Skip to content
2000
image of Unveiling the Potential Role of Cathinone and Cathine Compounds in Alzheimer's Disease: Predictive Insights

Abstract

Introduction

Khat ( (Vahl) Forssk. ex Endl.), a stimulant plant native to Africa and Asia, contains psychoactive compounds such as cathinone and cathine that affect the central nervous system. This study aims to investigate the potential neurotoxicological risks associated with these compounds, particularly focusing on their possible relationship with neurodegenerative disorders like Alzheimer's disease (AD). The primary objective was to evaluate the toxicity of khat's main compounds and examine their molecular interactions with Monoamine Oxidase A (MAO-A), an enzyme implicated in the pathology of AD.

Methods

The toxicological profiles of cathinone, cathine, amphetamine, and the AD medication Donepezil were assessed using the Protox-3 server, which predicted toxicity class, potential for liver damage, carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Molecular docking studies were conducted to analyse the binding interactions of these compounds with MAO-A (PDB ID: 2Z5X). Binding affinities and key interacting residues were identified. The steric effects of the ligands within the enzyme's binding site were quantified by calculating the buried volume (%VBur) using the centroid of centres method.

Results

Protox-3 classified cathine and amphetamine as Class 3 toxicants (moderate toxicity), while cathinone and Donepezil were assigned to Class 4 (lower toxicity). Cathinone also demonstrated a moderate probability (0.64) of carcinogenicity. Molecular docking revealed that khat compounds had an average binding affinity of -5.81 ± 0.27 kcal/mol, which was lower than that of amphetamine (-6.10 ± 0.27 kcal/mol) and Donepezil (-7.80 ± 0.38 kcal/mol). Buried volume analysis indicated that khat compounds and amphetamine were more deeply embedded in the MAO-A binding site, correlating with stronger binding affinity.

Discussion

The computational results suggest that khat compounds exhibit moderate neurotoxic potential and interact with MAO-A in a manner that could be relevant to AD pathology. Although the binding affinities are lower than those of Amphetamine and Donepezil, they point to possible molecular-level interactions significant for neurodegeneration. Steric hindrance, as quantified by %VBur, appeared to influence binding strength, highlighting the importance of molecular fit within the active site.

Conclusion

This study presents evidence of a potential molecular link between khat consumption and an increased risk of Alzheimer's disease. The findings underscore the necessity for further and epidemiological research, particularly in regions with high rates of khat use, to assess its long-term neurotoxic effects.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050386584250718130948
2025-08-01
2025-09-10
Loading full text...

Full text loading...

