Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Khat ( (Vahl) Forssk. ex Endl.), a stimulant plant native to Africa and Asia, contains psychoactive compounds such as cathinone and cathine that affect the central nervous system. This study aims to investigate the potential neurotoxicological risks associated with these compounds, particularly focusing on their possible relationship with neurodegenerative disorders like Alzheimer's disease (AD). The primary objective was to evaluate the toxicity of khat's main compounds and examine their molecular interactions with Monoamine Oxidase A (MAO-A), an enzyme implicated in the pathology of AD.

Methods

The toxicological profiles of cathinone, cathine, amphetamine, and the AD medication Donepezil were assessed using the Protox-3 server, which predicted toxicity class, potential for liver damage, carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Molecular docking studies were conducted to analyse the binding interactions of these compounds with MAO-A (PDB ID: 2Z5X). Binding affinities and key interacting residues were identified. The steric effects of the ligands within the enzyme's binding site were quantified by calculating the buried volume (%VBur) using the centroid of centres method.

Results

Protox-3 classified cathine and amphetamine as Class 3 toxicants (moderate toxicity), while cathinone and Donepezil were assigned to Class 4 (lower toxicity). Cathinone also demonstrated a moderate probability (0.64) of carcinogenicity. Molecular docking revealed that khat compounds had an average binding affinity of -5.81 ± 0.27 kcal/mol, which was lower than that of amphetamine (-6.10 ± 0.27 kcal/mol) and Donepezil (-7.80 ± 0.38 kcal/mol). Buried volume analysis indicated that khat compounds and amphetamine were more deeply embedded in the MAO-A binding site, correlating with stronger binding affinity.

Discussion

The computational results suggest that khat compounds exhibit moderate neurotoxic potential and interact with MAO-A in a manner that could be relevant to AD pathology. Although the binding affinities are lower than those of Amphetamine and Donepezil, they point to possible molecular-level interactions significant for neurodegeneration. Steric hindrance, as quantified by %VBur, appeared to influence binding strength, highlighting the importance of molecular fit within the active site.

Conclusion

This study presents evidence of a potential molecular link between khat consumption and an increased risk of Alzheimer's disease. The findings underscore the necessity for further and epidemiological research, particularly in regions with high rates of khat use, to assess its long-term neurotoxic effects.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050386584250718130948
2025-08-01
2026-02-03
Loading full text...

Full text loading...

