Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Dementia is a set of acquired and progressive neuropsychiatric disorders. The most common types of dementia include Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD). Early intravital diagnosis of both types of dementia is difficult. Both molecular and neuroimaging markers are important for the diagnosis of different types of dementia.

Methods

This review employed freely accessible databases, including PubMed, Google Scholar, and ScienceDirect, using keywords such as molecular parameters, neuroimaging factors, dementia, FTD, Alzheimer’s disease, and fMRI.

Results

Among the molecular markers of dementia, there are parameters common to its various types and enabling their differentiation. These parameters include both genetic and biochemical factors. Markers include genetic factors that help differentiate AD () from FTD (). Simultaneously, there are important biochemical parameters differentiating AD (amyloid-beta (Aβ), neurofibrillary tangles) from FTD (TDP-43, FUS, and different forms of tau protein aggregates). Currently, there is growing interest in neuroimaging studies in the differential diagnosis of dementia. Positron Emission Tomography (PET) imaging enables the quantification and localization of Aβ deposits in the brain through the selective binding of the Pittsburgh Compound-B (PiB) ligand. This method has become the standard in AD diagnostics. In the context of magnetic resonance imaging studies, it is worth noting the search for structural differences between AD (mainly affecting the temporal lobe, including the hippocampus and entorhinal cortex, and the parietal lobe) and FTD (primarily involving the prefrontal cortex, anterior temporal lobes, and subcortical structures, as well as exhibiting an anteroposterior gradient of atrophy). However, the method of the future appears to be functional Magnetic Resonance Imaging (fMRI), especially since functional changes precede structural changes in the development of dementia.

Discussion

The review encompasses the basic diagnostic criteria for AD and FTD dementia, as well as molecular and neuroimaging parameters important for the intravital diagnosis of these dementias. It seems that the use of fMRI can contribute to both early diagnosis and early introduction of targeted treatment in developing dementia. Although it is not yet widely used clinically, its diagnostic value is increasingly recognized.

Conclusion

The benefits of fMRI studies complementing molecular markers in the diagnosis of dementia were highlighted.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050390340250716061313
2025-07-31
2026-02-03
Loading full text...

Full text loading...

References

  1. VillemagneV.L. BarkhofF. GaribottoV. LandauS.M. NordbergA. van BerckelB.N.M. Molecular imaging approaches in dementia.Radiology2021298351753010.1148/radiol.202020002833464184
    [Google Scholar]
  2. VillaC. LavitranoM. SalvatoreE. CombiR. Molecular and imaging biomarkers in Alzheimer’s disease: A focus on recent insights.J. Pers. Med.20201036110.3390/jpm1003006132664352
    [Google Scholar]
  3. HuangY. MuckeL. Alzheimer mechanisms and therapeutic strategies.Cell201214861204122210.1016/j.cell.2012.02.04022424230
    [Google Scholar]
  4. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. FeldmanH.H. FrisoniG.B. HampelH. JagustW.J. JohnsonK.A. KnopmanD.S. PetersenR.C. ScheltensP. SperlingR.A. DuboisB. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers.Neurology201687553954710.1212/WNL.000000000000292327371494
    [Google Scholar]
  5. BangJ. SpinaS. MillerB.L. Frontotemporal dementia.Lancet2015386100041672168210.1016/S0140‑6736(15)00461‑426595641
    [Google Scholar]
  6. BoeveB.F. BoxerA.L. KumforF. PijnenburgY. RohrerJ.D. Advances and controversies in frontotemporal dementia: Diagnosis, biomarkers, and therapeutic considerations.Lancet Neurol.202221325827210.1016/S1474‑4422(21)00341‑035182511