References

  1. Bedada W. de Andrés F. Engidawork E. Hussein J. LLerena A. Aklillu E. Effects of Khat (Catha edulis) use on catalytic activities of major drug-metabolizing cytochrome P450 enzymes and implication of pharmacogenetic variations. Sci. Rep. 2018 8 1 12726 10.1038/s41598‑018‑31191‑1 30143732
    [Google Scholar]
  2. Young J.T. Butt J. Hersi A. Tohow A. Mohamed D.H. Khat dependence, use patterns, and health consequences in Australia: An exploratory study. J. Stud. Alcohol Drugs 2016 77 2 343 348 10.15288/jsad.2016.77.343 26997193
    [Google Scholar]
  3. Fiidow O.A. Minhat H.S. Zulkefli N.A.M. Ahmad N. A systematic review on risk factors for khat chewing among adolescents in the African continent and Arabian Peninsula. PLoS One 2022 17 2 0263372 10.1371/journal.pone.0263372 35113927
    [Google Scholar]
  4. Ingegneri M. Smeriglio E. Zebbiche Y. Cornara L. Visalli L. Smeriglio A. Trombetta D. Trombetta D. The dark side of “smart drugs”: Cognitive enhancement vs. Toxics 2025 13 4 247 10.3390/toxics13040247 40278563
    [Google Scholar]
  5. Lopez A. Gil-Lievana E. Gutierrez R. Sex-specific effects of appetite suppressants and stereotypy in rats. BioRxiv 2025 2025.02.12.637751 10.1101/2025.02.12.637751
    [Google Scholar]
  6. Graziani M. Milella M.S. Nencini P. Khat chewing from the pharmacological point of view: An update. Subst. Use Misuse 2008 43 6 762 783 10.1080/10826080701738992
    [Google Scholar]
  7. Numan N. The green leaf: Khat, world. J. Med. Sci. 2012 7 210 223 10.5829/idosi.wjms.2012.7.4.63142
    [Google Scholar]
  8. François M. Takagi K. Legrand R. Lucas N. Beutheu S. Bôle-Feysot C. Cravezic A. Tennoune N. do Rego J.C. Coëffier M. Inui A. Déchelotte P. Fetissov S.O. Increased ghrelin but low ghrelin-reactive immunoglobulins in a rat model of methotrexate chemotherapy-induced anorexia. Front. Nutr. 2016 3 23 10.3389/fnut.2016.00023 27508207
    [Google Scholar]
  9. Al-Motarreb A. Baker K. Broadley K.J. Khat: Pharmacological and medical aspects and its social use in Yemen. Phytother. Res. 2002 16 5 403 413 10.1002/ptr.1106 12203257
    [Google Scholar]
  10. Welsch M.E. Zhou J. Gao Y. Yan Y. Porter G. Agnihotri G. Li Y. Lu H. Chen Z. Thomas S.B. Discovery of potent and selective leads against Toxoplasma gondii dihydrofolate reductase via structure-based design. ACS Med. Chem. Lett. 2016 7 12 1124 1129 10.1021/acsmedchemlett.6b00328 27994750
    [Google Scholar]
  11. Nencini P. Ahmed A.M. Anania C. Moscucci M. Paroli E. Prolonged analgesia induced by cathinone. The role of stress and opioid and nonopioid mechanisms. Pharmacology 1984 29 5 269 281 10.1159/000138023 6093160
    [Google Scholar]
  12. Gannon B.M. Baumann M.H. Walther D. Jimenez-Morigosa C. Sulima A. Rice K.C. Collins G.T. The abuse-related effects of pyrrolidine-containing cathinones are related to their potency and selectivity to inhibit the dopamine transporter. Neuropsychopharmacology 2018 43 12 2399 2407 10.1038/s41386‑018‑0209‑3 30305739
    [Google Scholar]
  13. Freund-Michel V.C. Birrell M.A. Patel H.J. Murray-Lyon I.M. Belvisi M.G. Modulation of cholinergic contractions of airway smooth muscle by cathinone: Potential beneficial effects in airway diseases. Eur. Respir. J. 2008 32 3 579 584 10.1183/09031936.00162707 18757696
    [Google Scholar]
  14. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  15. Heilman K.M. Nadeau S.E. Emotional and neuropsychiatric disorders associated with Alzheimer's disease. Neurotherapeutics 2022 19 1 99 116 10.1007/s13311‑021‑01172‑w
    [Google Scholar]
  16. Gabr M.T. Ibrahim M.M. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 2019 14 3 437 440 10.4103/1673‑5374.245463 30539809
    [Google Scholar]
