Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD) is a neurodegenerative condition characterized by neuroinflammation, tau hyperphosphorylation, Aβ (Amyloid beta) accumulation, and synaptic dysfunction. New research indicates that the gut-brain axis, a network of two-way communication that involves immunological signals, neural pathways, and microbial metabolites, makes dysbiosis of the gut microbiota essential to the pathogenesis of AD. Alterations in the gut microbiota's composition hinder the production of crucial metabolites, such as short-chain fatty acids, trimethylamine-N-oxide, and secondary bile acids, which affect neuroinflammatory cascades, mitochondrial bioenergetics, and synaptic plasticity. Furthermore, Toll-like receptor 4 -4-mediated microglial responses are triggered by Gram-negative bacterial lipopolysaccharides. This cascade promotes oxidative stress, chronic neuroinflammation, and disruption of the (BBB) blood-brain barrier, all of which encourage the accumulation of neurotoxic proteins. Microbiome-modulating therapies, such as probiotics, prebiotics, and synbiotics, have been shown to have neuroprotective properties. They work by restoring microbial diversity, increasing (Short-chain fatty acids) SCFA-mediated anti-inflammatory pathways, and reducing glial activation. In addition to promoting gut microbiota equilibrium, dietary approaches like the Mediterranean and ketogenic diets, which are enhanced with polyphenols and omega-3 fatty acids, also lower systemic inflammation and increase neural resilience. Furthermore, the potential of postbiotics and fecal microbiota transplantation to attenuate AD-related neurodegeneration and restore gut-derived metabolic balance is being investigated. Translating these methods into standardized clinical applications is difficult, though, because individual microbiome composition varies. It will be essential to address these complications through mechanistic research and extensive clinical trials to establish gut microbiota as a promising therapeutic target in AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050403066250904112611
2025-09-16
2026-01-02
Loading full text...

Full text loading...

References

  1. RumaoP. PadoleM. Alzheimer's disease: Symptoms, causes and computer science applications as help guides.Proceedings of the International Conference on Data Science, Machine Learning and Artificial IntelligenceWindhoek, Namibia, 2021, pp. 266-271.10.1145/3484824.3484886
    [Google Scholar]
  2. Miller-OttA.E. CooperR.A. LobdellE. “It just shifted everything in our family Dynamic:” Recalibration within the family system in response to Alzheimer’s disease.J. Fam. Commun.202222215617410.1080/15267431.2022.2058947
    [Google Scholar]
  3. LiuC.C. KanekiyoT. XuH. BuG. BuG. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy.Nat. Rev. Neurol.20139210611810.1038/nrneurol.2012.26323296339
    [Google Scholar]
  4. KambleS.M. PatilK.R. UpaganlawarA.B. Etiology, pathogenesis of Alzheimer’s disease and amyloid beta hypothesis. Alzheimer’s Disease and Advanced Drug Delivery Strategies.Elsevier202411110.1016/B978‑0‑443‑13205‑6.00022‑4
    [Google Scholar]
  5. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  6. PriyaB. GuptaP. SinghS. Harnessing the potentials of machine learning models in Alzheimer’s disease prediction and detection. Advances in Computational Methods and Modeling for Science and Engineering.Elsevier202525926710.1016/B978‑0‑44‑330012‑7.00027‑8
    [Google Scholar]
  7. LiC. WangS. XiaY. ShiF. TangL. YangQ. FengJ. LiC. Risk factors and predictive models in the progression from MCI to Alzheimer’s disease.Neuroscience202556531231910.1016/j.neuroscience.2024.11.05639645072
    [Google Scholar]
  8. TarráM.A.D. Histopathological changes of nervous tissue in women over 60 years of age with Alzheimer’s disease and their relationship with menopause.Rev. Esp. Patol.202558110080010.1016/j.patol.2024.10080039889508
    [Google Scholar]
  9. ZafeirisD. RutellaS. BallG.R. An Artificial Neural Network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study.Comput. Struct. Biotechnol. J.201816778710.1016/j.csbj.2018.02.00129977480
    [Google Scholar]
  10. SinghS.C. VayyatS. MishraP. Gastrointestinal system and its neurophysiology. Brain and Organ Communication.Elsevier202517719410.1016/B978‑0‑443‑22268‑9.00010‑7
