Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Curr. Opin. Chem. Biol. 2018 44 66 74 10.1016/j.cbpa.2018.05.018 29902695
    [Google Scholar]
  6. Haass C. Selkoe D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007 8 2 101 112 10.1038/nrm2101 17245412
    [Google Scholar]
  7. Chen Jia-Xin Yan Shirley ShiDu Role of mitochondrial amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis. 2010 20 Suppl 2 S569 S578 10.3233/JAD‑2010‑100357
    [Google Scholar]
  8. Crews L. Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet. 2010 19 R1 R12 R20 10.1093/hmg/ddq160 20413653
    [Google Scholar]
  9. Pardridge W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005 2 1 3 14 10.1602/neurorx.2.1.3 15717053
    [Google Scholar]
  10. Lee R.C. Feinbaum R.L. Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993 75 5 843 854 10.1016/0092‑8674(93)90529‑Y 8252621
    [Google Scholar]
  11. MacFarlane L.-A. Murphy P. R. MicroRNA: Biogenesis, function and role in cancer. CG 2010 11 537 10.2174/138920210793175895
    [Google Scholar]
  12. Rodriguez A. Griffiths-Jones S. Ashurst J.L. Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004 14 10a 1902 1910 10.1101/gr.2722704 15364901
    [Google Scholar]
  13. Ha M. Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014 15 8 509 524 10.1038/nrm3838 25027649
    [Google Scholar]
  14. Ipsaro J.J. Joshua-Tor L. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat. Struct. Mol. Biol. 2015 22 1 20 28 10.1038/nsmb.2931 25565029
    [Google Scholar]
  15. Valinezhad Orang A. Safaralizadeh R. Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated gene regulation from common downregulation to mRNA-specific upregulation. Int. J. Genomics 2014 2014 1 15 10.1155/2014/970607 25180174
    [Google Scholar]
  16. Forman J.J. Legesse-Miller A. Coller H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. USA 2008 105 39 14879 14884 10.1073/pnas.0803230105 18812516
    [Google Scholar]
  17. Ørom U.A. Nielsen F.C. Lund A.H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 2008 30 4 460 471 10.1016/j.molcel.2008.05.001 18498749
    [Google Scholar]
  18. Tay Y. Zhang J. Thomson A.M. Lim B. Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008 455 7216 1124 1128 10.1038/nature07299 18806776
    [Google Scholar]
  19. Zhang J. Zhou W. Liu Y. Liu T. Li C. Wang L. Oncogenic role of microRNA-532‑5p in human colorectal cancer via targeting of the 5'UTR of RUNX3. Oncol. Lett. 2018 15 5 7215 7220 10.3892/ol.2018.8217 29849790
    [Google Scholar]
  20. Ciafrè S.A. Galardi S. microRNAs and RNA-binding proteins. RNA Biol. 2013 10 6 934 942 10.4161/rna.24641 23696003
    [Google Scholar]
  21. Duchaine T.F. Fabian M.R. Mechanistic insights into MicroRNA-mediated gene silencing. Cold Spring Harb. Perspect. Biol. 2019 11 3 a032771 10.1101/cshperspect.a032771 29959194
    [Google Scholar]
  22. Lin S. Gregory R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 2015 15 6 321 333 10.1038/nrc3932 25998712
    [Google Scholar]
  23. Siegel G. Saba R. Schratt G. microRNAs in neurons: Manifold regulatory roles at the synapse. Curr. Opin. Genet. Dev. 2011 21 4 491 497 10.1016/j.gde.2011.04.008 21561760
    [Google Scholar]
  24. Dharap A. Bowen K. Place R. Li L.C. Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J. Cereb. Blood Flow Metab. 2009 29 4 675 687 10.1038/jcbfm.2008.157 19142192
    [Google Scholar]
