Skip to content
2000
image of Unveiling Role of Gut Microbiota in Alzheimer’s Disease: Mechanisms, Challenges and Future Perspectives

Abstract

Alzheimer's disease (AD) is a neurodegenerative condition characterized by neuroinflammation, tau hyperphosphorylation, Aβ (Amyloid beta) accumulation, and synaptic dysfunction. New research indicates that the gut-brain axis, a network of two-way communication that involves immunological signals, neural pathways, and microbial metabolites, makes dysbiosis of the gut microbiota essential to the pathogenesis of AD. Alterations in the gut microbiota's composition hinder the production of crucial metabolites, such as short-chain fatty acids, trimethylamine-N-oxide, and secondary bile acids, which affect neuroinflammatory cascades, mitochondrial bioenergetics, and synaptic plasticity. Furthermore, Toll-like receptor 4 -4-mediated microglial responses are triggered by Gram-negative bacterial lipopolysaccharides. This cascade promotes oxidative stress, chronic neuroinflammation, and disruption of the (BBB) blood-brain barrier, all of which encourage the accumulation of neurotoxic proteins. Microbiome-modulating therapies, such as probiotics, prebiotics, and synbiotics, have been shown to have neuroprotective properties. They work by restoring microbial diversity, increasing (Short-chain fatty acids) SCFA-mediated anti-inflammatory pathways, and reducing glial activation. In addition to promoting gut microbiota equilibrium, dietary approaches like the Mediterranean and ketogenic diets, which are enhanced with polyphenols and omega-3 fatty acids, also lower systemic inflammation and increase neural resilience. Furthermore, the potential of postbiotics and fecal microbiota transplantation to attenuate AD-related neurodegeneration and restore gut-derived metabolic balance is being investigated. Translating these methods into standardized clinical applications is difficult, though, because individual microbiome composition varies. It will be essential to address these complications through mechanistic research and extensive clinical trials to establish gut microbiota as a promising therapeutic target in AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050403066250904112611
2025-09-16
2025-11-02
Loading full text...

Full text loading...

References

  1. Rumao P. Padole M. Alzheimer's disease: Symptoms, causes and computer science applications as help guides. Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence Windhoek, Namibia, 2021, pp. 266-271. 10.1145/3484824.3484886
    [Google Scholar]
  2. Miller-Ott A.E. Cooper R.A. Lobdell E. “It just shifted everything in our family Dynamic:” Recalibration within the family system in response to Alzheimer’s disease. J. Fam. Commun. 2022 22 2 156 174 10.1080/15267431.2022.2058947
    [Google Scholar]
  3. Liu C.C. Kanekiyo T. Xu H. Bu G. Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013 9 2 106 118 10.1038/nrneurol.2012.263 23296339
    [Google Scholar]
  4. Kamble S.M. Patil K.R. Upaganlawar A.B. Etiology, pathogenesis of Alzheimer’s disease and amyloid beta hypothesis. Alzheimer’s Disease and Advanced Drug Delivery Strategies. Elsevier 2024 1 11 10.1016/B978‑0‑443‑13205‑6.00022‑4
    [Google Scholar]
  5. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  6. Priya B. Gupta P. Singh S. Harnessing the potentials of machine learning models in Alzheimer’s disease prediction and detection. Advances in Computational Methods and Modeling for Science and Engineering. Elsevier 2025 259 267 10.1016/B978‑0‑44‑330012‑7.00027‑8
    [Google Scholar]
  7. Li C. Wang S. Xia Y. Shi F. Tang L. Yang Q. Feng J. Li C. Risk factors and predictive models in the progression from MCI to Alzheimer’s disease. Neuroscience 2025 565 312 319 10.1016/j.neuroscience.2024.11.056 39645072
    [Google Scholar]
  8. Tarrá Marrugo A.D. Histopathological changes of nervous tissue in women over 60 years of age with Alzheimer’s disease and their relationship with menopause. Rev. Esp. Patol. 2025 58 1 100800 10.1016/j.patol.2024.100800 39889508
    [Google Scholar]
  9. Zafeiris D. Rutella S. Ball G.R. An Artificial Neural Network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Comput. Struct. Biotechnol. J. 2018 16 77 87 10.1016/j.csbj.2018.02.001 29977480
    [Google Scholar]
  10. Singh S.C. Vayyat S. Mishra P. Gastrointestinal system and its neurophysiology. Brain and Organ Communication. Elsevier 2025 177 194 10.1016/B978‑0‑443‑22268‑9.00010‑7
    [Google Scholar]