    [Google Scholar]
  11. AkyuzE. AslanF.S. HekimogluA. YilmazB.N. Insights into retinal pathologies in neurological disorders: A focus on Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease.J. Neurosci. Res.202510317000610.1002/jnr.7000639737769
    [Google Scholar]
  12. Al NomanA. FloraS.A. Deb TonniS. BaruaC. Kumar NathA. BristyK.F. AhmadI. PathakR. SharmaH. Plants as medicine for autism: Reviewing the evidence for phytopharmaceuticals for ASD.Curr. Bioact. Compd.20252110.2174/0115734072347775250129042526
    [Google Scholar]
  13. MuL. WangY. The role of gut microbiota-derived metabolites in neuroinflammation.Neuroprotection20253213114410.1002/nep3.70001
    [Google Scholar]
  14. AyhanG. AydemirE. AyazF. A brief review of ALS from an immunological perspective with potential immunotherapy options.Discov. Immunol.202521410.1007/s44368‑025‑00011‑w
    [Google Scholar]
  15. IyengarA. RamadassB. VenkateshS. MakR.H. Gut microbiota-targeted therapies in pediatric chronic kidney disease: Gaps and opportunities.Pediatr. Nephrol.2025Epub ahead of print.10.1007/s00467‑025‑06789‑z40307477
    [Google Scholar]
  16. KurhalukN. KamińskiP. BilskiR. KołodziejskaR. WoźniakA. TkaczenkoH. Role of antioxidants in modulating the microbiota–gut–brain axis and their impact on neurodegenerative diseases.Int. J. Mol. Sci.2025268365810.3390/ijms2608365840332186
    [Google Scholar]
  17. Beltran-VelascoA.I. Brain glycogen—its metabolic role in neuronal health and neurological disorders—An extensive narrative review.Metabolites202515212810.3390/metabo1502012839997753
    [Google Scholar]
  18. MafeA.N. BüsselbergD. Could a mediterranean diet modulate Alzheimer’s disease progression? the role of gut microbiota and metabolite signatures in neurodegeneration.Foods2025149155910.3390/foods1409155940361641
    [Google Scholar]
  19. BeheshtiI. Exploring risk and protective factors in Parkinson’s disease.Cells2025141071010.3390/cells1410071040422213
    [Google Scholar]
  20. HuangY. WangY.F. MiaoJ. ZhengR.F. LiJ.Y. Short-chain fatty acids: Important components of the gut-brain axis against AD.Biomed. Pharmacother.202417511660110.1016/j.biopha.2024.11660138749177
    [Google Scholar]
  21. LiuJ. ChenQ. SuR. Interplay of human gastrointestinal microbiota metabolites: Short-chain fatty acids and their correlation with Parkinson’s disease.Medicine2024103173796010.1097/MD.000000000003796038669388
    [Google Scholar]
  22. KustrimovicN. BalkhiS. BilatoG. MortaraL. Gut microbiota and immune system dynamics in Parkinson’s and Alzheimer’s diseases.Int. J. Mol. Sci.202425221216410.3390/ijms25221216439596232
    [Google Scholar]
  23. QueM. LiS. XiaQ. LiX. LuoX. ZhanG. LuoA. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment.Neurobiol. Dis.202420010662710.1016/j.nbd.2024.10662739111702
    [Google Scholar]
  24. OyovwiM.O. UdiO.A. The gut-brain axis and neuroinflammation in traumatic brain injury.Mol. Neurobiol.20256244576459010.1007/s12035‑024‑04585‑839466574
    [Google Scholar]
  25. HwangY.K. OhJ.S. Interaction of the vagus nerve and serotonin in the gut–brain axis.Int. J. Mol. Sci.2025263116010.3390/ijms2603116039940928
    [Google Scholar]
  26. RandeniN. XuB. Critical review of the cross-links between dietary components, the gut microbiome, and depression.Int. J. Mol. Sci.202526261410.3390/ijms2602061439859327
    [Google Scholar]
  27. WeinerH.L. Immune mechanisms and shared immune targets in neurodegenerative diseases.Nat. Rev. Neurol.2025212678510.1038/s41582‑024‑01046‑739681722
    [Google Scholar]
  28. GiuntaS. XiaS. PelliccioniG. OlivieriF. Autonomic nervous system imbalance during aging contributes to impair endogenous anti-inflammaging strategies.Geroscience202346111312710.1007/s11357‑023‑00947‑737821752
    [Google Scholar]
  29. WangC. WuB. LinR. ChengY. HuangJ. ChenY. BaiJ. Vagus nerve stimulation: A physical therapy with promising potential for central nervous system disorders.Front. Neurol.202415151624210.3389/fneur.2024.151624239734634
    [Google Scholar]
  30. DasT.K. GaneshB.P. Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer’s disease progression.Gut Microbes2023151220650410.1080/19490976.2023.220650437127846
    [Google Scholar]