  25. Place R.F. Li L.C. Pookot D. Noonan E.J. Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. USA 2008 105 5 1608 1613 10.1073/pnas.0707594105 18227514
    [Google Scholar]
  26. Taganov K.D. Boldin M.P. Chang K.J. Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006 103 33 12481 12486 10.1073/pnas.0605298103 16885212
    [Google Scholar]
  27. Cobb B.S. Hertweck A. Smith J. O’Connor E. Graf D. Cook T. Smale S.T. Sakaguchi S. Livesey F.J. Fisher A.G. Merkenschlager M. A role for Dicer in immune regulation. J. Exp. Med. 2006 203 11 2519 2527 10.1084/jem.20061692 17060477
    [Google Scholar]
  28. Liu W. Rong Y. Wang J. Zhou Z. Ge X. Ji C. Jiang D. Gong F. Li L. Chen J. Zhao S. Kong F. Gu C. Fan J. Cai W. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J. Neuroinflammation 2020 17 1 47 10.1186/s12974‑020‑1726‑7 32019561
    [Google Scholar]
  29. Sano M. Akagi D. Naito M. Hoshina K. Miyata K. Kataoka K. Ishihara S. Systemic single administration of anti‐inflammatory microRNA 146a‐5p loaded in polymeric nanomedicines with active targetability attenuates neointimal hyperplasia by controlling inflammation in injured arteries in a rat model. FASEB J. 2022 36 9 e22486 10.1096/fj.202101481R 35929425
    [Google Scholar]
  30. Tan Y. Yu L. Zhang C. Chen K. Lu J. Tan L. miRNA‑146a attenuates inflammation in an in vitro spinal cord injury model via inhibition of TLR4 signaling. Exp. Ther. Med. 2018 16 4 3703 3709 10.3892/etm.2018.6645 30233729
    [Google Scholar]
  31. Yang K. He Y.S. Wang X.Q. Lu L. Chen Q.J. Liu J. Sun Z. Shen W.F. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011 585 6 854 860 10.1016/j.febslet.2011.02.009 21329689
    [Google Scholar]
  32. Cheng H.S. Sivachandran N. Lau A. Boudreau E. Zhao J.L. Baltimore D. Delgado-Olguin P. Cybulsky M.I. Fish J.E. Micro RNA ‐146 represses endothelial activation by inhibiting pro‐inflammatory pathways. EMBO Mol. Med. 2013 5 7 1017 1034 10.1002/emmm.201202318 23733368
    [Google Scholar]
  33. Berger S.I. Iyengar R. Network analyses in systems pharmacology. Bioinformatics 2009 25 19 2466 2472 10.1093/bioinformatics/btp465 19648136
    [Google Scholar]
  34. Wang J. Li X.J. Network pharmacology and drug discovery. Sheng Li Ke Xue Jin Zhan 2011 42 4 241 245 22066413
    [Google Scholar]
  35. Shamsol Azman A.N.S. Tan J.J. Abdullah M.N.H. Bahari H. Lim V. Yong Y.K. Network pharmacology and molecular docking analysis of active compounds in tualang honey against atherosclerosis. Foods 2023 12 9 1779 10.3390/foods12091779 37174317
    [Google Scholar]
  36. Hao Dong T. Yau Wen Ning A. Yin Quan T. Network pharmacology-integrated molecular docking analysis of phytocompounds of Caesalpinia pulcherrima (peacock flower) as potential anti-metastatic agents. J. Biomol. Struct. Dyn. 2024 42 4 1778 1794 10.1080/07391102.2023.2202273 37060321
    [Google Scholar]
  37. Hamosh A. Scott A.F. Amberger J.S. Bocchini C.A. McKusick V.A. Online mendelian inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2004 33 Database issue D514 D517 10.1093/nar/gki033 15608251
    [Google Scholar]
  38. Piñero J. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017 45 D833 D839 10.1093/nar/gkw943
    [Google Scholar]
  39. Stelzer G. Rappaport Noa Safran Marilyn Lancet Doron The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016 54 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  40. Wang X. miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA 2008 14 6 1012 1017 10.1261/rna.965408 18426918