  11. Akyuz E. Aslan F.S. Hekimoglu A. Yilmaz B.N. Insights into retinal pathologies in neurological disorders: A focus on Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease. J. Neurosci. Res. 2025 103 1 70006 10.1002/jnr.70006 39737769
    [Google Scholar]
  12. Al Noman A. Flora S.A. Deb Tonni S. Barua C. Kumar Nath A. Bristy K.F. Ahmad I. Pathak R. Sharma H. Plants as medicine for autism: Reviewing the evidence for phytopharmaceuticals for ASD. Curr. Bioact. Compd. 2025 21 10.2174/0115734072347775250129042526
    [Google Scholar]
  13. Mu L. Wang Y. The role of gut microbiota‐derived metabolites in neuroinflammation. Neuroprotection 2025 3 2 131 144 10.1002/nep3.70001
    [Google Scholar]
  14. Ayhan G. Aydemir E. Ayaz F. A brief review of ALS from an immunological perspective with potential immunotherapy options. Discov. Immunol. 2025 2 1 4 10.1007/s44368‑025‑00011‑w
    [Google Scholar]
  15. Iyengar A. Ramadass B. Venkatesh S. Mak R.H. Gut microbiota-targeted therapies in pediatric chronic kidney disease: Gaps and opportunities. Pediatr. Nephrol. 2025 May 10.1007/s00467‑025‑06789‑z 40307477
    [Google Scholar]
  16. Kurhaluk N. Kamiński P. Bilski R. Kołodziejska R. Woźniak A. Tkaczenko H. Role of antioxidants in modulating the microbiota–gut–brain axis and their impact on neurodegenerative diseases. Int. J. Mol. Sci. 2025 26 8 3658 10.3390/ijms26083658 40332186
    [Google Scholar]
  17. Beltran-Velasco A.I. Brain glycogen—its metabolic role in neuronal health and neurological disorders—An extensive narrative review. Metabolites 2025 15 2 128 10.3390/metabo15020128 39997753
    [Google Scholar]
  18. Mafe A.N. Büsselberg D. Could a mediterranean diet modulate Alzheimer’s disease progression? the role of gut microbiota and metabolite signatures in neurodegeneration. Foods 2025 14 9 1559 10.3390/foods14091559 40361641
    [Google Scholar]
  19. Beheshti I. Exploring risk and protective factors in Parkinson’s disease. Cells 2025 14 10 710 10.3390/cells14100710 40422213
    [Google Scholar]
  20. Huang Y. Wang Y.F. Miao J. Zheng R.F. Li J.Y. Short-chain fatty acids: Important components of the gut-brain axis against AD. Biomed. Pharmacother. 2024 175 116601 10.1016/j.biopha.2024.116601 38749177
    [Google Scholar]
  21. Liu J. Chen Q. Su R. Interplay of human gastrointestinal microbiota metabolites: Short-chain fatty acids and their correlation with Parkinson’s disease. Medicine 2024 103 17 37960 10.1097/MD.0000000000037960 38669388
    [Google Scholar]
  22. Kustrimovic N. Balkhi S. Bilato G. Mortara L. Gut microbiota and immune system dynamics in Parkinson’s and Alzheimer’s diseases. Int. J. Mol. Sci. 2024 25 22 12164 10.3390/ijms252212164 39596232
    [Google Scholar]
  23. Que M. Li S. Xia Q. Li X. Luo X. Zhan G. Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol. Dis. 2024 200 106627 10.1016/j.nbd.2024.106627 39111702
    [Google Scholar]
  24. Oyovwi M.O. Udi O.A. The gut-brain axis and neuroinflammation in traumatic brain injury. Mol. Neurobiol. 2025 62 4 4576 4590 10.1007/s12035‑024‑04585‑8 39466574
    [Google Scholar]
  25. Hwang Y.K. Oh J.S. Interaction of the vagus nerve and serotonin in the gut–brain axis. Int. J. Mol. Sci. 2025 26 3 1160 10.3390/ijms26031160 39940928
    [Google Scholar]
  26. Randeni N. Xu B. Critical review of the cross-links between dietary components, the gut microbiome, and depression. Int. J. Mol. Sci. 2025 26 2 614 10.3390/ijms26020614 39859327
    [Google Scholar]
  27. Weiner H.L. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat. Rev. Neurol. 2025 21 2 67 85 10.1038/s41582‑024‑01046‑7 39681722
    [Google Scholar]
  28. Giunta S. Xia S. Pelliccioni G. Olivieri F. Autonomic nervous system imbalance during aging contributes to impair endogenous anti-inflammaging strategies. Geroscience 2023 46 1 113 127 10.1007/s11357‑023‑00947‑7 37821752
    [Google Scholar]
  29. Wang C. Wu B. Lin R. Cheng Y. Huang J. Chen Y. Bai J. Vagus nerve stimulation: A physical therapy with promising potential for central nervous system disorders. Front. Neurol. 2024 15 1516242 10.3389/fneur.2024.1516242 39734634
    [Google Scholar]
  30. Das T.K. Ganesh B.P. Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer’s disease progression. Gut Microbes 2023 15 1 2206504 10.1080/19490976.2023.2206504 37127846
    [Google Scholar]
  31. Steinert R.E. Rehman A. Sadabad M.S. Milanese A. Wittwer-Schegg J. Burton J.P. Spooren A. Microbial micronutrient sharing, gut redox balance and keystone taxa as a basis for a new perspective to solutions targeting health from the gut. Gut Microbes 2025 17 1 2477816 10.1080/19490976.2025.2477816 40090884