    [Google Scholar]
  7. KhanS. BarveK.H. KumarM.S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease.Curr. Neuropharmacol.202018111106112510.2174/1570159X1866620052814242932484110
    [Google Scholar]
  8. RayN.R. AyodeleT. Jean-FrancoisM. BaezP. FernandezV. BradleyJ. CraneP.K. DalgardC.L. KuzmaA. NicarettaH. SimsR. WilliamsJ. CuccaroM.L. Pericak-VanceM.A. MayeuxR. WangL.S. SchellenbergG.D. CruchagaC. BeechamG.W. ReitzC. The early-onset Alzheimer’s disease whole-genome sequencing project: Study design and methodology.Alzheimers Dement.20231994187419510.1002/alz.1337037390458
    [Google Scholar]
  9. ZhangN.K. ZhangS.K. ZhangL.I. TaoH.W. ZhangG.W. The neural basis of neuropsychiatric symptoms in Alzheimer’s disease.Front. Aging Neurosci.202416148787510.3389/fnagi.2024.148787539703925
    [Google Scholar]
  10. IsmailZ. CreeseB. AarslandD. KalesH.C. LyketsosC.G. SweetR.A. BallardC. Psychosis in Alzheimer disease — mechanisms, genetics and therapeutic opportunities.Nat. Rev. Neurol.202218313114410.1038/s41582‑021‑00597‑334983978
    [Google Scholar]
  11. AngelucciF. SpallettaG. IulioF. CiaramellaA. SalaniF. VarsiA. GianniW. SancesarioG. CaltagironeC. BossuP. BossùP. Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) patients are characterized by increased BDNF serum levels.Curr. Alzheimer Res.201071152010.2174/15672051079027447320205668
    [Google Scholar]
  12. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  13. SłowikowskiB. OweckiW. JeskeJ. JezierskiM. DragułaM. GoutorU. JagodzińskiP.P. KozubskiW. DorszewskaJ. Epigenetics and the neurodegenerative process.Epigenomics202416747349110.2217/epi‑2023‑041638511224
    [Google Scholar]
  14. LiuE. ZhangY. WangJ.Z. Updates in Alzheimer’s disease: From basic research to diagnosis and therapies.Transl. Neurodegener.20241314510.1186/s40035‑024‑00432‑x39232848
    [Google Scholar]
  15. UlugutH. PijnenburgY.A.L. Frontotemporal dementia: Past, present, and future.Alzheimers Dement.202319115253526310.1002/alz.1336337379561
    [Google Scholar]
  16. MillerB. Llibre GuerraJ.J. Frontotemporal dementia.Handb. Clin. Neurol.2019165334510.1016/B978‑0‑444‑64012‑3.00003‑431727221
    [Google Scholar]
  17. RascovskyK. HodgesJ.R. KnopmanD. MendezM.F. KramerJ.H. NeuhausJ. van SwietenJ.C. SeelaarH. DopperE.G.P. OnyikeC.U. HillisA.E. JosephsK.A. BoeveB.F. KerteszA. SeeleyW.W. RankinK.P. JohnsonJ.K. Gorno-TempiniM.L. RosenH. Prioleau-LathamC.E. LeeA. KippsC.M. LilloP. PiguetO. RohrerJ.D. RossorM.N. WarrenJ.D. FoxN.C. GalaskoD. SalmonD.P. BlackS.E. MesulamM. WeintraubS. DickersonB.C. Diehl-SchmidJ. PasquierF. DeramecourtV. LebertF. PijnenburgY. ChowT.W. ManesF. GrafmanJ. CappaS.F. FreedmanM. GrossmanM. MillerB.L. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia.Brain201113492456247710.1093/brain/awr17921810890
    [Google Scholar]
  18. AntonioniA. RahoE.M. LoprioreP. PaceA.P. LatinoR.R. AssognaM. MancusoM. GragnanielloD. GranieriE. PugliattiM. Di LorenzoF. KochG. Frontotemporal dementia, where do we stand? A narrative review.Int. J. Mol. Sci.202324141173210.3390/ijms24141173237511491
    [Google Scholar]
  19. Gorno-TempiniM.L. HillisA.E. WeintraubS. KerteszA. MendezM. CappaS.F. OgarJ.M. RohrerJ.D. BlackS. BoeveB.F. ManesF. DronkersN.F. VandenbergheR. RascovskyK. PattersonK. MillerB.L. KnopmanD.S. HodgesJ.R. MesulamM.M. GrossmanM. Classification of primary progressive aphasia and its variants.Neurology201176111006101410.1212/WNL.0b013e31821103e621325651
    [Google Scholar]
  20. YuQ. MaiY. RuanY. LuoY. ZhaoL. FangW. CaoZ. LiY. LiaoW. XiaoS. MokV.C.T. ShiL. LiuJ. National Alzheimer’s Coordinating Center, the Alzheimer’s Disease Neuroimaging Initiative Frontotemporal Lobar Degeneration Neuroimaging Initiative An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s disease.Alzheimers Res. Ther.20211312310.1186/s13195‑020‑00757‑533436059
    [Google Scholar]