    [Google Scholar]
  41. Sticht C. De La Torre C. Parveen A. Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One 2018 13 10 e0206239 10.1371/journal.pone.0206239 30335862
    [Google Scholar]
  42. Chang L. Zhou G. Soufan O. Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020 48 W1 W244 W251 10.1093/nar/gkaa467 32484539
    [Google Scholar]
  43. Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015 4 e05005 10.7554/eLife.05005 26267216
    [Google Scholar]
  44. Heberle H. Meirelles G.V. da Silva F.R. Telles G.P. Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 2015 16 1 169 10.1186/s12859‑015‑0611‑3 25994840
    [Google Scholar]
  45. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  46. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  47. Chin C.-H. Chen S.-H. Wu H.-H. Ho C.-W. Ko M.-T. Lin C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014 8 4 211 10.1186/1752‑0509‑8‑S4‑S11
    [Google Scholar]
  48. Ashburner M. Ball C.A. Blake J.A. Botstein D. Butler H. Cherry J.M. Davis A.P. Dolinski K. Dwight S.S. Eppig J.T. Harris M.A. Hill D.P. Issel-Tarver L. Kasarskis A. Lewis S. Matese J.C. Richardson J.E. Ringwald M. Rubin G.M. Sherlock G. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000 25 1 25 29 10.1038/75556 10802651
    [Google Scholar]
  49. Dolgalev, I. msigdbr: MSigDB gene sets for multiple organisms in a tidy data format. Available from: https://igordot.github.io/msigdbr/
  50. Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. Feng T. Zhou L. Tang W. Zhan L. Fu X. Liu S. Bo X. Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb.) 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  51. Kanehisa M. Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  52. Griss J. Viteri G. Sidiropoulos K. Nguyen V. Fabregat A. Hermjakob H. ReactomeGSA - Efficient multi-omics comparative pathway analysis. Mol. Cell. Proteomics 2020 19 12 2115 2125 10.1074/mcp.TIR120.002155 32907876
    [Google Scholar]
  53. Cui C. Zhong B. Fan R. Cui Q. HMDD v4.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2024 52 D1 D1327 D1332 10.1093/nar/gkad717 37650649
    [Google Scholar]
  54. Schnöder L. Hao W. Qin Y. Liu S. Tomic I. Liu X. Fassbender K. Liu Y. Deficiency of neuronal p38α MAPK attenuates amyloid pathology in alzheimer disease mouse and cell models through facilitating lysosomal degradation of BACE1. J. Biol. Chem. 2016 291 5 2067 2079 10.1074/jbc.M115.695916 26663083
    [Google Scholar]
  55. Zarubin T. Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005 15 1 11 18 10.1038/sj.cr.7290257 15686620
    [Google Scholar]
  56. Alam J.J. Selective brain-targeted antagonism of p38 MAPKα reduces hippocampal IL-1β Levels and improves morris water maze performance in aged rats. J. Alzheimers Dis. 2015 48 1 219 227 10.3233/JAD‑150277 26401942
    [Google Scholar]
  57. Birecree E. Whetsell W.O. Jr Stoscheck C. King L.E. Jr Nanney L.B. Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 1988 47 5 549 560 10.1097/00005072‑198809000‑00006 3049945
    [Google Scholar]
  58. Koprivica V. Cho K.S. Park J.B. Yiu G. Atwal J. Gore B. Kim J.A. Lin E. Tessier-Lavigne M. Chen D.F. He Z. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 2005 310 5745 106 110 10.1126/science.1115462 16210539
    [Google Scholar]
  59. Xu M.F. Zhou H. Hu C.Y. Liang Y.Q. Hu L. Chen D. The mechanisms of EGFR in the regulation of axon regeneration. Cell Biochem. Funct. 2014 32 1 101 105 10.1002/cbf.2977 23681769