    [Google Scholar]
  32. Baușic A.I.G. Scurtu F. Manu A. Matasariu D.R. Brătilă E. Gut microbiota dysbiosis in endometriosis: A potential link to inflammation and disease progression. Int. J. Mol. Sci. 2025 26 11 5144 10.3390/ijms26115144 40507956
    [Google Scholar]
  33. Babandi H.M. Durbunde A.A. Impact of flood on soil microbial diversity and agricultural productivity in Jigawa State, Nigeria. UMYU Scientifica 2025 4 2 16 24 10.56919/usci.2542.003
    [Google Scholar]
  34. Trisal A. Singh I. Garg G. Jorwal K. Singh A. K. Gut-brain axis and brain health: Modulating neuroinflammation, cognitive decline, and neurodegeneration. 3 Biotech 15 1 25 10.1007/s13205‑024‑04187‑0
    [Google Scholar]
  35. Wang Y. Zhang Y. Wang W. Zhang Y. Dong X. Liu Y. Diverse physiological roles of kynurenine pathway metabolites: Updated implications for health and disease. Metabolites 2025 15 3 210 10.3390/metabo15030210 40137174
    [Google Scholar]
  36. Kerezoudi E.N. Saxami G. Zervakis G.I. Pletsa V. Brummer R.J. Kyriacou A. Rangel I. Effects of in vitro fermented Pleurotus eryngii on intestinal barrier integrity and immunomodulation in a lipopolysaccharide-induced colonic model. Biomedicines 2025 13 2 430 10.3390/biomedicines13020430 40002843
    [Google Scholar]
  37. El-Husseiny A.A. Ali N.S. Mahmoud H.S. The interplay of gut microbiota in neurodegenerative disorders. ERU Res. J. 2025 0 0 1 25 10.21608/erurj.2025.351717.1218
    [Google Scholar]
  38. Zhuang X. Lin J. Song Y. Ban R. Zhao X. Xia Z. Wang Z. Zhang G. The interplay between accumulation of amyloid-beta and tau proteins, PANoptosis, and inflammation in Alzheimer’s disease. Neuromolecular Med. 2024 27 1 2 10.1007/s12017‑024‑08815‑z 39751702
    [Google Scholar]
  39. Fanijavadi S. Jensen L.H. Dysbiosis–NK cell crosstalk in pancreatic cancer: Toward a unified biomarker signature for improved clinical outcomes. Int. J. Mol. Sci. 2025 26 2 730 10.3390/ijms26020730 39859442
    [Google Scholar]
  40. Gryaznova M. Burakova I. Smirnova Y. Morozova P. Chirkin E. Gureev A. Mikhaylov E. Korneeva O. Syromyatnikov M. Effect of probiotic bacteria on the gut microbiome of mice with lipopolysaccharide-induced inflammation. Microorganisms 2024 12 7 1341 10.3390/microorganisms12071341 39065109
    [Google Scholar]
  41. Lu W. Wen J. Anti-inflammatory effects of hydrogen sulfide in axes between gut and other organs. Antioxid. Redox Signal. 2024 Dec ars.2023.0531 10.1089/ars.2023.0531 39655451
    [Google Scholar]
  42. Guo B. Zhang J. Zhang W. Chen F. Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: A narrative review. Crit. Rev. Food Sci. Nutr. 2025 65 2 265 286 10.1080/10408398.2023.2272769 37897083
    [Google Scholar]
  43. Bonfili L. Cecarini V. Gogoi O. Gong C. Cuccioloni M. Angeletti M. Rossi G. Eleuteri A.M. Microbiota modulation as preventative and therapeutic approach in Alzheimer’s disease. FEBS J. 2021 288 9 2836 2855 10.1111/febs.15571 32969566
    [Google Scholar]
  44. Mohammadzadeh R. Mahnert A. Shinde T. Kumpitsch C. Weinberger V. Schmidt H. Moissl-Eichinger C. Age-related dynamics of predominant methanogenic archaea in the human gut microbiome. BMC Microbiol. 2025 25 1 193 10.1186/s12866‑025‑03921‑9 40181255
    [Google Scholar]
  45. Christopher C. Morgan K. Tolleson C. Trudell R. Fernandez-Romero R. Rice L. Abiodun B. Vickery Z. Jones K. Woodall B. Nagy C. Mieczkowski P. Bowen G. Campagna S. Ellis J. Specific bacterial taxa and their metabolite, DHPS, may be linked to gut dyshomeostasis in patients with Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Nutrients 2025 17 9 1597 10.3390/nu17091597 40362907
    [Google Scholar]
  46. Donaldson A.I.C. Fyfe C.L. Martin J.C. Smith E.E. Horgan G.W. Myint P.K. Johnstone A.M. Scott K.P. Aging gut-brain interactions: Pro-inflammatory gut bacteria are elevated in fecal samples from individuals living with Alzheimer’s dementia. Geriatrics 2025 10 2 37 10.3390/geriatrics10020037 40126287
    [Google Scholar]
  47. Kalu A. Ray S.K. Epigallocatechin-3-gallate, quercetin, and kaempferol for treatment of Parkinson’s disease through prevention of gut dysbiosis and attenuation of multiple molecular mechanisms of pathogenesis. Brain Sci. 2025 15 2 144 10.3390/brainsci15020144 40002477
    [Google Scholar]
  48. Cristofori F. Dargenio V.N. Dargenio C. Miniello V.L. Barone M. Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021 12 578386 10.3389/fimmu.2021.578386 33717063