  17. Thijssen E.H. La Joie R. Wolf A. Strom A. Wang P. Iaccarino L. Bourakova V. Cobigo Y. Heuer H. Spina S. VandeVrede L. Chai X. Proctor N.K. Airey D.C. Shcherbinin S. Duggan Evans C. Sims J.R. Zetterberg H. Blennow K. Karydas A.M. Teunissen C.E. Kramer J.H. Grinberg L.T. Seeley W.W. Rosen H. Boeve B.F. Miller B.L. Rabinovici G.D. Dage J.L. Rojas J.C. Boxer A.L. Forsberg L. Knopman D.S. Graff-Radford N. Grossman M. Huey E.H. Onyike C. Kaufer D. Roberson E. Ghoshal N. Weintraub S. Appleby B. Litvan I. Kerwin D. Mendez M. Bordelon Y. Coppola G. Ramos E.M. Tartaglia M.C. Hsiung G.Y. MacKenzie I. Domoto-Reilly K. Foroud T. Dickerson B.C. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 2020 26 3 387 397 10.1038/s41591‑020‑0762‑2 32123386
    [Google Scholar]
  18. Jain P. Chaney A.M. Carlson M.L. Jackson I.M. Rao A. James M.L. Neuroinflammation PET imaging: Current opinion and future directions. J. Nucl. Med. 2020 61 8 1107 1112 10.2967/jnumed.119.229443 32620705
    [Google Scholar]
  19. Zhang Q.Y. Wang Q. Fu J.X. Xu X.X. Guo D.S. Pan Y.C. Zhang T. Wang H. Multi targeted therapy for Alzheimer's disease by guanidinium-modified calixarene and cyclodextrin co-assembly loaded with insulin. ACS Nano 2024 18 48 33032 33041 10.1021/acsnano.4c05693
    [Google Scholar]
  20. Pei J. Kumarasamy R.V. Jayaraman S. Kanniappan G.V. Long Q. Palanisamy C.P. Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer’s disease management. Ageing Res. Rev. 2025 104 102665 10.1016/j.arr.2025.102665 39824363
    [Google Scholar]
  21. Luo H. Xiang Y. Qu X. Liu H. Liu C. Li G. Han L. Qin X. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front. Pharmacol. 2019 10 395 10.3389/fphar.2019.00395 31040784
    [Google Scholar]
  22. Li H. Tan Y. Cheng X. Zhang Z. Huang J. Hui S. Zhu L. Liu Y. Zhao D. Liu Z. Peng W. Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen Tiansui formula in an aβ25-35-induced rat model of Alzheimer’s disease. Front. Pharmacol. 2022 13 990307 10.3389/fphar.2022.990307 36339577
    [Google Scholar]
  23. Chmielewski J. Chmielewski J. Bąk-Badowska J. Wójtowicz B. Żeber-Dzikowska I. Intoxication with new drugs - an ongoing challenge for public health and education. J. Elem. 2025 30 23 36 10.5601/jelem.2024.29.3.3424
    [Google Scholar]
  24. Chen S. Zhou W. Lai M. Synthetic cathinones: Epidemiology, toxicity, potential for abuse, and current public health perspective. Brain Sci. 2024 14 4 334 10.3390/brainsci14040334
    [Google Scholar]
  25. Rosello-Molina V. Aparisi A.H. Blanes M.S. Nuñez J.T. Soldado E.M. Abad I.M. Ros O.S. Ribera C. Esteban M. Muñoz T.D.V. Synthetic cathinone (α-pyrrolidinohexanophenone): An emerging threat. Eur. Psychiatry 2022 65 S1 S470 S470 10.1192/j.eurpsy.2022.1193
    [Google Scholar]
  26. Cortes-Flores H. Torrandell-Haro G. Brinton R.D. Association between CNS-active drugs and risk of Alzheimer’s and age-related neurodegenerative diseases. Front. Psychiatry 2024 15 1358568 10.3389/fpsyt.2024.1358568 38487578
    [Google Scholar]
  27. Tzeng N.S. Liu Y.P. Amphetamine exposure and dementia – A hypothesis of the long term sequelae of cognitive enhancers based on opponent process theory. Med. Hypotheses 2019 132 109327 10.1016/j.mehy.2019.109327 31421431
    [Google Scholar]
  28. Schaefer A.J. Ingman V.M. Wheeler S.E. SEQCROW : A ChimeraX bundle to facilitate quantum chemical applications to complex molecular systems. J. Comput. Chem. 2021 42 24 1750 1754 10.1002/jcc.26700 34109660
    [Google Scholar]
  29. Ingman V.M. Schaefer A.J. Andreola L.R. Wheeler S.E. QChASM : Quantum chemistry automation and structure manipulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021 11 4 1510 10.1002/wcms.1510