  21. ChouliarasL. ThomasA. MalpettiM. DonaghyP. KaneJ. MakE. SavulichG. Prats-SedanoM.A. HeslegraveA.J. ZetterbergH. SuL. RoweJ.B. O’BrienJ.T. Differential levels of plasma biomarkers of neurodegeneration in Lewy body dementia, Alzheimer’s disease, frontotemporal dementia and progressive supranuclear palsy.J. Neurol. Neurosurg. Psychiatry202293665165810.1136/jnnp‑2021‑32778835078917
    [Google Scholar]
  22. NacmiasB. PiaceriI. BagnoliS. TeddeA. PiacentiniS. SorbiS. Genetics of Alzheimer’s disease and frontotemporal dementia.Curr. Mol. Med.2014148993100010.2174/156652401466614101015214325323872
    [Google Scholar]
  23. BekrisL.M. YuC.E. BirdT.D. TsuangD.W. Genetics of Alzheimer disease.J. Geriatr. Psychiatry Neurol.201023421322710.1177/089198871038357121045163
    [Google Scholar]
  24. PiresM. RegoA.C. Apoe4 and Alzheimer’s disease pathogenesis-mitochondrial deregulation and targeted therapeutic strategies.Int. J. Mol. Sci.202324177810.3390/ijms2401077836614219
    [Google Scholar]
  25. RahmanA. JacksonH. HristovH. IsaacsonR.S. SaifN. ShettyT. EtinginO. HenchcliffeC. BrintonR.D. MosconiL. Sex and gender driven modifiers of Alzheimer’s: The role for estrogenic control across age, race, medical, and lifestyle risks.Front. Aging Neurosci.20191131510.3389/fnagi.2019.0031531803046
    [Google Scholar]
  26. ParkC.H. LeeH. LeeY.M. LeeB.D. MoonE. SuhH. KimK. KimH.J. ShimH. PakK. ChoiK.U. KimC.S. Sex-specific effects of apolipoprotein E ε4 genotype on longitudinal hippocampal atrophy in amnestic mild cognitive impairment over a 2-year evaluation period.J. Alzheimers Dis.202510341269127610.1177/1387287724131306639924830
    [Google Scholar]
  27. GoedertM. GhettiB. SpillantiniM.G. Frontotemporal dementia: Implications for understanding Alzheimer disease.Cold Spring Harb. Perspect. Med.201222a00625410.1101/cshperspect.a00625422355793
    [Google Scholar]
  28. RootJ. MerinoP. NuckolsA. JohnsonM. KukarT. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis.Neurobiol. Dis.202115410536010.1016/j.nbd.2021.10536033812000
    [Google Scholar]
  29. BarberR.C. The genetics of Alzheimer’s disease.Scientifica2012201211410.6064/2012/24621024278680
    [Google Scholar]
  30. LiuC.C. KanekiyoT. XuH. BuG. BuG. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy.Nat. Rev. Neurol.20139210611810.1038/nrneurol.2012.26323296339
    [Google Scholar]
  31. StrangK.H. GoldeT.E. GiassonB.I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration.Lab. Invest.201999791292810.1038/s41374‑019‑0197‑x30742061
    [Google Scholar]
  32. KaoA.W. McKayA. SinghP.P. BrunetA. HuangE.J. Progranulin, lysosomal regulation and neurodegenerative disease.Nat. Rev. Neurosci.201718632533310.1038/nrn.2017.3628435163
    [Google Scholar]
  33. HillS.M. WrobelL. AshkenaziA. Fernandez-EstevezM. TanK. BürliR.W. RubinszteinD.C. VCP/p97 regulates Beclin-1-dependent autophagy initiation.Nat. Chem. Biol.202117444845510.1038/s41589‑020‑00726‑x33510452
    [Google Scholar]
  34. BenussiA. PadovaniA. BorroniB. Phenotypic heterogeneity of monogenic frontotemporal dementia.Front. Aging Neurosci.2015717110.3389/fnagi.2015.0017126388768
    [Google Scholar]
  35. McEachinZ.T. ParameswaranJ. RajN. BassellG.J. JiangJ. RNA-mediated toxicity in C9orf72 ALS and FTD.Neurobiol. Dis.202014510505510.1016/j.nbd.2020.10505532829028
    [Google Scholar]
  36. GroblerC. van TongerenM. GettemansJ. KellD.B. PretoriusE. Alzheimer’s disease: A systems view provides a unifying explanation of its development.J. Alzheimers Dis.2023911437010.3233/JAD‑22072036442193
    [Google Scholar]
  37. GibbonsL. RollinsonS. ThompsonJ.C. RobinsonA. DavidsonY.S. RichardsonA. NearyD. Pickering-BrownS.M. SnowdenJ.S. MannD.M.A. Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration.Neurobiol. Aging20153631603.e11603.e410.1016/j.neurobiolaging.2014.10.02325435337
    [Google Scholar]