    [Google Scholar]
  49. Dhapola R. Kumari S. Sharma P. HariKrishnaReddy D. Insight into the emerging and common experimental in-vivo models of Alzheimer’s disease. Lab. Anim. Res. 2023 39 1 33 10.1186/s42826‑023‑00184‑1 38082453
    [Google Scholar]
  50. Yang Y.N. Yang Y.C.S.H. Wu P.L. Yang C.H. Kuo K.C. Yang S.N. Dextromethorphan suppresses lipopolysaccharide-induced epigenetic histone regulation in the tumor necrosis factor-α expression in primary rat microglia. Mediators Inflamm. 2020 2020 1 8 10.1155/2020/9694012 33376453
    [Google Scholar]
  51. AlMarzooqi S.K. Almarzooqi F. Sadida H.Q. Jerobin J. Ahmed I. Abou-Samra A.B. Fakhro K.A. Dhawan P. Bhat A.A. Al-Shabeeb Akil A.S. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes. Rev. 2024 25 8 13766 10.1111/obr.13766 38745386
    [Google Scholar]
  52. Aziz N. Wal P. Patel A. Prajapati H. A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: Potential therapeutic targets. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 10 7307 7336 10.1007/s00210‑024‑03109‑4 38734839
    [Google Scholar]
  53. Labetoulle M. Baudouin C. Benitez del Castillo J.M. Rolando M. Rescigno M. Messmer E.M. Aragona P. How gut microbiota may impact ocular surface homeostasis and related disorders. Prog. Retin. Eye Res. 2024 100 101250 10.1016/j.preteyeres.2024.101250 38460758
    [Google Scholar]
  54. Salvagno M. Sterchele E.D. Zaccarelli M. Mrakic-Sposta S. Welsby I.J. Balestra C. Taccone F.S. Oxidative stress and cerebral vascular tone: The role of reactive oxygen and nitrogen species. Int. J. Mol. Sci. 2024 25 5 3007 10.3390/ijms25053007 38474253
    [Google Scholar]
  55. Rauf A. Badoni H. Abu-Izneid T. Olatunde A. Rahman M.M. Painuli S. Semwal P. Wilairatana P. Mubarak M.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases. Molecules 2022 27 10 3194 10.3390/molecules27103194 35630670
    [Google Scholar]
  56. Mou Y. Du Y. Zhou L. Yue J. Hu X. Liu Y. Chen S. Lin X. Zhang G. Xiao H. Dong B. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging. Front. Immunol. 2022 13 796288 10.3389/fimmu.2022.796288 35464431
    [Google Scholar]
  57. Dong Y. Wu X. Zhang Y. Hu A. Zhou Q. Yue X. Liu Z. Li M. The role of probiotics in modulating the gut microbiome in Alzheimer’s disease: A review. Foods 2025 14 9 1531 10.3390/foods14091531 40361614
    [Google Scholar]
  58. Halimi H. Ahmadi B. Asri N. Rostami-Nejad M. Houri H. The roles of functional bacterial amyloids in neurological physiology and pathophysiology: Pros and cons for neurodegeneration. Microb. Pathog. 2025 200 107363 10.1016/j.micpath.2025.107363 39909290
    [Google Scholar]
  59. Subedi S. Sasidharan S. Nag N. Saudagar P. Tripathi T. Amyloid cross-seeding: Mechanism, implication, and inhibition. Molecules 2022 27 6 1776 10.3390/molecules27061776 35335141
    [Google Scholar]
  60. Fayoud H. Belousov M.V. Antonets K.S. Nizhnikov A.A. Pathogenesis-associated bacterial amyloids: The network of interactions. Biochemistry 2024 89 12-13 2107 2132 10.1134/S0006297924120022 39865026
    [Google Scholar]
  61. Kearns R. Gut–brain axis and neuroinflammation: The role of gut permeability and the kynurenine pathway in neurological disorders. Cell. Mol. Neurobiol. 2024 44 1 64 10.1007/s10571‑024‑01496‑z 39377830
    [Google Scholar]
  62. Miller A.L. Bessho S. Grando K. Tükel Ç. Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases. Front. Immunol. 2021 12 638867 10.3389/fimmu.2021.638867 33717189
    [Google Scholar]
  63. Wei W. Wang S. Xu C. Zhou X. Lian X. He L. Li K. Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front. Microbiol. 2022 13 959856 10.3389/fmicb.2022.959856 36466655
    [Google Scholar]
  64. Raheem A. Liang L. Zhang G. Cui S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front. Immunol. 2021 12 616713 10.3389/fimmu.2021.616713 33897683
    [Google Scholar]
  65. Twarowski B. Herbet M. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review. Int. J. Mol. Sci. 2023 24 7 6518 10.3390/ijms24076518 37047492
    [Google Scholar]
  66. Zhang Z. Yang W. Wang L. Zhu C. Cui S. Wang T. Gu X. Liu Y. Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: A narrative review. J. Neuroinflammation 2024 21 1 293 10.1186/s12974‑024‑03285‑3 39533332
    [Google Scholar]
  67. Duan W.X. Wang F. Liu J.Y. Liu C.F. Relationship between short-chain fatty acids and Parkinson’s disease: A review from pathology to clinic. Neurosci. Bull. 2024 40 4 500 516 10.1007/s12264‑023‑01123‑9 37755674