    [Google Scholar]
  30. Banerjee P. Kemmler E. Dunkel M. Preissner R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 52 W1 W513 W520 10.1093/nar/gkae303 38647086
    [Google Scholar]
  31. Cheng F. Li W. Zhou Y. Shen J. Wu Z. Liu G. Lee P.W. Tang Y. Admet S.A.R. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012 52 11 3099 3105 10.1021/ci300367a 23092397
    [Google Scholar]
  32. Alsedfy M.Y. Ebnalwaled A.A. Moustafa M. Said A.H. Investigating the binding affinity, molecular dynamics, and ADMET properties of curcumin-IONPs as a mucoadhesive bioavailable oral treatment for iron deficiency anemia. Sci. Rep. 2024 14 1 22027 10.1038/s41598‑024‑72577‑8 39322646
    [Google Scholar]
  33. Asghari N. Saei A.K. Cordani M. Nayeri Z. Moosavi M.A. Drug repositioning identifies potential autophagy inhibitors for the LIR motif p62/SQSTM1 protein. Comput. Biol. Chem. 2024 113 108235 10.1016/j.compbiolchem.2024.108235 39369612
    [Google Scholar]
  34. Disha I.J. Hasan R. Bhuia S. Ansari S.A. Ansari I.A. Islam M.T. Anxiolytic efficacy of indirubin: In Vivo approach along with receptor binding profiling and molecular interaction with gabaergic pathways. ChemistryOpen 2025 14 2 202400290 10.1002/open.202400290 39460441
    [Google Scholar]
  35. Son S.Y. Ma J. Kondou Y. Yoshimura M. Yamashita E. Tsukihara T. Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors. Proc. Natl. Acad. Sci. USA 2008 105 15 5739 5744 10.1073/pnas.0710626105 18391214
    [Google Scholar]
  36. Safhi M.M. Alam M.F. Hussain S. Siddiqui M.A.H. Khuwaja G. Jubran Khardali I.A. Al-Sanosi R.M. Islam F. Al-Sanosi R.M. Islam F. Cathinone, an active principle of Catha edulis, accelerates oxidative stress in the limbic area of swiss albino mice. J. Ethnopharmacol. 2014 156 102 106 10.1016/j.jep.2014.08.004 25153022
    [Google Scholar]
  37. Kawahara M. Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer′s disease: The integration of the aluminum and amyloid cascade hypotheses. Int. J. Alzheimers Dis. 2011 2011 1 276393 10.4061/2011/276393 21423554
    [Google Scholar]
  38. Goudie A.J. Comparative effects of cathinone and amphetamine on fixed-interval operant responding: A rate-dependency analysis. Pharmacol. Biochem. Behav. 1985 23 3 355 365 10.1016/0091‑3057(85)90006‑1 4048231
    [Google Scholar]
  39. Tzeng N.S. Chien W.C. Chung C.H. Chang H.A. Kao Y.C. Liu Y.P. Association between amphetamine-related disorders and dementia-a nationwide cohort study in Taiwan. Ann. Clin. Transl. Neurol. 2020 7 8 1284 1295 10.1002/acn3.51113 32608133
    [Google Scholar]
  40. Ohara A. Yamada F. Fukuda T. Suzuki N. Sumida K. Specific alteration of gene expression profile in rats by treatment with thyroid toxicants that inhibit thyroid hormone synthesis. J. Appl. Toxicol. 2018 38 12 1529 1537 10.1002/jat.3693 30047161
    [Google Scholar]
  41. Syed A.U. Liang C. Patel K.K. Mondal R. Kamalia V.M. Moran T.R. Ahmed S.T. Mukherjee J. Comparison of monoamine oxidase-a, aβ plaques, tau, and translocator protein levels in postmortem human Alzheimer's disease brain. Int. J. Mol. Sci. 2023 24 13 10808 10.3390/ijms241310808 37445985
    [Google Scholar]
  42. Naoi M. Maruyama W. Type A monoamine oxidase regulates life and death of neurons in neurodegeneration and neuroprotection. Int. Rev. Neurobiol. 2011 100 85 106 10.1016/B978‑0‑12‑386467‑3.00005‑4
    [Google Scholar]
  43. Wong K.Y. Roy J. Fung M.L. Heng B.C. Zhang C. Lim L.W. Relationships between mitochondrial dysfunction and neurotransmission failure in Alzheimer’s disease. Aging Dis. 2020 11 5 1291 1316 10.14336/AD.2019.1125 33014538
    [Google Scholar]