  38. ForgraveL.M. MaM. BestJ.R. DeMarcoM.L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: A systematic review and meta-analysis.Alzheimers Dement.201911173074310.1016/j.dadm.2019.08.00931909174
    [Google Scholar]
  39. Gómez-TortosaE. Agüero-RabesP. Ruiz-GonzálezA. Wagner-RegueroS. TéllezR. MahilloI. Ruiz-CalvoA. SainzM.J. NystromA.L. del SerT. Sánchez-JuanP. Plasma biomarkers in the distinction of Alzheimer’s disease and frontotemporal dementia.Int. J. Mol. Sci.2025263123110.3390/ijms2603123139940998
    [Google Scholar]
  40. KozubskiW. OngK. WaleszczykW. ZabelM. DorszewskaJ. Molecular factors mediating neural cell plasticity changes in dementia brain diseases.Neural Plast.2021202112010.1155/2021/883464533854544
    [Google Scholar]
  41. LiL.M. CheP. LiuD. WangY. LiJ. HeD. LiuT. ZhangN. Diagnostic and discriminative accuracy of plasma phosphorylated tau 217 for symptomatic Alzheimerʼs disease in a Chinese cohort.J. Prev. Alzheimers Dis.202512510009210.1016/j.tjpad.2025.10009239948000
    [Google Scholar]
  42. VisserP.J. ReusL.M. GobomJ. JansenI. DicksE. van der LeeS.J. TsolakiM. VerheyF.R.J. PoppJ. Martinez-LageP. VandenbergheR. LleóA. MolinuevoJ.L. EngelborghsS. Freund-LeviY. FroelichL. SleegersK. DobricicV. LovestoneS. StrefferJ. VosS.J.B. BosI. SmitA.B. BlennowK. ScheltensP. TeunissenC.E. BertramL. ZetterbergH. TijmsB.M. SmitA.B. BlennowK. ScheltensP. TeunissenC.E. BertramL. ZetterbergH. TijmsB.M. ADNI Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease.Mol. Neurodegener.20221712710.1186/s13024‑022‑00521‑335346299
    [Google Scholar]
  43. Abu-RumeilehS. MomettoN. Bartoletti-StellaA. PolischiB. OppiF. PodaR. Stanzani-MaseratiM. CortelliP. LiguoriR. CapellariS. ParchiP. Cerebrospinal fluid biomarkers in patients with frontotemporal dementia spectrum: A single-center study.J. Alzheimers Dis.201866255156310.3233/JAD‑18040930320576
    [Google Scholar]
  44. FoianiM.S. WoollacottI.O.C. HellerC. BocchettaM. HeslegraveA. DickK.M. RussellL.L. MarshallC.R. MeadS. SchottJ.M. FoxN.C. WarrenJ.D. ZetterbergH. RohrerJ.D. Plasma tau is increased in frontotemporal dementia.J. Neurol. Neurosurg. Psychiatry201889880480710.1136/jnnp‑2017‑31726029440230
    [Google Scholar]
  45. DorszewskaJ. LahiriD.K. Diversity of molecular factors in Alzheimer’s disease.Curr. Alzheimer Res.202017320520710.2174/15672050170320051808152432442077
    [Google Scholar]
  46. SzymanowiczO. PawlakS. PotockaE. GoutorU. KozubskiW. DorszewskaJ. Molecular basis of dementia.J. Multiscale Neurosci.202431536310.56280/1605703412
    [Google Scholar]
  47. PalmqvistS. TidemanP. Mattsson-CarlgrenN. SchindlerS.E. SmithR. OssenkoppeleR. CallingS. WestT. MonaneM. VergheseP.B. BraunsteinJ.B. BlennowK. JanelidzeS. StomrudE. SalvadóG. HanssonO. Blood biomarkers to detect Alzheimer disease in primary care and secondary care.JAMA2024332151245125710.1001/jama.2024.1385539068545
    [Google Scholar]
  48. PiekutT. HurłaM. BanaszekN. SzejnP. DorszewskaJ. KozubskiW. PrendeckiM. Infectious agents and Alzheimer’s disease.J. Integr. Neurosci.20222127310.31083/j.jin210207335364661
    [Google Scholar]
  49. DorszewskaJ. HurłaM. BanaszekN. KobylarekD. PiekutT. KozubskiW. From infection to inoculation: Expanding the microbial hypothesis of Alzheimer’s disease.Curr. Alzheimer Res.2023191384985310.2174/156720502066623020215540436740797
    [Google Scholar]
  50. JanelidzeS. ZetterbergH. MattssonN. PalmqvistS. VandersticheleH. LindbergO. van WestenD. StomrudE. MinthonL. BlennowK. HanssonO. Swedish BioFINDER study group CSF A β 42/A β 40 and A β 42/A β 38 ratios: Better diagnostic markers of Alzheimer disease.Ann. Clin. Transl. Neurol.20163315416510.1002/acn3.27427042676
    [Google Scholar]
  51. KhalafiM. DartoraW.J. McIntireL.B.J. ButlerT.A. WartchowK.M. HojjatiS.H. RazlighiQ.R. ShirbandiK. ZhouL. ChenK. XiK. BanerjeeS. FoldiN. PahlajaniS. GlodzikL. LiY. de LeonM.J. ChiangG.C. Diagnostic accuracy of phosphorylated tau217 in detecting Alzheimer’s disease pathology among cognitively impaired and unimpaired: A systematic review and meta-analysis.Alzheimers Dement.2025212e1445810.1002/alz.1445839711334