    [Google Scholar]
  68. Mulak A. Bile acids as key modulators of the brain-gut-microbiota axis in Alzheimer’s disease. J. Alzheimers Dis. 2021 84 2 461 477 10.3233/JAD‑210608 34569953
    [Google Scholar]
  69. Reddi Sree R. Kalyan M. Anand N. Mani S. Gorantla V.R. Sakharkar M.K. Song B.J. Chidambaram S.B. Newer therapeutic approaches in treating Alzheimer’s disease: A comprehensive review. ACS Omega 2025 10 6 5148 5171 10.1021/acsomega.4c05527 39989768
    [Google Scholar]
  70. Liang S.Y. Wang Z.T. Tan L. Yu J.T. Tau toxicity in neurodegeneration. Mol. Neurobiol. 2022 59 6 3617 3634 10.1007/s12035‑022‑02809‑3 35359226
    [Google Scholar]
  71. Murai T. Matsuda S. Therapeutic implications of probiotics in the gut microbe-modulated neuroinflammation and progression of Alzheimer’s disease. Life 2023 13 7 1466 10.3390/life13071466 37511841
    [Google Scholar]
  72. Dilawari R. Singh E. The impact of microbiological infections on neurodegenerative diseases. The Neurodegeneration Revolution. Elsevier 2025 203 213 10.1016/B978‑0‑443‑28822‑7.00016‑7
    [Google Scholar]
  73. Kollaparampil Kishanchand D. K A A.K. Chandrababu K. Philips C.A. Sivan U. Pulikaparambil Sasidharan B.C. The intricate interplay: Microbial metabolites and the gut-liver-brain axis in Parkinson’s disease. J. Neurosci. Res. 2025 103 1 70016 10.1002/jnr.70016 39754366
    [Google Scholar]
  74. Skrzypczak-Wiercioch A. Sałat K. Lipopolysaccharide-induced model of neuroinflammation: Mechanisms of action, research application and future directions for its use. Molecules 2022 27 17 5481 10.3390/molecules27175481 36080253
    [Google Scholar]
  75. Beltran-Velasco A.I. Clemente-Suárez V.J. Impact of peripheral inflammation on blood–brain barrier dysfunction and its role in neurodegenerative diseases. Int. J. Mol. Sci. 2025 26 6 2440 10.3390/ijms26062440 40141084
    [Google Scholar]
  76. Chen H. Li N. Liu N. Zhu H. Ma C. Ye Y. Shi X. Luo G. Dong X. Tan T. Wei X. Yin H. Photobiomodulation modulates mitochondrial energy metabolism and ameliorates neurological damage in an APP/PS1 mousmodel of Alzheimer’s disease. Alzheimers Res. Ther. 2025 17 1 72 10.1186/s13195‑025‑01714‑w 40188044
    [Google Scholar]
  77. Alpino G.C.Á. Pereira-Sol G.A. Dias M.M. Aguiar A.S. Peluzio M.C.G. Beneficial effects of butyrate on brain functions: A view of epigenetic. Crit. Rev. Food Sci. Nutr. 2024 64 12 3961 3970 10.1080/10408398.2022.2137776 36287024
    [Google Scholar]
  78. Munteanu C. Galaction A.I. Turnea M. Blendea C.D. Rotariu M. Poștaru M. Redox homeostasis, gut microbiota, and epigenetics in neurodegenerative diseases: A systematic review. Antioxidants 2024 13 9 1062 10.3390/antiox13091062 39334720
    [Google Scholar]
  79. Wu M. Cheng Y. Zhang R. Han W. Jiang H. Bi C. Zhang Z. Ye M. Lin X. Liu Z. Molecular mechanism and therapeutic strategy of bile acids in Alzheimer’s disease from the emerging perspective of the microbiota–gut–brain axis. Biomed. Pharmacother. 2024 178 117228 10.1016/j.biopha.2024.117228 39088965
    [Google Scholar]
  80. Jung Y.H. Chae C.W. Han H.J. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer’s disease. Exp. Mol. Med. 2024 56 8 1691 1702 10.1038/s12276‑024‑01282‑3 39085351
    [Google Scholar]
  81. Flynn C.M. Omoluabi T. Janes A.M. Rodgers E.J. Torraville S.E. Negandhi B.L. Nobel T.E. Mayengbam S. Yuan Q. Targeting early tau pathology: Probiotic diet enhances cognitive function and reduces inflammation in a preclinical Alzheimer’s model. Alzheimers Res. Ther. 2025 17 1 24 10.1186/s13195‑025‑01674‑1 39827356
    [Google Scholar]
  82. Mehta J.P. Ayakar S. Singhal R.S. The potential of paraprobiotics and postbiotics to modulate the immune system: A Review. Microbiol. Res. 2023 275 127449 10.1016/j.micres.2023.127449 37454427
    [Google Scholar]
  83. Liu L. Qi W. Zhang N. Zhang J. Liu S. Wang H. Jiang L. Sun Y. Nutraceuticals for gut–brain axis health: A novel approach to combat malnutrition and future personalised nutraceutical interventions. Nutrients 2025 17 9 1551 10.3390/nu17091551 40362863
    [Google Scholar]
  84. Noreña C.P.Z. Brandelli A. The rise of probiotics as adjuvant therapeutics in Alzheimer’s disease. Discover Food 2025 5 1 214 10.1007/s44187‑025‑00523‑2
    [Google Scholar]
  85. Meher A.K. Acharya B. Sahu P.K. Probiotics: Bridging the interplay of a healthy gut and psychoneurological well‐being. Food Bioeng. 2024 3 1 126 147 10.1002/fbe2.12081
    [Google Scholar]