  31. SteinertR.E. RehmanA. SadabadM.S. MilaneseA. Wittwer-ScheggJ. BurtonJ.P. SpoorenA. Microbial micronutrient sharing, gut redox balance and keystone taxa as a basis for a new perspective to solutions targeting health from the gut.Gut Microbes2025171247781610.1080/19490976.2025.247781640090884
    [Google Scholar]
  32. BaușicA.I.G. ScurtuF. ManuA. MatasariuD.R. BrătilăE. Gut microbiota dysbiosis in endometriosis: A potential link to inflammation and disease progression.Int. J. Mol. Sci.20252611514410.3390/ijms2611514440507956
    [Google Scholar]
  33. BabandiH.M. DurbundeA.A. Impact of flood on soil microbial diversity and agricultural productivity in Jigawa State, Nigeria.UMYU Scientifica202542162410.56919/usci.2542.003
    [Google Scholar]
  34. TrisalA. SinghI. GargG. JorwalK. SinghA. K. Gut-brain axis and brain health: Modulating neuroinflammation, cognitive decline, and neurodegeneration.3 Biotech20251512510.1007/s13205‑024‑04187‑0
    [Google Scholar]
  35. WangY. ZhangY. WangW. ZhangY. DongX. LiuY. Diverse physiological roles of kynurenine pathway metabolites: Updated implications for health and disease.Metabolites202515321010.3390/metabo1503021040137174
    [Google Scholar]
  36. KerezoudiE.N. SaxamiG. ZervakisG.I. PletsaV. BrummerR.J. KyriacouA. RangelI. Effects of in vitro fermented Pleurotus eryngii on intestinal barrier integrity and immunomodulation in a lipopolysaccharide-induced colonic model.Biomedicines202513243010.3390/biomedicines1302043040002843
    [Google Scholar]
  37. El-HusseinyA.A. AliN.S. MahmoudH.S. The interplay of gut microbiota in neurodegenerative disorders.ERU Res. J.20250012510.21608/erurj.2025.351717.1218
    [Google Scholar]
  38. ZhuangX. LinJ. SongY. BanR. ZhaoX. XiaZ. WangZ. ZhangG. The interplay between accumulation of amyloid-beta and tau proteins, PANoptosis, and inflammation in Alzheimer’s disease.Neuromol. Med.2024271210.1007/s12017‑024‑08815‑z39751702
    [Google Scholar]
  39. FanijavadiS. JensenL.H. Dysbiosis–NK cell crosstalk in pancreatic cancer: Toward a unified biomarker signature for improved clinical outcomes.Int. J. Mol. Sci.202526273010.3390/ijms2602073039859442
    [Google Scholar]
  40. GryaznovaM. BurakovaI. SmirnovaY. MorozovaP. ChirkinE. GureevA. MikhaylovE. KorneevaO. SyromyatnikovM. Effect of probiotic bacteria on the gut microbiome of mice with lipopolysaccharide-induced inflammation.Microorganisms2024127134110.3390/microorganisms1207134139065109
    [Google Scholar]
  41. LuW. WenJ. Anti-inflammatory effects of hydrogen sulfide in axes between gut and other organs.Antioxid. Redox Signal.2024427-9341360ars.2023.053110.1089/ars.2023.053139655451
    [Google Scholar]
  42. GuoB. ZhangJ. ZhangW. ChenF. LiuB. Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: A narrative review.Crit. Rev. Food Sci. Nutr.202565226528610.1080/10408398.2023.227276937897083
    [Google Scholar]
  43. BonfiliL. CecariniV. GogoiO. GongC. CuccioloniM. AngelettiM. RossiG. EleuteriA.M. Microbiota modulation as preventative and therapeutic approach in Alzheimer’s disease.FEBS J.202128892836285510.1111/febs.1557132969566
    [Google Scholar]
  44. MohammadzadehR. MahnertA. ShindeT. KumpitschC. WeinbergerV. SchmidtH. Moissl-EichingerC. Age-related dynamics of predominant methanogenic archaea in the human gut microbiome.BMC Microbiol.202525119310.1186/s12866‑025‑03921‑940181255
    [Google Scholar]
  45. ChristopherC. MorganK. TollesonC. TrudellR. Fernandez-RomeroR. RiceL. AbiodunB. VickeryZ. JonesK. WoodallB. NagyC. MieczkowskiP. BowenG. CampagnaS. EllisJ. Specific bacterial taxa and their metabolite, DHPS, may be linked to gut dyshomeostasis in patients with Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.Nutrients2025179159710.3390/nu1709159740362907
    [Google Scholar]
  46. DonaldsonA.I.C. FyfeC.L. MartinJ.C. SmithE.E. HorganG.W. MyintP.K. JohnstoneA.M. ScottK.P. Aging gut-brain interactions: Pro-inflammatory gut bacteria are elevated in fecal samples from individuals living with Alzheimer’s dementia.Geriatrics20251023710.3390/geriatrics1002003740126287
    [Google Scholar]
  47. KaluA. RayS.K. Epigallocatechin-3-gallate, quercetin, and kaempferol for treatment of Parkinson’s disease through prevention of gut dysbiosis and attenuation of multiple molecular mechanisms of pathogenesis.Brain Sci.202515214410.3390/brainsci1502014440002477
    [Google Scholar]