    [Google Scholar]
  52. LiampasI. KyriakoulopoulouP. KarakoidaV. KavvouraP.A. SgantzosM. BogdanosD.P. StamatiP. DardiotisE. SiokasV. Blood-based biomarkers in frontotemporal dementia: A narrative review.Int. J. Mol. Sci.202425211183810.3390/ijms25211183839519389
    [Google Scholar]
  53. ForlenzaO.V. RadanovicM. TalibL.L. AprahamianI. DinizB.S. ZetterbergH. GattazW.F. Cerebrospinal fluid biomarkers in Alzheimer’s disease: Diagnostic accuracy and prediction of dementia.Alzheimers Dement.20151445546310.1016/j.dadm.2015.09.00327239524
    [Google Scholar]
  54. VijverbergE.G.B. DolsA. KrudopW.A. Del Campo MilanM. KerssensC.J. GossinkF. PrinsN.D. StekM.L. ScheltensP. TeunissenC.E. PijnenburgY.A.L. Cerebrospinal fluid biomarker examination as a tool to discriminate behavioral variant frontotemporal dementia from primary psychiatric disorders.Alzheimers Dement.2017719910610.1016/j.dadm.2017.01.00928337476
    [Google Scholar]
  55. RabinoviciG. LehmannM. RosenH. GhoshP. Cohn-SheehyB. TrojanowskiJ. MendezM. VintersH. DicksonD. Gorno-TempiniM. BoxerA. KramerJ. MillerB. GrinbergL. SeeleyW. JagustW. Diagnostic accuracy of amyloid and FDG PET in pathologically-confirmed dementia (S8.005).Neurology20148210_supplementS8.00510.1212/WNL.82.10_supplement.S8.005
    [Google Scholar]
  56. Lesman-SegevO.H. La JoieR. IaccarinoL. LobachI. RosenH.J. SeoS.W. JanabiM. BakerS.L. EdwardsL. PhamJ. OlichneyJ. BoxerA. HuangE. Gorno-TempiniM. DeCarliC. HepkerM. HwangJ.H.L. MillerB.L. SpinaS. GrinbergL.T. SeeleyW.W. JagustW.J. RabinoviciG.D. Diagnostic accuracy of amyloid versus 18 F-fluorodeoxyglucose positron emission tomography in autopsy-confirmed dementia.Ann. Neurol.202189238940110.1002/ana.2596833219525
    [Google Scholar]
  57. WardJ. LyM. RajiC.A. Brain PET Imaging.PET Clin.202318112313310.1016/j.cpet.2022.09.01036442960
    [Google Scholar]
  58. MendezM.F. ShapiraJ.S. McMurtrayA. LichtE. MillerB.L. Accuracy of the clinical evaluation for frontotemporal dementia.Arch. Neurol.200764683083510.1001/archneur.64.6.83017562930
    [Google Scholar]
  59. AlarjaniM.S. AlmarriB.A. Brain functional connectivity analysis of fMRI-based Alzheimer’s disease data.Front. Med.202512154029710.3389/fmed.2025.154029740046917
    [Google Scholar]
  60. IbrahimB. SuppiahS. IbrahimN. MohamadM. HassanH.A. NasserN.S. SaripanM.I. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer’s disease and mild cognitive impairment: A systematic review.Hum. Brain Mapp.20214292941296810.1002/hbm.2536933942449
    [Google Scholar]
  61. CohenA.D. KlunkW.E. Early detection of Alzheimer’s disease using PiB and FDG PET.Neurobiol. Dis.201472Pt A11712210.1016/j.nbd.2014.05.00124825318
    [Google Scholar]
  62. ShenC. WangZ. ChenH. BaiY. LiX. LiangD. LiuX. ZhengH. WangM. YangY. WangH. SunT. Identifying mild Alzheimer’s disease with first 30-Min 11C-PiB PET Scan.Front. Aging Neurosci.20221478549510.3389/fnagi.2022.78549535450057
    [Google Scholar]
  63. RabinoviciG. LehmannM. RosenH. GhoshP. Cohn-SheehyB. TrojanowskiJ. MendezM. VintersH. DicksonD. Gorno-TempiniM. BoxerA. KramerJ. MillerB. GrinbergL. SeeleyW. JagustW. Diagnostic accuracy of amyloid and FDG PET in pathologically-confirmed dementia (S8.005).Neurology20148210_supplementS8.00510.1212/WNL.82.10_supplement.S8.005
    [Google Scholar]
  64. FleisherA.S. PontecorvoM.J. DevousM.D.Sr LuM. AroraA.K. TruocchioS.P. AldeaP. FlitterM. LocascioT. DevineM. SiderowfA. BeachT.G. MontineT.J. SerranoG.E. CurtisC. PerrinA. SallowayS. DanielM. WellmanC. JoshiA.D. IrwinD.J. LoweV.J. SeeleyW.W. IkonomovicM.D. MasdeuJ.C. KennedyI. HarrisT. NavitskyM. SouthekalS. MintunM.A. A16 study investigators. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes.JAMA Neurol.202077782983910.1001/jamaneurol.2020.052832338734
    [Google Scholar]