  86. Thangaleela S. Sivamaruthi B.S. Kesika P. Chaiyasut C. Role of probiotics and diet in the management of neurological diseases and mood states: A review. Microorganisms 2022 10 11 2268 10.3390/microorganisms10112268 36422338
    [Google Scholar]
  87. Prajapati S. K. Jain S. Yadav H. Age-related cognitive decline and Dementia: Interface of microbiome-immune-neuronal interactions. J Gerontol A Biol Sci Med Sci 80 7 glaf038 10.1093/gerona/glaf038
    [Google Scholar]
  88. Iatcu O.C. Hamamah S. Covasa M. Harnessing prebiotics to improve type 2 diabetes outcomes. Nutrients 2024 16 20 3447 10.3390/nu16203447 39458444
    [Google Scholar]
  89. Facchin S. Bertin L. Bonazzi E. Lorenzon G. De Barba C. Barberio B. Zingone F. Maniero D. Scarpa M. Ruffolo C. Angriman I. Savarino E.V. Short-chain fatty acids and human health: From metabolic pathways to current therapeutic implications. Life 2024 14 5 559 10.3390/life14050559 38792581
    [Google Scholar]
  90. Onisiforou A. Charalambous E.G. Zanos P. Shattering the amyloid illusion: the microbial enigma of Alzheimer’s disease pathogenesis—From gut microbiota and viruses to brain biofilms. Microorganisms 2025 13 1 90 10.3390/microorganisms13010090 39858858
    [Google Scholar]
  91. Vignesh A. Amal T.C. Sarvalingam A. Vasanth K. A review on the influence of nutraceuticals and functional foods on health. Food Chem. Adv. 2024 5 100749 10.1016/j.focha.2024.100749
    [Google Scholar]
  92. Sabit H. Abouelnour S. Hassen B.M. Magdy S. Yasser A. Wadan A.H.S. Abdel-Ghany S. Radwan F. Alqosaibi A.I. Hafiz H. Awlya O.F.A. Arneth B. Anticancer potential of prebiotics: Targeting estrogen receptors and PI3K/AKT/mTOR in breast cancer. Biomedicines 2025 13 4 990 10.3390/biomedicines13040990 40299687
    [Google Scholar]
  93. Prajapati S.K. Yadav D. Katiyar S. Jain S. Yadav H. Postbiotics as mitochondrial modulators in inflammatory bowel disease: Mechanistic insights and therapeutic potential. Biomolecules 2025 15 7 954 10.3390/biom15070954 40723826
    [Google Scholar]
  94. Lin D. Howard A. Raihane A.S. Di Napoli M. Cáceres E. Ortiz M. Davis J. Abdelrahman A.N. Divani A.A. Traumatic brain injury and gut microbiome: The role of the gut-brain axis in neurodegenerative processes. Curr. Neurol. Neurosci. Rep. 2025 25 1 23 10.1007/s11910‑025‑01410‑0 40087204
    [Google Scholar]
  95. Fang X. Wang Y. Wei H. Huang Y. Precision microbiome: A new era of targeted therapy with core probiotics. Research 2025 8 0658 10.34133/research.0658 40143943
    [Google Scholar]
  96. BharathwajChetty B. Kumar A. Deevi P. Abbas M. Alqahtani A. Liang L. Sethi G. Liu L. Kunnumakkara A.B. Gut microbiota and their influence in brain cancer milieu. J. Neuroinflammation 2025 22 1 129 10.1186/s12974‑025‑03434‑2 40312370
    [Google Scholar]
  97. Petrut S.M. Bragaru A.M. Munteanu A.E. Moldovan A.D. Moldovan C.A. Rusu E. Gut over mind: Exploring the powerful gut–brain axis. Nutrients 2025 17 5 842 10.3390/nu17050842 40077713
    [Google Scholar]
  98. Ju T. Zhang Y. Liu L. Zhao X. Li X. Liu C. Sun S. Wu L. The role of gut microbiota–mitochondria crosstalk in neurodegeneration: Underlying mechanisms and potential therapies. Neural Regen. Res. 2025 Apr 10.4103/NRR.NRR‑D‑24‑01419 40314217
    [Google Scholar]
  99. Chib S. Sharma K. Singh R. Interventions of cognitive impairment in older adults: A comprehensive review. Aging Health Res. 2025 5 1 100223 10.1016/j.ahr.2025.100223
    [Google Scholar]
  100. Santacroce L. Bottalico L. Charitos I.A. Castellaneta F. Gaxhja E. Topi S. Palmirotta R. Jirillo E. Exploitation of natural by-products for the promotion of healthy outcomes in humans: Special focus on antioxidant and anti-inflammatory mechanisms and modulation of the gut microbiota. Antioxidants 2024 13 7 796 10.3390/antiox13070796 39061865
    [Google Scholar]
  101. Şimşek H. Uçar A. Polyunsaturated fatty acids as a nutraceutical for age-related neurodegenerative diseases: Current knowledge and future directions. Clin. Nutr. Open Sci. 2024 56 65 73 10.1016/j.nutos.2024.05.012
    [Google Scholar]
  102. Mo C. Lou X. Xue J. Shi Z. Zhao Y. Wang F. Chen G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog. 2024 16 1 41 10.1186/s13099‑024‑00635‑7 39097746
    [Google Scholar]
  103. Robbins M. Re-energising the brain: Glucose metabolism, Tau protein and memory in ageing and dementia. Ageing Neurodegener. Dis. 2024 4 2 10.20517/and.2023.57
    [Google Scholar]
  104. Watson A.E. Yusuf N. The influence of dietary factors on melanoma development and progression: A comprehensive review. Nutrients 2025 17 11 1891 10.3390/nu17111891 40507159