  48. CristoforiF. DargenioV.N. DargenioC. MinielloV.L. BaroneM. FrancavillaR. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body.Front. Immunol.20211257838610.3389/fimmu.2021.57838633717063
    [Google Scholar]
  49. DhapolaR. KumariS. SharmaP. HariK.R.D. Insight into the emerging and common experimental in-vivo models of Alzheimer’s disease.Lab. Anim. Res.20233913310.1186/s42826‑023‑00184‑138082453
    [Google Scholar]
  50. YangY.N. YangY.C.S.H. WuP.L. YangC.H. KuoK.C. YangS.N. Dextromethorphan suppresses lipopolysaccharide-induced epigenetic histone regulation in the tumor necrosis factor-α expression in primary rat microglia.Mediators Inflamm.202020201810.1155/2020/969401233376453
    [Google Scholar]
  51. AlMarzooqiS.K. AlmarzooqiF. SadidaH.Q. JerobinJ. AhmedI. Abou-SamraA.B. FakhroK.A. DhawanP. BhatA.A. Al-Shabeeb AkilA.S. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues.Obes. Rev.20242581376610.1111/obr.1376638745386
    [Google Scholar]
  52. AzizN. WalP. PatelA. PrajapatiH. A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: Potential therapeutic targets.Naunyn Schmiedebergs Arch. Pharmacol.2024397107307733610.1007/s00210‑024‑03109‑438734839
    [Google Scholar]
  53. LabetoulleM. BaudouinC. Benitez del CastilloJ.M. RolandoM. RescignoM. MessmerE.M. AragonaP. How gut microbiota may impact ocular surface homeostasis and related disorders.Prog. Retin. Eye Res.202410010125010.1016/j.preteyeres.2024.10125038460758
    [Google Scholar]
  54. SalvagnoM. StercheleE.D. ZaccarelliM. Mrakic-SpostaS. WelsbyI.J. BalestraC. TacconeF.S. Oxidative stress and cerebral vascular tone: The role of reactive oxygen and nitrogen species.Int. J. Mol. Sci.2024255300710.3390/ijms2505300738474253
    [Google Scholar]
  55. RaufA. BadoniH. Abu-IzneidT. OlatundeA. RahmanM.M. PainuliS. SemwalP. WilairatanaP. MubarakM.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases.Molecules20222710319410.3390/molecules2710319435630670
    [Google Scholar]
  56. MouY. DuY. ZhouL. YueJ. HuX. LiuY. ChenS. LinX. ZhangG. XiaoH. DongB. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging.Front. Immunol.20221379628810.3389/fimmu.2022.79628835464431
    [Google Scholar]
  57. DongY. WuX. ZhangY. HuA. ZhouQ. YueX. LiuZ. LiM. The role of probiotics in modulating the gut microbiome in Alzheimer’s disease: A review.Foods2025149153110.3390/foods1409153140361614
    [Google Scholar]
  58. HalimiH. AhmadiB. AsriN. Rostami-NejadM. HouriH. The roles of functional bacterial amyloids in neurological physiology and pathophysiology: Pros and cons for neurodegeneration.Microb. Pathog.202520010736310.1016/j.micpath.2025.10736339909290
    [Google Scholar]
  59. SubediS. SasidharanS. NagN. SaudagarP. TripathiT. Amyloid cross-seeding: Mechanism, implication, and inhibition.Molecules2022276177610.3390/molecules2706177635335141
    [Google Scholar]
  60. FayoudH. BelousovM.V. AntonetsK.S. NizhnikovA.A. Pathogenesis-associated bacterial amyloids: The network of interactions.Biochemistry20248912-132107213210.1134/S000629792412002239865026
    [Google Scholar]
  61. KearnsR. Gut–brain axis and neuroinflammation: The role of gut permeability and the kynurenine pathway in neurological disorders.Cell. Mol. Neurobiol.20244416410.1007/s10571‑024‑01496‑z39377830
    [Google Scholar]
  62. MillerA.L. BesshoS. GrandoK. TükelÇ. Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases.Front. Immunol.20211263886710.3389/fimmu.2021.63886733717189
    [Google Scholar]
  63. WeiW. WangS. XuC. ZhouX. LianX. HeL. LiK. Gut microbiota, pathogenic proteins and neurodegenerative diseases.Front. Microbiol.20221395985610.3389/fmicb.2022.95985636466655
    [Google Scholar]
  64. RaheemA. LiangL. ZhangG. CuiS. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation.Front. Immunol.20211261671310.3389/fimmu.2021.61671333897683
    [Google Scholar]
  65. TwarowskiB. HerbetM. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review.Int. J. Mol. Sci.2023247651810.3390/ijms2407651837047492
    [Google Scholar]
  66. ZhangZ. YangW. WangL. ZhuC. CuiS. WangT. GuX. LiuY. QiuP. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: A narrative review.J. Neuroinflammation202421129310.1186/s12974‑024‑03285‑339533332
    [Google Scholar]
  67. DuanW.X. WangF. LiuJ.Y. LiuC.F. Relationship between short-chain fatty acids and Parkinson’s disease: A review from pathology to clinic.Neurosci. Bull.202440450051610.1007/s12264‑023‑01123‑937755674