  65. TianM. CivelekA.C. CarrioI. WatanabeY. KangK.W. MurakamiK. GaribottoV. PriorJ.O. BarthelH. ZhouR. HouH. DouX. JinC. ZuoC. ZhangH. Molecular Imaging-based Precision Medicine Task Group of A3 (China-Japan-Korea) Foresight Program International consensus on the use of tau PET imaging agent 18F-flortaucipir in Alzheimer’s disease.Eur. J. Nucl. Med. Mol. Imaging202249389590410.1007/s00259‑021‑05673‑w34978595
    [Google Scholar]
  66. TsaiR.M. BejaninA. Lesman-SegevO. LaJoieR. VisaniA. BourakovaV. O’NeilJ.P. JanabiM. BakerS. LeeS.E. PerryD.C. BajorekL. KarydasA. SpinaS. GrinbergL.T. SeeleyW.W. RamosE.M. CoppolaG. Gorno-TempiniM.L. MillerB.L. RosenH.J. JagustW. BoxerA.L. RabinoviciG.D. 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes.Alzheimers Res. Ther.20191111310.1186/s13195‑019‑0470‑730704514
    [Google Scholar]
  67. BastinC. BahriM.A. BernardC. HustinxR. SalmonE. Frontal hypometabolism in neurocognitive disorder with behavioral disturbance.J. Nucl. Med.202162121783178810.2967/jnumed.120.26049733789936
    [Google Scholar]
  68. MigliaccioR. AgostaF. PossinK.L. CanuE. FilippiM. RabinoviciG.D. RosenH.J. MillerB.L. Gorno-TempiniM.L. Mapping the progression of atrophy in early - and late - onset Alzheimer’s Disease.J. Alzheimers Dis.201546235136410.3233/JAD‑14229225737041
    [Google Scholar]
  69. ManeraA.L. DadarM. CollinsD.L. DucharmeS. Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) Alzheimer’s Disease Neuroimaging Initiative (ADNI) Ventricular features as reliable differentiators between bvFTD and other dementias.Neuroimage Clin.20223310294710.1016/j.nicl.2022.10294735134704
    [Google Scholar]
  70. HallidayG. Pathology and hippocampal atrophy in Alzheimer’s disease.Lancet Neurol.2017161186286410.1016/S1474‑4422(17)30343‑529029840
    [Google Scholar]
  71. RaoYL GanarajaB MurlimanjuBV JoyT KrishnamurthyA AgrawalA Hippocampus and its involvement in Alzheimer's disease: A review.3 Biotech202212255
    [Google Scholar]
  72. EldaiefM.C. BrickhouseM. KatsumiY. RosenH. CarvalhoN. TouroutoglouA. DickersonB.C. Atrophy in behavioural variant frontotemporal dementia spans multiple large-scale prefrontal and temporal networks.Brain2023146114476448510.1093/brain/awad16737201288
    [Google Scholar]
  73. HurleyR.S. LapinB. JonesS.E. CrawfordA. LeverenzJ.B. Bonner-JacksonA. PillaiJ.A. Hemispheric asymmetries in hippocampal volume related to memory in left and right temporal variants of frontotemporal degeneration.Front. Neurol.202415137482710.3389/fneur.2024.137482738742046
    [Google Scholar]
  74. van de PolL.A. HenselA. van der FlierW.M. VisserP.J. PijnenburgY.A. BarkhofF. GertzH.J. ScheltensP. Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry200677443944210.1136/jnnp.2005.07534116306153
    [Google Scholar]
  75. WuJ. ZhaoK. LiZ. WangD. DingY. WeiY. ZhangH. LiuY. A systematic analysis of diagnostic performance for Alzheimer’s disease using structural MRI.Psychoradiology2022211910.1093/psyrad/kkac00138665142
    [Google Scholar]
  76. LombardiG. CrescioliG. CavedoE. LucenteforteE. CasazzaG. BellatorreA.G. ListaC. CostantinoG. FrisoniG. VirgiliG. FilippiniG. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment.Cochrane Libr.202033CD00962810.1002/14651858.CD009628.pub232119112
    [Google Scholar]
  77. CasagrandeC.C. RempeM.P. SpringerS.D. WilsonT.W. Comprehensive review of task-based neuroimaging studies of cognitive deficits in Alzheimer’s disease using electrophysiological methods.Ageing Res. Rev.20238810195010.1016/j.arr.2023.10195037156399
    [Google Scholar]
  78. AgostaF. PievaniM. GeroldiC. CopettiM. FrisoniG.B. FilippiM. Resting state fMRI in Alzheimer’s disease: Beyond the default mode network.Neurobiol. Aging20123381564157810.1016/j.neurobiolaging.2011.06.00721813210
    [Google Scholar]
  79. PassamontiL. TsvetanovK.A. JonesP.S. Bevan-JonesW.R. ArnoldR. BorchertR.J. MakE. SuL. O’BrienJ.T. RoweJ.B. Neuroinflammation and functional connectivity in Alzheimer’s disease: Interactive influences on cognitive performance.J. Neurosci.201939367218722610.1523/JNEUROSCI.2574‑18.201931320450