    [Google Scholar]
  60. Choi H.J. Jeong Y.J. Kim J. Hoe H.S. EGFR is a potential dual molecular target for cancer and Alzheimer’s disease. Front. Pharmacol. 2023 14 1238639 10.3389/fphar.2023.1238639 37601068
    [Google Scholar]
  61. Chen Y.J. Hsu C.C. Shiao Y.J. Wang H.T. Lo Y.L. Lin A.M.Y. Anti-inflammatory effect of afatinib (an EGFR-TKI) on OGD-induced neuroinflammation. Sci. Rep. 2019 9 1 2516 10.1038/s41598‑019‑38676‑7 30792526
    [Google Scholar]
  62. Özbeyli D. Sarı G. Özkan N. Karademir B. Yüksel M. Çilingir Kaya Ö.T. Kasımay Çakır Ö. Protective effects of different exercise modalities in an Alzheimer’s disease-like model. Behav. Brain Res. 2017 328 159 177 10.1016/j.bbr.2017.03.044 28390878
    [Google Scholar]
  63. Wang L. Liang B. Zhong Y. Reduced EGFR level potentially mediates the Aβ42-induced neuronal loss in transgenic fruit fly and mouse. Protein Cell 2013 4 9 647 649 10.1007/s13238‑013‑3043‑8 23943319
    [Google Scholar]
  64. Chiang H.C. Wang L. Xie Z. Yau A. Zhong Y. PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proc. Natl. Acad. Sci. USA 2010 107 15 7060 7065 10.1073/pnas.0909314107 20351282
    [Google Scholar]
  65. Wang L. Chiang H.C. Wu W. Liang B. Xie Z. Yao X. Ma W. Du S. Zhong Y. Epidermal growth factor receptor is a preferred target for treating Amyloid-β–induced memory loss. Proc. Natl. Acad. Sci. USA 2012 109 41 16743 16748 10.1073/pnas.1208011109 23019586
    [Google Scholar]
  66. Chen X. Wang C. Zhou S. Li X. Wu L. The impact of EGFR glene polymorphisms on the risk of alzheimer’s disease in a chinese han population: A case-controled study. Med. Sci. Monit. 2018 24 5035 5040 10.12659/MSM.907809 30026459
    [Google Scholar]
  67. Mazzucchelli C. Brambilla R. Ras-related and MAPK signalling in neuronal plasticity and memory formation. Cell. Mol. Life Sci. 2000 57 4 604 611 10.1007/PL00000722 11130460
    [Google Scholar]
  68. Wong R.W.C. Guillaud L. The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev. 2004 15 2-3 147 156 10.1016/j.cytogfr.2004.01.004 15110798
    [Google Scholar]
  69. Rothaug M. Becker-Pauly C. Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 6 1218 1227 10.1016/j.bbamcr.2016.03.018 27016501
    [Google Scholar]
  70. Blum-Degena D. Müller T. Kuhn W. Gerlach M. Przuntek H. Riederer P. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 1995 202 1-2 17 20 10.1016/0304‑3940(95)12192‑7 8787820
    [Google Scholar]
  71. Dursun E. Gezen-Ak D. Hanağası H. Bilgiç B. Lohmann E. Ertan S. Atasoy İ.L. Alaylıoğlu M. Araz Ö.S. Önal B. Gündüz A. Apaydın H. Kızıltan G. Ulutin T. Gürvit H. Yılmazer S. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J. Neuroimmunol. 2015 283 50 57 10.1016/j.jneuroim.2015.04.014 26004156
    [Google Scholar]
  72. Ringheim G.E. Szczepanik A.M. Petko W. Burgher K.L. Zhu S.Z. Chao C.C. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Brain Res. Mol. Brain Res. 1998 55 1 35 44 10.1016/S0169‑328X(97)00356‑2 9645958
    [Google Scholar]
  73. Quintanilla R.A. Orellana D.I. González-Billault C. Maccioni R.B. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res. 2004 295 1 245 257 10.1016/j.yexcr.2004.01.002 15051507
    [Google Scholar]
  74. Lyra e Silva N.M. Gonçalves R.A. Pascoal T.A. Lima-Filho R.A.S. Resende E.P.F. Vieira E.L.M. Teixeira A.L. de Souza L.C. Peny J.A. Fortuna J.T.S. Furigo I.C. Hashiguchi D. Miya-Coreixas V.S. Clarke J.R. Abisambra J.F. Longo B.M. Donato J. Jr Fraser P.E. Rosa-Neto P. Caramelli P. Ferreira S.T. De Felice F.G. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl. Psychiatry 2021 11 1 251 10.1038/s41398‑021‑01349‑z 33911072