    [Google Scholar]
  105. Numakawa T. Kajihara R. The role of brain-derived neurotrophic factor as an essential mediator in neuronal functions and the therapeutic potential of its mimetics for neuroprotection in neurologic and psychiatric disorders. Molecules 2025 30 4 848 10.3390/molecules30040848 40005159
    [Google Scholar]
  106. Simsek M. Whitney K. Examination of primary and secondary metabolites associated with a plant-based diet and their impact on human health. Foods 2024 13 7 1020 10.3390/foods13071020 38611326
    [Google Scholar]
  107. Barber T.M. Kabisch S. Pfeiffer A.F.H. Weickert M.O. Dietary and lifestyle strategies for obesity. Nutrients 2024 16 16 2714 10.3390/nu16162714 39203850
    [Google Scholar]
  108. Missiego-Beltrán J. Beltrán-Velasco A.I. The role of microbial metabolites in the progression of neurodegenerative diseases—therapeutic approaches: A comprehensive review. Int. J. Mol. Sci. 2024 25 18 10041 10.3390/ijms251810041 39337526
    [Google Scholar]
  109. Samal M. Srivastava V. Khan M. Insaf A. Penumallu N.R. Alam A. Parveen B. Ansari S.H. Ahmad S. Therapeutic potential of polyphenols in cellular reversal of patho‐mechanisms of Alzheimer’s disease using in vitro and in vivo models: A comprehensive review. Phytother. Res. 2025 39 1 25 50 10.1002/ptr.8344 39496498
    [Google Scholar]
  110. Zinkow A. Grodzicki W. Czerwińska M. Dziendzikowska K. Molecular mechanisms linking Omega-3 fatty acids and the gut–brain axis. Molecules 2024 30 1 71 10.3390/molecules30010071 39795128
    [Google Scholar]
  111. Nguyen L.A.M. Simons C.W. Thomas R. Nootropic foods in neurodegenerative diseases: Mechanisms, challenges, and future. Transl. Neurodegener. 2025 14 1 17 10.1186/s40035‑025‑00476‑7 40176115
    [Google Scholar]
  112. Li M. Li Z. Fan Y. Omega-3 fatty acids: Multi-target mechanisms and therapeutic applications in neurodevelopmental disorders and epilepsy. Front. Nutr. 2025 12 1598588 10.3389/fnut.2025.1598588 40521363
    [Google Scholar]
  113. Tian J. Zhang Y. Zhao X. The effects and mechanisms of n-3 and n-6 polyunsaturated fatty acids in the central nervous system. Cell. Mol. Neurobiol. 2025 45 1 25 10.1007/s10571‑025‑01543‑3 40097862
    [Google Scholar]
  114. Abdul Manan M. Progress in probiotic science: Prospects of functional probiotic‐based foods and beverages. Int. J. Food Sci. 2025 2025 1 5567567 10.1155/ijfo/5567567 40259922
    [Google Scholar]
  115. Meduri G.U. Synergistic glucocorticoids, vitamins, and microbiome strategies for gut protection in critical illness. Explor. Endocr. Metab. Dis. 2025 2 101432 10.37349/eemd.2025.101432
    [Google Scholar]
  116. Padhi S. Sarkar P. Sahoo D. Rai A.K. Potential of fermented foods and their metabolites in improving gut microbiota function and lowering gastrointestinal inflammation. J. Sci. Food Agric. 2025 105 8 4058 4069 10.1002/jsfa.13313 38299734
    [Google Scholar]
  117. Shawky E. Surendran S. El-Khair R.M.A. Fermented vegetables as a source of psychobiotics: A review of the evidence for mental health benefits. Probiotics Antimicrob. Proteins 2025 May 10.1007/s12602‑025‑10592‑5 40402417
    [Google Scholar]
  118. Anderson R.C. Alpass F.M. Effectiveness of dairy products to protect against cognitive decline in later life: A narrative review. Front. Nutr. 2024 11 1366949 10.3389/fnut.2024.1366949 38962439
    [Google Scholar]
  119. Eslami M. Adampour Z. Fadaee Dowlat B. Yaghmayee S. Motallebi Tabaei F. Oksenych V. Naderian R. A novel frontier in gut–brain axis research: The transplantation of fecal microbiota in neurodegenerative disorders. Biomedicines 2025 13 4 915 10.3390/biomedicines13040915 40299512
    [Google Scholar]
  120. Capatina T.F. Oatu A. Babasan C. Trifu S. Translating molecular psychiatry: From biomarkers to personalized therapies—A narrative review. Int. J. Mol. Sci. 2025 26 9 4285 10.3390/ijms26094285 40362522
    [Google Scholar]
  121. Yadegar A. Bar-Yoseph H. Monaghan T.M. Pakpour S. Severino A. Kuijper E.J. Smits W.K. Terveer E.M. Neupane S. Nabavi-Rad A. Sadeghi J. Cammarota G. Ianiro G. Nap-Hill E. Leung D. Wong K. Kao D. Fecal microbiota transplantation: Current challenges and future landscapes. Clin. Microbiol. Rev. 2024 37 2 e00060-22 10.1128/cmr.00060‑22 38717124
    [Google Scholar]
  122. Junyi L. Yueyang W. Bin L. Xiaohong D. Wenhui C. Ning Z. Hong Z. Gut microbiota mediates neuroinflammation in Alzheimer’s disease: Unraveling key factors and mechanistic insights. Mol. Neurobiol. 2025 62 3 3746 3763 10.1007/s12035‑024‑04513‑w 39317889