    [Google Scholar]
  80. HuangJ. JungJ.Y. NamC.S. Estimating effective connectivity in Alzheimer’s disease progression: A dynamic causal modeling study.Front. Hum. Neurosci.202216106093610.3389/fnhum.2022.106093636590062
    [Google Scholar]
  81. DickersonB.C. SalatD.H. GreveD.N. ChuaE.F. Rand-GiovannettiE. RentzD.M. BertramL. MullinK. TanziR.E. BlackerD. AlbertM.S. SperlingR.A. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD.Neurology200565340441110.1212/01.wnl.0000171450.97464.4916087905
    [Google Scholar]
  82. WuX. LiR. FleisherA.S. ReimanE.M. GuanX. ZhangY. ChenK. YaoL. Altered default mode network connectivity in Alzheimer’s disease—A resting functional MRI and bayesian network study.Hum. Brain Mapp.201132111868188110.1002/hbm.2115321259382
    [Google Scholar]
  83. NgA.S.L. WangJ. NgK.K. ChongJ.S.X. QianX. LimJ.K.W. TanY.J. YongA.C.W. ChanderR.J. HameedS. TingS.K.S. KandiahN. ZhouJ.H. Distinct network topology in Alzheimer’s disease and behavioral variant frontotemporal dementia.Alzheimers Res. Ther.20211311310.1186/s13195‑020‑00752‑w33407913
    [Google Scholar]
  84. RyttyR. NikkinenJ. PaavolaL. Abou ElseoudA. MoilanenV. VisuriA. TervonenO. RentonA.E. TraynorB.J. KiviniemiV. RemesA.M. GroupICA dual regression analysis of resting state networks in a behavioral variant of frontotemporal dementia.Front. Hum. Neurosci.2013746110.3389/fnhum.2013.0046123986673
    [Google Scholar]
  85. WhitwellJ.L. FTD spectrum: Neuroimaging across the FTD spectrum.Prog. Mol. Biol. Transl. Sci.201916518722310.1016/bs.pmbts.2019.05.00931481163
    [Google Scholar]
  86. TavaresT.P. MitchellD.G.V. ColemanK.K.L. FingerE. Neural correlates of reversal learning in frontotemporal dementia.Cortex20211439210810.1016/j.cortex.2021.06.01634399309
    [Google Scholar]
  87. RomboutsS.A.R.B. van SwietenJ.C. PijnenburgY.A.L. GoekoopR. BarkhofF. ScheltensP. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD.Neurology200360121904190810.1212/01.WNL.0000069462.11741.EC12821731
    [Google Scholar]
  88. SadeghiM.A. StevensD. KunduS. SangheraR. DagherR. YedavalliV. JonesC. SairH. LunaL.P. Alzheimer’s Disease Neuroimaging Initiative and the Frontotemporal Lobar Degeneration Neuroimaging Initiative Detecting Alzheimer’s disease stages and frontotemporal dementia in time courses of resting-state fMRI data using a machine learning approach.J. Imaging Inform. Med.20243762768278310.1007/s10278‑024‑01101‑138780666
    [Google Scholar]
  89. XueC. KowshikS.S. LteifD. PuducheriS. JasodanandV.H. ZhouO.T. WaliaA.S. GuneyO.B. ZhangJ.D. PoésyS. KaliaevA. Andreu-ArasaV.C. DwyerB.C. FarrisC.W. HaoH. KedarS. MianA.Z. MurmanD.L. O’SheaS.A. PaulA.B. RohatgiS. Saint-HilaireM.H. SartorE.A. SettyB.N. SmallJ.E. SwaminathanA. TaraschenkoO. YuanJ. ZhouY. ZhuS. KarjadiC. Alvin AngT.F. BargalS.A. PlummerB.A. PostonK.L. AhangaranM. AuR. KolachalamaV.B. AI-based differential diagnosis of dementia etiologies on multimodal data.Nat. Med.202430102977298910.1038/s41591‑024‑03118‑z38965435
    [Google Scholar]
  90. KarlssonL. VogelJ. ArvidssonI. ÅströmK. StrandbergO. SeidlitzJ. BethlehemR.A.I. StomrudE. OssenkoppeleR. AshtonN.J. ZetterbergH. BlennowK. PalmqvistS. SmithR. JanelidzeS. La JoieR. RabinoviciG.D. BinetteA.P. Mattsson-CarlgrenN. HanssonO. Machine learning prediction of tau-PET in Alzheimer’s disease using plasma, MRI, and clinical data.Alzheimers Dement.2025212e1460010.1002/alz.1460039985487
    [Google Scholar]
  91. WahulR.M. AmbadekarS. DhanvijayD.M. DhanvijayM.M. DudhediaM.A. GaikwadV. KanawadeB. PansareJ.R. BodkheB. GawandeS.H. Multimodal approaches and AI-driven innovations in dementia diagnosis: A systematic review.Discover Artificial Intelligence2025519610.1007/s44163‑025‑00358‑x
    [Google Scholar]