    [Google Scholar]
  75. Pola R. Gaetani E. Flex A. -174 G/C interleukin 6 gene polymorphism and increased risk of multi infarct dementia: a case control study. Exp. Gerontol. 2002 37 7 949 955 10.1016/S0531‑5565(02)00031‑1 12086705
    [Google Scholar]
  76. Licastro F. Grimaldi L.M.E. Bonafè M. Martina C. Olivieri F. Cavallone L. Giovanietti S. Masliah E. Franceschi C. Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. Neurobiol. Aging 2003 24 7 921 926 10.1016/S0197‑4580(03)00013‑7 12928051
    [Google Scholar]
  77. Koivisto A.M. Helisalmi S. Pihlajamäki J. Moilanen L. Kuusisto J. Laakso M. Hiltunen M. Keijo K. Hänninen T. Helkala E.L. Kervinen K. kesäniemi Y.A. Soininen H. Interleukin-6 promoter polymorphism and late-onset alzheimer’s disease in the finnish population. J. Neurogenet. 2005 19 3-4 155 161 10.1080/01677060600569721 16540406
    [Google Scholar]
  78. Shibata N. Ohnuma T. Takahashi T. Baba H. Ishizuka T. Ohtsuka M. Ueki A. Nagao M. Arai H. Effect of IL‐6 polymorphism on risk of Alzheimer disease: Genotype‐phenotype association study in Japanese cases. Am. J. Med. Genet. 2002 114 4 436 439 10.1002/ajmg.10417 11992567
    [Google Scholar]
  79. Bagli M. Papassotiropoulos A. Knapp M. Jessen F. Luise Rao M. Maier W. Heun R. Association between an interleukin-6 promoter and 3′ flanking region haplotype and reduced Alzheimer’s disease risk in a German population. Neurosci. Lett. 2000 283 2 109 112 10.1016/S0304‑3940(00)00917‑4 10739887
    [Google Scholar]
  80. Zhou C. Zhao L. Wang K. Qi Q. Wang M. Yang L. Sun P. Mu H. MicroRNA‑146a inhibits NF‑κB activation and pro‑inflammatory cytokine production by regulating IRAK1 expression in THP‑1 cells. Exp. Ther. Med. 2019 18 4 3078 3084 10.3892/etm.2019.7881 31572547
    [Google Scholar]
  81. Beinke S. Ley S.C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 2004 382 2 393 409 10.1042/BJ20040544 15214841
    [Google Scholar]
  82. Hill M.A. Gammie S.C. Alzheimer’s disease large-scale gene expression portrait identifies exercise as the top theoretical treatment. Sci. Rep. 2022 12 1 17189 10.1038/s41598‑022‑22179‑z 36229643
    [Google Scholar]
  83. Jong Huat T. Camats-Perna J. Newcombe E.A. Onraet T. Campbell D. Sucic J.T. Martini A. Forner S. Mirzaei M. Poon W. LaFerla F.M. Medeiros R. The impact of astrocytic NF-κB on healthy and Alzheimer’s disease brains. Sci. Rep. 2024 14 1 14305 10.1038/s41598‑024‑65248‑1 38906984
    [Google Scholar]
  84. Walter S. Letiembre M. Liu Y. Heine H. Penke B. Hao W. Bode B. Manietta N. Walter J. Schulz-Schüffer W. Fassbender K. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell. Physiol. Biochem. 2007 20 6 947 956 10.1159/000110455 17982277
    [Google Scholar]
  85. Jin J.J. Kim H.D. Maxwell J.A. Li L. Fukuchi K. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J. Neuroinflammation 2008 5 1 23 10.1186/1742‑2094‑5‑23 18510752
    [Google Scholar]
  86. Balducci C. Frasca A. Zotti M. La Vitola P. Mhillaj E. Grigoli E. Iacobellis M. Grandi F. Messa M. Colombo L. Molteni M. Trabace L. Rossetti C. Salmona M. Forloni G. Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behav. Immun. 2017 60 188 197 10.1016/j.bbi.2016.10.012 27751869
    [Google Scholar]