References

  1. BedadaW. de AndrésF. EngidaworkE. HusseinJ. LLerenaA. AklilluE. Effects of Khat (Catha edulis) use on catalytic activities of major drug-metabolizing cytochrome P450 enzymes and implication of pharmacogenetic variations.Sci. Rep.2018811272610.1038/s41598‑018‑31191‑130143732
    [Google Scholar]
  2. YoungJ.T. ButtJ. HersiA. TohowA. MohamedD.H. Khat dependence, use patterns, and health consequences in Australia: An exploratory study.J. Stud. Alcohol Drugs201677234334810.15288/jsad.2016.77.34326997193
    [Google Scholar]
  3. FiidowO.A. MinhatH.S. ZulkefliN.A.M. AhmadN. A systematic review on risk factors for khat chewing among adolescents in the African continent and Arabian Peninsula.PLoS One2022172026337210.1371/journal.pone.026337235113927
    [Google Scholar]
  4. IngegneriM. SmeriglioE. ZebbicheY. CornaraL. VisalliL. SmeriglioA. TrombettaD. TrombettaD. The dark side of “smart drugs”: Cognitive enhancement vs clinical concerns.Toxics202513424710.3390/toxics1304024740278563
    [Google Scholar]
  5. LopezA. Gil-LievanaE. GutierrezR. Sex-specific effects of appetite suppressants and stereotypy in rats.BioRxiv20252025.02.12.63775110.1101/2025.02.12.637751
    [Google Scholar]
  6. GrazianiM. MilellaM.S. NenciniP. Khat chewing from the pharmacological point of view: An update.Subst. Use Misuse200843676278310.1080/10826080701738992
    [Google Scholar]
  7. NumanN. The green leaf: Khat, world.J. Med. Sci.2012721022310.5829/idosi.wjms.2012.7.4.63142
    [Google Scholar]
  8. FrançoisM. TakagiK. LegrandR. LucasN. BeutheuS. Bôle-FeysotC. CravezicA. TennouneN. do RegoJ.C. CoëffierM. InuiA. DéchelotteP. FetissovS.O. Increased ghrelin but low ghrelin-reactive immunoglobulins in a rat model of methotrexate chemotherapy-induced anorexia.Front. Nutr.201632310.3389/fnut.2016.0002327508207
    [Google Scholar]
  9. Al-MotarrebA. BakerK. BroadleyK.J. Khat: Pharmacological and medical aspects and its social use in Yemen.Phytother. Res.200216540341310.1002/ptr.110612203257
    [Google Scholar]
  10. WelschM.E. ZhouJ. GaoY. YanY. PorterG. AgnihotriG. LiY. LuH. ChenZ. ThomasS.B. Discovery of potent and selective leads against Toxoplasma gondii dihydrofolate reductase via structure-based design.ACS Med. Chem. Lett.20167121124112910.1021/acsmedchemlett.6b0032827994750
    [Google Scholar]
  11. NenciniP. AhmedA.M. AnaniaC. MoscucciM. ParoliE. Prolonged analgesia induced by cathinone. The role of stress and opioid and nonopioid mechanisms.Pharmacology198429526928110.1159/0001380236093160
    [Google Scholar]
  12. GannonB.M. BaumannM.H. WaltherD. Jimenez-MorigosaC. SulimaA. RiceK.C. CollinsG.T. The abuse-related effects of pyrrolidine-containing cathinones are related to their potency and selectivity to inhibit the dopamine transporter.Neuropsychopharmacology201843122399240710.1038/s41386‑018‑0209‑330305739
    [Google Scholar]
  13. Freund-MichelV.C. BirrellM.A. PatelH.J. Murray-LyonI.M. BelvisiM.G. Modulation of cholinergic contractions of airway smooth muscle by cathinone: Potential beneficial effects in airway diseases.Eur. Respir. J.200832357958410.1183/09031936.0016270718757696
    [Google Scholar]
  14. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky31829718510
    [Google Scholar]
  15. HeilmanK.M. NadeauS.E. Emotional and neuropsychiatric disorders associated with Alzheimer's disease.Neurotherapeutics20221919911610.1007/s13311‑021‑01172‑w
    [Google Scholar]
  16. GabrM.T. IbrahimM.M. Multitarget therapeutic strategies for Alzheimer’s disease.Neural Regen. Res.201914343744010.4103/1673‑5374.24546330539809