    [Google Scholar]
  68. MulakA. Bile acids as key modulators of the brain-gut-microbiota axis in Alzheimer’s disease.J. Alzheimers Dis.202184246147710.3233/JAD‑21060834569953
    [Google Scholar]
  69. ReddiS.R. KalyanM. AnandN. ManiS. GorantlaV.R. SakharkarM.K. SongB.J. ChidambaramS.B. Newer therapeutic approaches in treating Alzheimer’s disease: A comprehensive review.ACS Omega20251065148517110.1021/acsomega.4c0552739989768
    [Google Scholar]
  70. LiangS.Y. WangZ.T. TanL. YuJ.T. Tau toxicity in neurodegeneration.Mol. Neurobiol.20225963617363410.1007/s12035‑022‑02809‑335359226
    [Google Scholar]
  71. MuraiT. MatsudaS. Therapeutic implications of probiotics in the gut microbe-modulated neuroinflammation and progression of Alzheimer’s disease.Life2023137146610.3390/life1307146637511841
    [Google Scholar]
  72. DilawariR. SinghE. The impact of microbiological infections on neurodegenerative diseases. The Neurodegeneration Revolution.Elsevier202520321310.1016/B978‑0‑443‑28822‑7.00016‑7
    [Google Scholar]
  73. KollaparampilK.D. AthiraK.K.A. ChandrababuK. PhilipsC.A. SivanU. Pulikaparambil SasidharanB.C. The intricate interplay: Microbial metabolites and the gut-liver-brain axis in Parkinson’s disease.J. Neurosci. Res.202510317001610.1002/jnr.7001639754366
    [Google Scholar]
  74. Skrzypczak-WierciochA. SałatK. Lipopolysaccharide-induced model of neuroinflammation: Mechanisms of action, research application and future directions for its use.Molecules20222717548110.3390/molecules2717548136080253
    [Google Scholar]
  75. Beltran-VelascoA.I. Clemente-SuárezV.J. Impact of peripheral inflammation on blood–brain barrier dysfunction and its role in neurodegenerative diseases.Int. J. Mol. Sci.2025266244010.3390/ijms2606244040141084
    [Google Scholar]
  76. ChenH. LiN. LiuN. ZhuH. MaC. YeY. ShiX. LuoG. DongX. TanT. WeiX. YinH. Photobiomodulation modulates mitochondrial energy metabolism and ameliorates neurological damage in an APP/PS1 mousmodel of Alzheimer’s disease.Alzheimers Res. Ther.20251717210.1186/s13195‑025‑01714‑w40188044
    [Google Scholar]
  77. AlpinoG.C.Á. Pereira-SolG.A. DiasM.M. AguiarA.S. PeluzioM.C.G. Beneficial effects of butyrate on brain functions: A view of epigenetic.Crit. Rev. Food Sci. Nutr.202464123961397010.1080/10408398.2022.213777636287024
    [Google Scholar]
  78. MunteanuC. GalactionA.I. TurneaM. BlendeaC.D. RotariuM. PoștaruM. Redox homeostasis, gut microbiota, and epigenetics in neurodegenerative diseases: A systematic review.Antioxidants2024139106210.3390/antiox1309106239334720
    [Google Scholar]
  79. WuM. ChengY. ZhangR. HanW. JiangH. BiC. ZhangZ. YeM. LinX. LiuZ. Molecular mechanism and therapeutic strategy of bile acids in Alzheimer’s disease from the emerging perspective of the microbiota–gut–brain axis.Biomed. Pharmacother.202417811722810.1016/j.biopha.2024.11722839088965
    [Google Scholar]
  80. JungY.H. ChaeC.W. HanH.J. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer’s disease.Exp. Mol. Med.20245681691170210.1038/s12276‑024‑01282‑339085351
    [Google Scholar]
  81. FlynnC.M. OmoluabiT. JanesA.M. RodgersE.J. TorravilleS.E. NegandhiB.L. NobelT.E. MayengbamS. YuanQ. Targeting early tau pathology: Probiotic diet enhances cognitive function and reduces inflammation in a preclinical Alzheimer’s model.Alzheimers Res. Ther.20251712410.1186/s13195‑025‑01674‑139827356
    [Google Scholar]
  82. MehtaJ.P. AyakarS. SinghalR.S. The potential of paraprobiotics and postbiotics to modulate the immune system: A Review.Microbiol. Res.202327512744910.1016/j.micres.2023.12744937454427
    [Google Scholar]
  83. LiuL. QiW. ZhangN. ZhangJ. LiuS. WangH. JiangL. SunY. Nutraceuticals for gut–brain axis health: A novel approach to combat malnutrition and future personalised nutraceutical interventions.Nutrients2025179155110.3390/nu1709155140362863
    [Google Scholar]
  84. NoreñaC.P.Z. BrandelliA. The rise of probiotics as adjuvant therapeutics in Alzheimer’s disease.Discover. Food20255121410.1007/s44187‑025‑00523‑2
    [Google Scholar]
  85. MeherA.K. AcharyaB. SahuP.K. Probiotics: Bridging the interplay of a healthy gut and psychoneurological well-being.Food Bioeng.20243112614710.1002/fbe2.12081
    [Google Scholar]