  87. Hughes C. Choi M.L. Yi J.H. Kim S.C. Drews A. George-Hyslop P.S. Bryant C. Gandhi S. Cho K. Klenerman D. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun. Biol. 2020 3 1 79 10.1038/s42003‑020‑0792‑9 32071389
    [Google Scholar]
  88. Ye E.A. Steinle J.J. miR-146a attenuates inflammatory pathways mediated by TLR4/NF- κ B and TNF α to Protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm. 2016 2016 1 9 10.1155/2016/3958453 26997759
    [Google Scholar]
  89. Bogdan S. Puścion-Jakubik A. Klimiuk K. Socha K. Kochanowicz J. Gorodkiewicz E. The concentration of fibronectin and MMP-1 in patients with alzheimer’s disease in relation to the selected antioxidant nlms and eating habits. J. Clin. Med. 2022 11 21 6360 10.3390/jcm11216360 36362588
    [Google Scholar]
  90. Farr N.D. Kraner S.D. Nelson P.T. Norris C.M. Sompol P. Fibronectin accumulation and oxidative modification in Alzheimer’s disease. Alzheimers Dement. 2020 16 S2 e044053 10.1002/alz.044053
    [Google Scholar]
  91. Leszek J.W. Lemanska A. Kiejna A. Kątnik- Prastowska I. Appearance of macromolecular form of Fibronectin in dementia patients. Eur. Psychiatry 2008 23 S2 S195 S195 10.1016/j.eurpsy.2008.01.301
    [Google Scholar]
  92. Lemańska-Perek A. Pupek M. Polańska B. Leszek J. Kątnik-Prastowska I. Alterations in molecular status of plasma fibronectin associated with aging of normal human individuals. Clin. Biochem. 2013 46 9 787 794 10.1016/j.clinbiochem.2013.03.008 23518314
    [Google Scholar]
  93. Bhattarai I. Rare genetic variation in Fibronectin 1 (FN1) protects against APOEe4 in Alzheimer’s disease. 2024 bioRxiv 10.1101/2024.01.02.573895
    [Google Scholar]
  94. Grammas P. Samany P.G. Thirumangalakudi L. Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: Implications for disease pathogenesis. J. Alzheimers Dis. 2006 9 1 51 58 10.3233/JAD‑2006‑9105 16627934
    [Google Scholar]
  95. Galimberti D. Schoonenboom N. Scheltens P. Fenoglio C. Bouwman F. Venturelli E. Guidi I. Blankenstein M.A. Bresolin N. Scarpini E. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch. Neurol. 2006 63 4 538 543 10.1001/archneur.63.4.538 16606766
    [Google Scholar]
  96. Li K. Liu S. Yao S. Wang B. Dai D. Yao L. Interaction between interleukin-8 and methylenetetrahydrofolate reductase genes modulates Alzheimer’s disease risk. Dement. Geriatr. Cogn. Disord. 2009 27 3 286 291 10.1159/000204766 19246914
    [Google Scholar]
  97. Ashutosh Kou W. Cotter R. Borgmann K. Wu L. Persidsky R. Sakhuja N. Ghorpade A. CXCL8 protects human neurons from amyloid-β-induced neurotoxicity: Relevance to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2011 412 4 565 571 10.1016/j.bbrc.2011.07.127 21840299
    [Google Scholar]
  98. Angelopoulos P. Agouridaki H. Vaiopoulos H. Siskou E. Doutsou K. Costa V. Baloyiannis S.I. Cytokines in Alzheimer’s disease and vascular dementia. Int. J. Neurosci. 2008 118 12 1659 1672 10.1080/00207450701392068 18937113
    [Google Scholar]
  99. Zhang J. Sokal I. Peskind E.R. Quinn J.F. Jankovic J. Kenney C. Chung K.A. Millard S.P. Nutt J.G. Montine T.J. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol. 2008 129 4 526 529 10.1309/W01Y0B808EMEH12L 18343778
    [Google Scholar]
  100. Jin D. Zhang M. Shi L. Liu H. Investigating the impact of IL-6 and CXCL8 on neurodegeneration and cognitive decline in alzheimer disease. Int. J. Neuropsychopharmacol. 2024 28 1 pyae038 10.1093/ijnp/pyae038 39223908
    [Google Scholar]