    [Google Scholar]
  17. ThijssenE.H. La JoieR. WolfA. StromA. WangP. IaccarinoL. BourakovaV. CobigoY. HeuerH. SpinaS. VandeVredeL. ChaiX. ProctorN.K. AireyD.C. ShcherbininS. Duggan EvansC. SimsJ.R. ZetterbergH. BlennowK. KarydasA.M. TeunissenC.E. KramerJ.H. GrinbergL.T. SeeleyW.W. RosenH. BoeveB.F. MillerB.L. RabinoviciG.D. DageJ.L. RojasJ.C. BoxerA.L. ForsbergL. KnopmanD.S. Graff-RadfordN. GrossmanM. HueyE.H. OnyikeC. KauferD. RobersonE. GhoshalN. WeintraubS. ApplebyB. LitvanI. KerwinD. MendezM. BordelonY. CoppolaG. RamosE.M. TartagliaM.C. HsiungG.Y. MacKenzieI. Domoto-ReillyK. ForoudT. DickersonB.C. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration.Nat. Med.202026338739710.1038/s41591‑020‑0762‑232123386
    [Google Scholar]
  18. JainP. ChaneyA.M. CarlsonM.L. JacksonI.M. RaoA. JamesM.L. Neuroinflammation PET imaging: Current opinion and future directions.J. Nucl. Med.20206181107111210.2967/jnumed.119.22944332620705
    [Google Scholar]
  19. ZhangQ.Y. WangQ. FuJ.X. XuX.X. GuoD.S. PanY.C. ZhangT. WangH. Multi targeted therapy for Alzheimer's disease by guanidinium-modified calixarene and cyclodextrin co-assembly loaded with insulin.ACS Nano20241848330323304110.1021/acsnano.4c05693
    [Google Scholar]
  20. PeiJ. KumarasamyR.V. JayaramanS. KanniappanG.V. LongQ. PalanisamyC.P. Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer’s disease management.Ageing Res. Rev.202510410266510.1016/j.arr.2025.10266539824363
    [Google Scholar]
  21. LuoH. XiangY. QuX. LiuH. LiuC. LiG. HanL. QinX. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway.Front. Pharmacol.20191039510.3389/fphar.2019.0039531040784
    [Google Scholar]
  22. LiH. TanY. ChengX. ZhangZ. HuangJ. HuiS. ZhuL. LiuY. ZhaoD. LiuZ. PengW. Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen tiansui formula in an aβ25-35-induced rat model of Alzheimer’s disease.Front. Pharmacol.20221399030710.3389/fphar.2022.99030736339577
    [Google Scholar]
  23. ChmielewskiJ. ChmielewskiJ. Bąk-BadowskaJ. WójtowiczB. Żeber-DzikowskaI. Intoxication with new drugs - an ongoing challenge for public health and education.J. Elem.202530233610.5601/jelem.2024.29.3.3424
    [Google Scholar]
  24. ChenS. ZhouW. LaiM. Synthetic cathinones: Epidemiology, toxicity, potential for abuse, and current public health perspective.Brain Sci.202414433410.3390/brainsci14040334
    [Google Scholar]
  25. Rosello-MolinaV. AparisiA.H. BlanesM.S. NuñezJ.T. SoldadoE.M. AbadI.M. RosO.S. RiberaC. EstebanM. MuñozT.D.V. Synthetic cathinone (α-pyrrolidinohexanophenone): An emerging threat.Eur. Psychiatry202265S1S470S47010.1192/j.eurpsy.2022.1193
    [Google Scholar]
  26. Cortes-FloresH. Torrandell-HaroG. BrintonR.D. Association between CNS-active drugs and risk of Alzheimer’s and age-related neurodegenerative diseases.Front. Psychiatry202415135856810.3389/fpsyt.2024.135856838487578
    [Google Scholar]
  27. TzengN.S. LiuY.P. Amphetamine exposure and dementia – A hypothesis of the long term sequelae of cognitive enhancers based on opponent process theory.Med. Hypotheses201913210932710.1016/j.mehy.2019.10932731421431
    [Google Scholar]
  28. SchaeferA.J. IngmanV.M. WheelerS.E. SEQCROW : A ChimeraX bundle to facilitate quantum chemical applications to complex molecular systems.J. Comput. Chem.202142241750175410.1002/jcc.2670034109660
    [Google Scholar]
  29. IngmanV.M. SchaeferA.J. AndreolaL.R. WheelerS.E. QChASM: Quantum chemistry automation and structure manipulation.Wiley Interdiscip. Rev. Comput. Mol. Sci.2021114151010.1002/wcms.1510