  92. MaityR. Raja SankariV.M. SnekhalathaU. VeluS. AlahmadiT.J. AlhababiZ.A. AlkahtaniH.K. Early detection of Alzheimer’s disease in structural and functional MRI.Front. Med.202411152087810.3389/fmed.2024.152087839726682
    [Google Scholar]
  93. HojjatiS.H. EbrahimzadehA. Babajani-FeremiA. Identification of the early stage of Alzheimer’s disease using structural MRI and resting-state fMRI.Front. Neurol.20191090410.3389/fneur.2019.0090431543860
    [Google Scholar]
  94. NakamuraA. CuestaP. KatoT. ArahataY. IwataK. YamagishiM. KuratsuboI. KatoK. BundoM. DiersK. FernándezA. MaestúF. ItoK. Early functional network alterations in asymptomatic elders at risk for Alzheimer’s disease.Sci. Rep.201771651710.1038/s41598‑017‑06876‑828747760
    [Google Scholar]
  95. EreiraS. WatersS. RaziA. MarshallC.R. Early detection of dementia with default-mode network effective connectivity.Nat. Ment. Health20242778780010.1038/s44220‑024‑00259‑5
    [Google Scholar]
  96. ShelineY.I. RaichleM.E. Resting state functional connectivity in preclinical Alzheimer’s disease.Biol. Psychiatry201374534034710.1016/j.biopsych.2012.11.02823290495
    [Google Scholar]
  97. AlarjaniM.S. AlmarriB.A. Brain functional connectivity analysis of fMRI-based Alzheimer’s disease data.Front. Med.202512154029710.3389/fmed.2025.154029740046917
    [Google Scholar]
  98. YousemD.M. The economics of functional magnetic resonance imaging: Clinical and research.Neuroimaging Clin. N. Am.201424471772410.1016/j.nic.2014.07.00725441510
    [Google Scholar]
  99. NajafpourZ. FatemiA. GoudarziZ. GoudarziR. ShayanfardK. NoorizadehF. Cost-effectiveness of neuroimaging technologies in management of psychiatric and insomnia disorders: A meta-analysis and prospective cost analysis.J. Neuroradiol.202148534835810.1016/j.neurad.2020.12.00333383065
    [Google Scholar]
  100. BalachandrasekaranA. CohenA.L. AfacanO. WarfieldS.K. GholipourA. Reducing the effects of motion artifacts in fMRI: A structured matrix completion approach.IEEE Trans. Med. Imaging202241117218510.1109/TMI.2021.310782934432631
    [Google Scholar]
  101. BullockM. JacksonG.D. AbbottD.F. Artifact reduction in simultaneous EEG-fMRI: A systematic review of methods and contemporary usage.Front. Neurol.20211262271910.3389/fneur.2021.62271933776886
    [Google Scholar]
  102. SchneiderJ.A. ArvanitakisZ. BangW. BennettD.A. Mixed brain pathologies account for most dementia cases in community-dwelling older persons.Neurology200769242197220410.1212/01.wnl.0000271090.28148.2417568013
    [Google Scholar]
  103. ForrestS.L. KovacsG.G. Current concepts of mixed pathologies in neurodegenerative diseases.Can. J. Neurol. Sci.202350332934510.1017/cjn.2022.3435356856
    [Google Scholar]
  104. RahimiJ. KovacsG.G. Prevalence of mixed pathologies in the aging brain.Alzheimers Res. Ther.2014698210.1186/s13195‑014‑0082‑125419243
    [Google Scholar]
  105. FieriniF. Mixed dementia: Neglected clinical entity or nosographic artifice?J. Neurol. Sci.202041011666210.1016/j.jns.2019.11666231911281
    [Google Scholar]
  106. McAleeseK.E. CollobyS.J. AttemsJ. ThomasA.J. FrancisP.T. Mixed brain pathologies account for most dementia in the UK’s Brains for Dementia Research cohort.Alzheimers Dement.202016S2e04335410.1002/alz.043354
    [Google Scholar]
  107. AlafuzoffI. LibardS. Mixed brain pathology is the most common cause of cognitive impairment in the elderly.J. Alzheimers Dis.202078145346510.3233/JAD‑20092533016922
    [Google Scholar]
  108. LiangY. BoK. MeyyappanS. DingM. Decoding fMRI data with support vector machines and deep neural networks.J. Neurosci. Methods202440111000410.1016/j.jneumeth.2023.11000437914001
    [Google Scholar]
/content/journals/car/10.2174/0115672050390340250716061313
Loading
/content/journals/car/10.2174/0115672050390340250716061313
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer’s disease; dementia; fMRI; FTD; Molecular parameters; neuroimaging factors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test