  101. Kivihall A. Aab A. Soja J. Sładek K. Sanak M. Altraja A. Jakiela B. Bochenek G. Rebane A. Reduced expression of miR-146a in human bronchial epithelial cells alters neutrophil migration. Clin. Transl. Allergy 2019 9 1 62 10.1186/s13601‑019‑0301‑8 31798831
    [Google Scholar]
  102. Perry M. M. Moschos S. A. Williams A. E. Shepherd N. J. Larner-Svensson H. M. Lindsay M. A. Rapid changes in MicroRNA-146a expression negatively regulate the il-1β-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol. 2022 180 8 5689 10.4049/jimmunol.180.8.5689
    [Google Scholar]
  103. Wang C. Fang X. Huang Y. Xue L. Research progress of the CXCR4 mechanism in Alzheimer’s disease. Ibrain 2022 8 1 3 14 10.1002/ibra.12026
    [Google Scholar]
  104. Wang R. Li H. A focus on CXCR4 in Alzheimer’s disease. Brain Circ. 2017 3 4 199 203 10.4103/bc.bc_13_17 30276325
    [Google Scholar]
  105. Tripathi R. Kumar P. Preliminary study to identify CXCR4 inhibitors as potential therapeutic agents for Alzheimer’s and Parkinson’s diseases. Integr. Biol. 2023 15 zyad012 10.1093/intbio/zyad012 37635325
    [Google Scholar]
  106. Hirsch E. Katanaev V.L. Garlanda C. Azzolino O. Pirola L. Silengo L. Sozzani S. Mantovani A. Altruda F. Wymann M.P. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 2000 287 5455 1049 1053 10.1126/science.287.5455.1049 10669418
    [Google Scholar]
  107. Li H. Hao L. Li Y. Wang R. Reducing CXCR4 resulted in impairing proliferation and promoting aging. J. Nutr. Health Aging 2018 22 7 785 789 10.1007/s12603‑018‑1013‑9 30080220
    [Google Scholar]
  108. Zhang S. Zhao J. Zhang Y. Zhang Y. Cai F. Wang L. Song W. Upregulation of MIF as a defense mechanism and a biomarker of Alzheimer’s disease. Alzheimers Res. Ther. 2019 11 1 54 10.1186/s13195‑019‑0508‑x 31174614
    [Google Scholar]
  109. Beck T.C. Gomes A.C. Cyster J.G. Pereira J.P. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J. Exp. Med. 2014 211 13 2567 2581 10.1084/jem.20140457 25403444
    [Google Scholar]
  110. Yang T. Li C. Li Y. Cai G. Wang G. He L. He C. MicroRNA-146a-5p alleviates the pathogenesis of osteoarthritis by inhibiting SDF-1/CXCR4-induced chondrocyte autophagy. Int. Immunopharmacol. 2023 117 109938 10.1016/j.intimp.2023.109938 36863142
    [Google Scholar]
  111. O’Barr S. Schultz J. Rogers J. Expression of the protooncogene bcl-2 in Alzheimer’s disease brain. Neurobiol. Aging 1996 17 1 131 136 10.1016/0197‑4580(95)02024‑1 8786795
    [Google Scholar]
  112. Paradis E. Douillard H. Koutroumanis M. Goodyer C. LeBlanc A. Amyloid β peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates bax expression in human neurons. J. Neurosci. 1996 16 23 7533 7539 10.1523/JNEUROSCI.16‑23‑07533.1996 8922409
    [Google Scholar]
  113. Su J.H. Satou T. Anderson A.J. Cotman C.W. Up-regulation of Bcl-2 is associated with neuronal DNA damage in Alzheimerʼs disease. Neuroreport 1996 7 2 437 440 10.1097/00001756‑199601310‑00015 8730800
    [Google Scholar]
  114. Chernyuk D. Callens M. Polozova M. Gordeev A. Chigriai M. Rakovskaya A. Ilina A. Pchitskaya E. Van den Haute C. Vervliet T. Bultynck G. Bezprozvanny I. Neuroprotective properties of anti-apoptotic BCL-2 proteins in 5xFAD mouse model of Alzheimer’s disease. IBRO Neurosci. Rep. 2023 14 273 283 10.1016/j.ibneur.2023.02.005 36926591
    [Google Scholar]
/content/journals/car/10.2174/0115672050383519250825060815
Loading
/content/journals/car/10.2174/0115672050383519250825060815
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test