    [Google Scholar]
  30. BanerjeeP. KemmlerE. DunkelM. PreissnerR. ProTox 3.0: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.202452W1W513W52010.1093/nar/gkae30338647086
    [Google Scholar]
  31. ChengF. LiW. ZhouY. ShenJ. WuZ. LiuG. LeeP.W. TangY. AdmetS.A.R. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.201252113099310510.1021/ci300367a23092397
    [Google Scholar]
  32. AlsedfyM.Y. EbnalwaledA.A. MoustafaM. SaidA.H. Investigating the binding affinity, molecular dynamics, and ADMET properties of curcumin-IONPs as a mucoadhesive bioavailable oral treatment for iron deficiency anemia.Sci. Rep.20241412202710.1038/s41598‑024‑72577‑839322646
    [Google Scholar]
  33. AsghariN. SaeiA.K. CordaniM. NayeriZ. MoosaviM.A. Drug repositioning identifies potential autophagy inhibitors for the LIR motif p62/SQSTM1 protein.Comput. Biol. Chem.202411310823510.1016/j.compbiolchem.2024.10823539369612
    [Google Scholar]
  34. DishaI.J. HasanR. BhuiaS. AnsariS.A. AnsariI.A. IslamM.T. Anxiolytic efficacy of indirubin: In Vivo approach along with receptor binding profiling and molecular interaction with gabaergic pathways.ChemistryOpen202514220240029010.1002/open.20240029039460441
    [Google Scholar]
  35. SonS.Y. MaJ. KondouY. YoshimuraM. YamashitaE. TsukiharaT. Structure of human monoamine oxidase A at 2.2-A resolution: The control of opening the entry for substrates/inhibitors.Proc. Natl. Acad. Sci. USA2008105155739574410.1073/pnas.071062610518391214
    [Google Scholar]
  36. SafhiM.M. AlamM.F. HussainS. SiddiquiM.A.H. KhuwajaG. Jubran KhardaliI.A. Al-SanosiR.M. IslamF. Al-SanosiR.M. IslamF. Cathinone, an active principle of Catha edulis, accelerates oxidative stress in the limbic area of swiss albino mice.J. Ethnopharmacol.201415610210610.1016/j.jep.2014.08.00425153022
    [Google Scholar]
  37. KawaharaM. Kato-NegishiM. Link between aluminum and the pathogenesis of Alzheimer′s disease: The integration of the aluminum and amyloid cascade hypotheses.Int. J. Alzheimers Dis.20112011127639310.4061/2011/27639321423554
    [Google Scholar]
  38. GoudieA.J. Comparative effects of cathinone and amphetamine on fixed-interval operant responding: A rate-dependency analysis.Pharmacol. Biochem. Behav.198523335536510.1016/0091‑3057(85)90006‑14048231
    [Google Scholar]
  39. TzengN.S. ChienW.C. ChungC.H. ChangH.A. KaoY.C. LiuY.P. Association between amphetamine-related disorders and dementia-a nationwide cohort study in Taiwan.Ann. Clin. Transl. Neurol.2020781284129510.1002/acn3.5111332608133
    [Google Scholar]
  40. OharaA. YamadaF. FukudaT. SuzukiN. SumidaK. Specific alteration of gene expression profile in rats by treatment with thyroid toxicants that inhibit thyroid hormone synthesis.J. Appl. Toxicol.201838121529153710.1002/jat.369330047161
    [Google Scholar]
  41. SyedA.U. LiangC. PatelK.K. MondalR. KamaliaV.M. MoranT.R. AhmedS.T. MukherjeeJ. Comparison of monoamine oxidase-a, aβ plaques, tau, and translocator protein levels in postmortem human Alzheimer's disease brain.Int. J. Mol. Sci.202324131080810.3390/ijms24131080837445985
    [Google Scholar]
  42. NaoiM. MaruyamaW. Type A monoamine oxidase regulates life and death of neurons in neurodegeneration and neuroprotection.Int. Rev. Neurobiol.20111008510610.1016/B978‑0‑12‑386467‑3.00005‑4
    [Google Scholar]
  43. WongK.Y. RoyJ. FungM.L. HengB.C. ZhangC. LimL.W. Relationships between mitochondrial dysfunction and neurotransmission failure in Alzheimer’s disease.Aging Dis.20201151291131610.14336/AD.2019.112533014538