    [Google Scholar]
  123. Senarath R.M.U.S. Oikari L.E. Bharadwaj P. Jayasena V. Martins R.N. Fernando W.M.A.D.B. The therapeutic potential of butyrate and lauric acid in modulating glial and neuronal activity in Alzheimer’s disease. Nutrients 2025 17 14 2286 10.3390/nu17142286
    [Google Scholar]
  124. Su S.H. Wu Y.F. Lin Q. Zhang L. Wang D.P. Hai J. Fecal microbiota transplantation and replenishment of short-chain fatty acids protect against chronic cerebral hypoperfusion-induced colonic dysfunction by regulating gut microbiota, differentiation of Th17 cells, and mitochondrial energy metabolism. J. Neuroinflammation 2022 19 1 313 10.1186/s12974‑022‑02675‑9 36567333
    [Google Scholar]
  125. Zikou E. Koliaki C. Makrilakis K. The role of fecal microbiota transplantation (FMT) in the management of metabolic diseases in humans: A narrative review. Biomedicines 2024 12 8 1871 10.3390/biomedicines12081871 39200335
    [Google Scholar]
  126. Arafah A. Khatoon S. Rasool I. Khan A. Rather M.A. Abujabal K.A. Faqih Y.A.H. Rashid H. Rashid S.M. Bilal Ahmad S. Alexiou A. Rehman M.U. The future of precision medicine in the cure of Alzheimer’s disease. Biomedicines 2023 11 2 335 10.3390/biomedicines11020335 36830872
    [Google Scholar]
  127. Singh N. Singh V. Rai S.N. Mishra V. Vamanu E. Singh M.P. Deciphering the gut microbiome in neurodegenerative diseases and metagenomic approaches for characterization of gut microbes. Biomed. Pharmacother. 2022 156 113958 10.1016/j.biopha.2022.113958 36411639
    [Google Scholar]
  128. Kyei-Baffour V.O. Vijaya A.K. Burokas A. Daliri E.B.M. Psychobiotics and the gut-brain axis: Advances in metabolite quantification and their implications for mental health. Crit. Rev. Food Sci. Nutr. 2025 Feb 1 20 10.1080/10408398.2025.2459341 39907087
    [Google Scholar]
  129. Dziedzic A. Maciak K. Bliźniewska-Kowalska K. Gałecka M. Kobierecka W. Saluk J. The power of psychobiotics in depression: A modern approach through the microbiota–gut–brain axis: A literature review. Nutrients 2024 16 7 1054 10.3390/nu16071054 38613087
    [Google Scholar]
  130. Yaqub M.O. Jain A. Joseph C.E. Edison L.K. Microbiome-driven therapeutics: From gut health to precision medicine. Gastrointest. Disord. 2025 7 1 7 10.3390/gidisord7010007
    [Google Scholar]
  131. Głowacka P. Oszajca K. Pudlarz A. Szemraj J. Witusik-Perkowska M. Postbiotics as molecules targeting cellular events of aging brain—the role in pathogenesis, prophylaxis and treatment of neurodegenerative diseases. Nutrients 2024 16 14 2244 10.3390/nu16142244 39064687
    [Google Scholar]
  132. Liu Y. Lau H.C.H. Yu J. Microbial metabolites in colorectal tumorigenesis and cancer therapy. Gut Microbes 2023 15 1 2203968 10.1080/19490976.2023.2203968 37095682
    [Google Scholar]
  133. Turpin T. Thouvenot K. Gonthier M.P. Adipokines and bacterial metabolites: A pivotal molecular bridge linking obesity and gut microbiota dysbiosis to target. Biomolecules 2023 13 12 1692 10.3390/biom13121692 38136564
    [Google Scholar]
  134. Saxena R. Sharma V. Saxena A.R. Patel A. Harnessing AI and gut microbiome research for precision health. J. Artif. Intell. Gen. Sci. 3 1 74 88 10.60087/jaigs.v3i1.68
    [Google Scholar]
  135. Larroya A. Pantoja J. Codoñer-Franch P. Cenit M.C. Towards tailored gut microbiome-based and dietary interventions for promoting the development and maintenance of a healthy brain. Front Pediatr. 2021 9 705859 10.3389/fped.2021.705859 34277527
    [Google Scholar]
  136. Dakal T.C. Xu C. Kumar A. Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification. Front. Med. Technol. 2025 6 1434799 10.3389/fmedt.2024.1434799 40303946
    [Google Scholar]
  137. Al-Adham I.S.I. Agha A.S.A.A. Al-Akayleh F. Al-Remawi M. Jaber N. Al Manasur M. Collier P.J. Prebiotics beyond the gut: Omics insights, Artificial Intelligence, and clinical trials in organ-specific applications. Probiotics Antimicrob. Proteins 2025 Jan 10.1007/s12602‑025‑10465‑x 39878922
    [Google Scholar]
  138. Chen L. Zhang S. Xiao N. Global trends and future perspectives in autism spectrum disorder and gut microbiota research and gut-brain axis research: A comprehensive bibliometric analysis. SSRN 2025 10.2139/ssrn.5230957
    [Google Scholar]
/content/journals/car/10.2174/0115672050403066250904112611
Loading
/content/journals/car/10.2174/0115672050403066250904112611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test