  86. ThangaleelaS. SivamaruthiB.S. KesikaP. ChaiyasutC. Role of probiotics and diet in the management of neurological diseases and mood states: A review.Microorganisms20221011226810.3390/microorganisms1011226836422338
    [Google Scholar]
  87. PrajapatiS. K. JainS. YadavH. Age-related cognitive decline and Dementia: Interface of microbiome-immune-neuronal interactions. J. Gerontol. A. Biol. Sci. Med. Sci.2025807glaf03810.1093/gerona/glaf038
    [Google Scholar]
  88. IatcuO.C. HamamahS. CovasaM. Harnessing prebiotics to improve type 2 diabetes outcomes.Nutrients20241620344710.3390/nu1620344739458444
    [Google Scholar]
  89. FacchinS. BertinL. BonazziE. LorenzonG. De BarbaC. BarberioB. ZingoneF. ManieroD. ScarpaM. RuffoloC. AngrimanI. SavarinoE.V. Short-chain fatty acids and human health: From metabolic pathways to current therapeutic implications.Life202414555910.3390/life1405055938792581
    [Google Scholar]
  90. OnisiforouA. CharalambousE.G. ZanosP. Shattering the amyloid illusion: the microbial enigma of Alzheimer’s disease pathogenesis—From gut microbiota and viruses to brain biofilms.Microorganisms20251319010.3390/microorganisms1301009039858858
    [Google Scholar]
  91. VigneshA. AmalT.C. SarvalingamA. VasanthK. A review on the influence of nutraceuticals and functional foods on health.Food Chem. Adv.2024510074910.1016/j.focha.2024.100749
    [Google Scholar]
  92. SabitH. AbouelnourS. HassenB.M. MagdyS. YasserA. WadanA.H.S. Abdel-GhanyS. RadwanF. AlqosaibiA.I. HafizH. AwlyaO.F.A. ArnethB. Anticancer potential of prebiotics: Targeting estrogen receptors and PI3K/AKT/mTOR in breast cancer.Biomedicines202513499010.3390/biomedicines1304099040299687
    [Google Scholar]
  93. PrajapatiS.K. YadavD. KatiyarS. JainS. YadavH. Postbiotics as mitochondrial modulators in inflammatory bowel disease: Mechanistic insights and therapeutic potential.Biomolecules202515795410.3390/biom1507095440723826
    [Google Scholar]
  94. LinD. HowardA. RaihaneA.S. Di NapoliM. CáceresE. OrtizM. DavisJ. AbdelrahmanA.N. DivaniA.A. Traumatic brain injury and gut microbiome: The role of the gut-brain axis in neurodegenerative processes.Curr. Neurol. Neurosci. Rep.20252512310.1007/s11910‑025‑01410‑040087204
    [Google Scholar]
  95. FangX. WangY. WeiH. HuangY. Precision microbiome: A new era of targeted therapy with core probiotics.Research20258065810.34133/research.065840143943
    [Google Scholar]
  96. BharathwajChettyB. KumarA. DeeviP. AbbasM. AlqahtaniA. LiangL. SethiG. LiuL. KunnumakkaraA.B. Gut microbiota and their influence in brain cancer milieu.J. Neuroinflammation202522112910.1186/s12974‑025‑03434‑240312370
    [Google Scholar]
  97. PetrutS.M. BragaruA.M. MunteanuA.E. MoldovanA.D. MoldovanC.A. RusuE. Gut over mind: Exploring the powerful gut–brain axis.Nutrients202517584210.3390/nu1705084240077713
    [Google Scholar]
  98. JuT. ZhangY. LiuL. ZhaoX. LiX. LiuC. SunS. WuL. The role of gut microbiota–mitochondria crosstalk in neurodegeneration: Underlying mechanisms and potential therapies.Neural Regen. Res.2025[Epub ahead of print]10.4103/NRR.NRR‑D‑24‑0141940314217
    [Google Scholar]
  99. ChibS. SharmaK. SinghR. Interventions of cognitive impairment in older adults: A comprehensive review.Aging Health Res.20255110022310.1016/j.ahr.2025.100223
    [Google Scholar]
  100. SantacroceL. BottalicoL. CharitosI.A. CastellanetaF. GaxhjaE. TopiS. PalmirottaR. JirilloE. Exploitation of natural by-products for the promotion of healthy outcomes in humans: Special focus on antioxidant and anti-inflammatory mechanisms and modulation of the gut microbiota.Antioxidants202413779610.3390/antiox1307079639061865
    [Google Scholar]
  101. ŞimşekH. UçarA. Polyunsaturated fatty acids as a nutraceutical for age-related neurodegenerative diseases: Current knowledge and future directions.Clin. Nutr. Open Sci.202456657310.1016/j.nutos.2024.05.012
    [Google Scholar]
  102. MoC. LouX. XueJ. ShiZ. ZhaoY. WangF. ChenG. The influence of Akkermansia muciniphila on intestinal barrier function.Gut Pathog.20241614110.1186/s13099‑024‑00635‑739097746
    [Google Scholar]
  103. RobbinsM. Re-energising the brain: Glucose metabolism, Tau protein and memory in ageing and dementia.Ageing Neurodegener. Dis.202442710.20517/and.2023.57
    [Google Scholar]
  104. WatsonA.E. YusufN. The influence of dietary factors on melanoma development and progression: A comprehensive review.Nutrients20251711189110.3390/nu1711189140507159