    [Google Scholar]
  44. KennedyB.P. ZieglerM.G. AlfordM. HansenL.A. ThalL.J. MasliahE. Early and persistent alterations in prefrontal cortex MAO A and B in Alzheimer’s disease.J. Neural Transm.2003110778980110.1007/s00702‑003‑0828‑612811639
    [Google Scholar]
  45. Baldinger-MelichP. GryglewskiG. PhilippeC. JamesG.M. VrakaC. SilberbauerL. BalberT. VanicekT. PichlerV. UnterholznerJ. KranzG.S. HahnA. WinklerD. MitterhauserM. WadsakW. HackerM. KasperS. FreyR. LanzenbergerR. The effect of electroconvulsive therapy on cerebral monoamine oxidase A expression in treatment-resistant depression investigated using positron emission tomography.Brain Stimul.201912371472310.1016/j.brs.2018.12.97630635228
    [Google Scholar]
  46. LamC.S. LiJ.J. TipoeG.L. YoudimM.B.H. FungM.L. Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2,3-dioxygenase and neurodegeneration.PLoS One2017126017794010.1371/journal.pone.017794028599322
    [Google Scholar]
  47. LươngK. NguyễnL.T.H. The role of Beta-adrenergic receptor blockers in Alzheimer’s disease: Potential genetic and cellular signaling mechanisms.Am. J. Alzheimers Dis. Other Demen.201328542743910.1177/153331751348892423689075
    [Google Scholar]
  48. TremblayP. PituelloF. GrussP. Inhibition of floor plate differentiation by Pax3 : Evidence from ectopic expression in transgenic mice.Development199612282555256710.1242/dev.122.8.25558756299
    [Google Scholar]
  49. IshiohM. NozuT. MiyagishiS. IgarashiS. FunayamaT. UenoN. OkumuraT. Brain histamine improves colonic hyperpermeability through the basal forebrain cholinergic neurons, adenosine A2B receptors and vagus nerve in rats.Biochem. Pharmacol.202422411620110.1016/j.bcp.2024.11620138608783
    [Google Scholar]
  50. AnderssonR. GalterD. PapadiaD. FisahnA. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor.Neuropharmacology2017118132510.1016/j.neuropharm.2017.03.00328274820
    [Google Scholar]
  51. DeLanoW.L. PyMOL Reference Guide.San Carlos, CA, USDelano Scientific2004168
    [Google Scholar]
  52. GurungA.B. BhattacharjeeA. AliM.A. Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets.Inform. Med. Unlocked2016511410.1016/j.imu.2016.09.004
    [Google Scholar]
  53. WalkerW.H. KearneyE.B. SengR.L. SingerT.P. The covalently-bound flavin of hepatic monoamine oxidase. 2. Identification and properties of cysteinyl riboflavin.Eur. J. Biochem.197124232833110.1111/j.1432‑1033.1971.tb19690.x4333602
    [Google Scholar]
  54. DalleDonneI. MilzaniA. ColomboR. The tert-butyl hydroperoxide-induced oxidation of actin Cys-374 is coupled with structural changes in distant regions of the protein.Biochemistry19993838124711248010.1021/bi990367k10493817
    [Google Scholar]
  55. GehaR.M. ChenK. WoutersJ. OomsF. ShihJ.C. Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling.J. Biol. Chem.200227719172091721610.1074/jbc.M11092020011861643
    [Google Scholar]
  56. LiuJ. ZhaoM. SongW. MaL. LiX. ZhangF. DiaoL. PiY. JiangK. An amine oxidase gene from mud crab, Scylla paramamosain, regulates the neurotransmitters serotonin and dopamine in vitro.PLoS One2018139020432510.1371/journal.pone.020432530248122
    [Google Scholar]
  57. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.05325950237
    [Google Scholar]
/content/journals/car/10.2174/0115672050386584250718130948
Loading
/content/journals/car/10.2174/0115672050386584250718130948
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Alzheimer's Disease; cathine; cathinone; in-silico; Khat; MAO-A Enzyme
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test