  44. Kennedy B.P. Ziegler M.G. Alford M. Hansen L.A. Thal L.J. Masliah E. Early and persistent alterations in prefrontal cortex MAO A and B in Alzheimer’s disease. J. Neural Transm. 2003 110 7 789 801 10.1007/s00702‑003‑0828‑6 12811639
    [Google Scholar]
  45. Baldinger-Melich P. Gryglewski G. Philippe C. James G.M. Vraka C. Silberbauer L. Balber T. Vanicek T. Pichler V. Unterholzner J. Kranz G.S. Hahn A. Winkler D. Mitterhauser M. Wadsak W. Hacker M. Kasper S. Frey R. Lanzenberger R. The effect of electroconvulsive therapy on cerebral monoamine oxidase A expression in treatment-resistant depression investigated using positron emission tomography. Brain Stimul. 2019 12 3 714 723 10.1016/j.brs.2018.12.976 30635228
    [Google Scholar]
  46. Lam C.S. Li J.J. Tipoe G.L. Youdim M.B.H. Fung M.L. Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2,3-dioxygenase and neurodegeneration. PLoS One 2017 12 6 0177940 10.1371/journal.pone.0177940 28599322
    [Google Scholar]
  47. Lương K. Nguyễn L.T.H. The role of Beta-adrenergic receptor blockers in Alzheimer’s disease: Potential genetic and cellular signaling mechanisms. Am. J. Alzheimers Dis. Other Demen. 2013 28 5 427 439 10.1177/1533317513488924 23689075
    [Google Scholar]
  48. Tremblay P. Pituello F. Gruss P. Inhibition of floor plate differentiation by Pax3 : Evidence from ectopic expression in transgenic mice. Development 1996 122 8 2555 2567 10.1242/dev.122.8.2555 8756299
    [Google Scholar]
  49. Ishioh M. Nozu T. Miyagishi S. Igarashi S. Funayama T. Ueno N. Okumura T. Brain histamine improves colonic hyperpermeability through the basal forebrain cholinergic neurons, adenosine A2B receptors and vagus nerve in rats. Biochem. Pharmacol. 2024 224 116201 10.1016/j.bcp.2024.116201 38608783
    [Google Scholar]
  50. Andersson R. Galter D. Papadia D. Fisahn A. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor. Neuropharmacology 2017 118 13 25 10.1016/j.neuropharm.2017.03.003 28274820
    [Google Scholar]
  51. DeLano W.L. PyMOL Reference Guide. San Carlos, CA, US Delano Scientific 2004 1 68
    [Google Scholar]
  52. Gurung A.B. Bhattacharjee A. Ali M.A. Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets. Inform. Med. Unlocked 2016 5 1 14 10.1016/j.imu.2016.09.004
    [Google Scholar]
  53. Walker W.H. Kearney E.B. Seng R.L. Singer T.P. The covalently-bound flavin of hepatic monoamine oxidase. 2. Identification and properties of cysteinyl riboflavin. Eur. J. Biochem. 1971 24 2 328 331 10.1111/j.1432‑1033.1971.tb19690.x 4333602
    [Google Scholar]
  54. DalleDonne I. Milzani A. Colombo R. The tert-butyl hydroperoxide-induced oxidation of actin Cys-374 is coupled with structural changes in distant regions of the protein. Biochemistry 1999 38 38 12471 12480 10.1021/bi990367k 10493817
    [Google Scholar]
  55. Geha R.M. Chen K. Wouters J. Ooms F. Shih J.C. Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling. J. Biol. Chem. 2002 277 19 17209 17216 10.1074/jbc.M110920200 11861643
    [Google Scholar]
  56. Liu J. Zhao M. Song W. Ma L. Li X. Zhang F. Diao L. Pi Y. Jiang K. An amine oxidase gene from mud crab, Scylla paramamosain, regulates the neurotransmitters serotonin and dopamine in vitro. PLoS One 2018 13 9 0204325 10.1371/journal.pone.0204325 30248122
    [Google Scholar]
  57. Kelley L.A. Mezulis S. Yates C.M. Wass M.N. Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015 10 6 845 858 10.1038/nprot.2015.053 25950237
    [Google Scholar]
/content/journals/car/10.2174/0115672050386584250718130948
Loading
/content/journals/car/10.2174/0115672050386584250718130948
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cathine ; Khat ; in-silico ; Alzheimer's Disease ; MAO-A Enzyme ; cathinone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test