    [Google Scholar]
  105. NumakawaT. KajiharaR. The role of brain-derived neurotrophic factor as an essential mediator in neuronal functions and the therapeutic potential of its mimetics for neuroprotection in neurologic and psychiatric disorders.Molecules202530484810.3390/molecules3004084840005159
    [Google Scholar]
  106. SimsekM. WhitneyK. Examination of primary and secondary metabolites associated with a plant-based diet and their impact on human health.Foods2024137102010.3390/foods1307102038611326
    [Google Scholar]
  107. BarberT.M. KabischS. PfeifferA.F.H. WeickertM.O. Dietary and lifestyle strategies for obesity.Nutrients20241616271410.3390/nu1616271439203850
    [Google Scholar]
  108. Missiego-BeltránJ. Beltrán-VelascoA.I. The role of microbial metabolites in the progression of neurodegenerative diseases—therapeutic approaches: A comprehensive review.Int. J. Mol. Sci.202425181004110.3390/ijms25181004139337526
    [Google Scholar]
  109. SamalM. SrivastavaV. KhanM. InsafA. PenumalluN.R. AlamA. ParveenB. AnsariS.H. AhmadS. Therapeutic potential of polyphenols in cellular reversal of patho-mechanisms of Alzheimer’s disease using in vitro and in vivo models: A comprehensive review.Phytother. Res.2025391255010.1002/ptr.834439496498
    [Google Scholar]
  110. ZinkowA. GrodzickiW. CzerwińskaM. DziendzikowskaK. Molecular mechanisms linking Omega-3 fatty acids and the gut–brain axis.Molecules20243017110.3390/molecules3001007139795128
    [Google Scholar]
  111. NguyenL.A.M. SimonsC.W. ThomasR. Nootropic foods in neurodegenerative diseases: Mechanisms, challenges, and future.Transl. Neurodegener.20251411710.1186/s40035‑025‑00476‑740176115
    [Google Scholar]
  112. LiM. LiZ. FanY. Omega-3 fatty acids: Multi-target mechanisms and therapeutic applications in neurodevelopmental disorders and epilepsy.Front. Nutr.202512159858810.3389/fnut.2025.159858840521363
    [Google Scholar]
  113. TianJ. ZhangY. ZhaoX. The effects and mechanisms of n-3 and n-6 polyunsaturated fatty acids in the central nervous system.Cell. Mol. Neurobiol.20254512510.1007/s10571‑025‑01543‑340097862
    [Google Scholar]
  114. Abdul MananM. Progress in probiotic science: Prospects of functional probiotic-based foods and beverages.Int. J. Food Sci.202520251556756710.1155/ijfo/556756740259922
    [Google Scholar]
  115. MeduriG.U. Synergistic glucocorticoids, vitamins, and microbiome strategies for gut protection in critical illness.Explor. Endocr. Metab. Dis.2025210143210.37349/eemd.2025.101432
    [Google Scholar]
  116. PadhiS. SarkarP. SahooD. RaiA.K. Potential of fermented foods and their metabolites in improving gut microbiota function and lowering gastrointestinal inflammation.J. Sci. Food Agric.202510584058406910.1002/jsfa.1331338299734
    [Google Scholar]
  117. ShawkyE. SurendranS. El-KhairR.M.A. Fermented vegetables as a source of psychobiotics: A review of the evidence for mental health benefits.Probiotics Antimicrob. Proteins2025[Epub ahead of print]10.1007/s12602‑025‑10592‑540402417
    [Google Scholar]
  118. AndersonR.C. AlpassF.M. Effectiveness of dairy products to protect against cognitive decline in later life: A narrative review.Front. Nutr.202411136694910.3389/fnut.2024.136694938962439
    [Google Scholar]
  119. EslamiM. AdampourZ. FadaeeD.B. YaghmayeeS. MotallebiT.F. OksenychV. NaderianR. A novel frontier in gut–brain axis research: The transplantation of fecal microbiota in neurodegenerative disorders.Biomedicines202513491510.3390/biomedicines1304091540299512
    [Google Scholar]
  120. CapatinaT.F. OatuA. BabasanC. TrifuS. Translating molecular psychiatry: From biomarkers to personalized therapies—A narrative review.Int. J. Mol. Sci.2025269428510.3390/ijms2609428540362522
    [Google Scholar]
  121. YadegarA. Bar-YosephH. MonaghanT.M. PakpourS. SeverinoA. KuijperE.J. SmitsW.K. TerveerE.M. NeupaneS. Nabavi-RadA. SadeghiJ. CammarotaG. IaniroG. Nap-HillE. LeungD. WongK. KaoD. Fecal microbiota transplantation: Current challenges and future landscapes.Clin. Microbiol. Rev.2024372 e00060-22.10.1128/cmr.00060‑2238717124
    [Google Scholar]
  122. JunyiL. YueyangW. BinL. XiaohongD. WenhuiC. NingZ. HongZ. Gut microbiota mediates neuroinflammation in Alzheimer’s disease: Unraveling key factors and mechanistic insights.Mol. Neurobiol.20256233746376310.1007/s12035‑024‑04513‑w39317889
    [Google Scholar]
  123. SenarathR.M.U.S. OikariL.E. BharadwajP. JayasenaV. MartinsR.N. FernandoW.M.A.D.B. The therapeutic potential of butyrate and lauric acid in modulating glial and neuronal activity in Alzheimer’s disease.Nutrients20251714228610.3390/nu17142286
    [Google Scholar]
  124. SuS.H. WuY.F. LinQ. ZhangL. WangD.P. HaiJ. Fecal microbiota transplantation and replenishment of short-chain fatty acids protect against chronic cerebral hypoperfusion-induced colonic dysfunction by regulating gut microbiota, differentiation of Th17 cells, and mitochondrial energy metabolism.J. Neuroinflammation202219131310.1186/s12974‑022‑02675‑936567333
    [Google Scholar]
  125. ZikouE. KoliakiC. MakrilakisK. The role of fecal microbiota transplantation (FMT) in the management of metabolic diseases in humans: A narrative review.Biomedicines2024128187110.3390/biomedicines1208187139200335
    [Google Scholar]
  126. ArafahA. KhatoonS. RasoolI. KhanA. RatherM.A. AbujabalK.A. FaqihY.A.H. RashidH. RashidS.M. Bilal AhmadS. AlexiouA. RehmanM.U. The future of precision medicine in the cure of Alzheimer’s disease.Biomedicines202311233510.3390/biomedicines1102033536830872
    [Google Scholar]
  127. SinghN. SinghV. RaiS.N. MishraV. VamanuE. SinghM.P. Deciphering the gut microbiome in neurodegenerative diseases and metagenomic approaches for characterization of gut microbes.Biomed. Pharmacother.202215611395810.1016/j.biopha.2022.11395836411639
    [Google Scholar]
  128. Kyei-BaffourV.O. VijayaA.K. BurokasA. DaliriE.B.M. Psychobiotics and the gut-brain axis: Advances in metabolite quantification and their implications for mental health.Crit. Rev. Food Sci. Nutr.202512010.1080/10408398.2025.245934139907087
    [Google Scholar]
  129. DziedzicA. MaciakK. Bliźniewska-KowalskaK. GałeckaM. KobiereckaW. SalukJ. The power of psychobiotics in depression: A modern approach through the microbiota–gut–brain axis: A literature review.Nutrients2024167105410.3390/nu1607105438613087
    [Google Scholar]
  130. YaqubM.O. JainA. JosephC.E. EdisonL.K. Microbiome-driven therapeutics: From gut health to precision medicine.Gastrointest. Disord.202571710.3390/gidisord7010007
    [Google Scholar]
  131. GłowackaP. OszajcaK. PudlarzA. SzemrajJ. Witusik-PerkowskaM. Postbiotics as molecules targeting cellular events of aging brain—the role in pathogenesis, prophylaxis and treatment of neurodegenerative diseases.Nutrients20241614224410.3390/nu1614224439064687
    [Google Scholar]
  132. LiuY. LauH.C.H. YuJ. Microbial metabolites in colorectal tumorigenesis and cancer therapy.Gut Microbes2023151220396810.1080/19490976.2023.220396837095682
    [Google Scholar]
  133. TurpinT. ThouvenotK. GonthierM.P. Adipokines and bacterial metabolites: A pivotal molecular bridge linking obesity and gut microbiota dysbiosis to target.Biomolecules20231312169210.3390/biom1312169238136564
    [Google Scholar]
  134. SaxenaR. SharmaV. SaxenaA.R. PatelA. Harnessing AI and gut microbiome research for precision health.J. Artif. Intell. Gen. Sci.202431748810.60087/jaigs.v3i1.68
    [Google Scholar]
  135. LarroyaA. PantojaJ. Codoñer-FranchP. CenitM.C. Towards tailored gut microbiome-based and dietary interventions for promoting the development and maintenance of a healthy brain.Front Pediatr.2021970585910.3389/fped.2021.70585934277527
    [Google Scholar]
  136. DakalT.C. XuC. KumarA. Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification.Front. Med. Technol.20256143479910.3389/fmedt.2024.143479940303946
    [Google Scholar]
  137. Al-AdhamI.S.I. AghaA.S.A.A. Al-AkaylehF. Al-RemawiM. JaberN. Al ManasurM. CollierP.J. Prebiotics beyond the gut: Omics insights, Artificial Intelligence, and clinical trials in organ-specific applications.Probiotics Antimicrob. Proteins 2025.10.1007/s12602‑025‑10465‑x39878922
    [Google Scholar]
  138. ChenL. ZhangS. XiaoN. Global trends and future perspectives in autism spectrum disorder and gut microbiota research and gut-brain axis research: A comprehensive bibliometric analysis.SSRN202510.2139/ssrn.5230957
    [Google Scholar]
/content/journals/car/10.2174/0115672050403066250904112611
Loading
/content/journals/car/10.2174/0115672050403066250904112611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test