Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Currently, there is no information on changes in the (), ), and () genes in the frontal cortex after brain ischemia with animal survival for 2 years. Furthermore, it is not known whether the and genes possess any influence on neurons in the frontal cortex due to ischemia.

Aims

The goal of the investigation was to evaluate alterations in the behavior of , and genes in the frontal cortex following ischemia with survival of 2 years.

Materials and Methods

Gene expression was assessed using an RT-PCR protocol at 2-30 days and 6-24-months after ischemia.

Results

gene expression after ischemic injury was lower than the control group during 7-30- days and 18 months, whereas overexpression was noted after 2 days, 6-, 12- and 24 months. In the case of gene expression, it was lower than the control group for 2-7 days and higher than the control throughout the remaining time after ischemia. Increased expression of the gene was observed except on days 7-30 following ischemia when its expression was lower compared to control values.

Discussion

The data seem to indicate that the observed changes in gene expression may reflect the activation and inhibition of different mechanisms involved in the advancement of neurodegeneration after ischemia.

Conclusion

Overexpression of gene is likely to be associated with the induction of neuroprotective phenomena, whereas overexpression of and genes can cause harmful effects.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050385480250619045022
2025-07-02
2025-10-29
Loading full text...

Full text loading...

References

  1. DammavalamV. RupertD. LanioM. JinZ. NadkarniN. TsirkaS.E. BergeseS.D. Dementia after ischemic stroke, from molecular biomarkers to therapeutic options.Int. J. Mol. Sci.20242514777210.3390/ijms2514777239063013
    [Google Scholar]
  2. FillerJ. GeorgakisM.K. DichgansM. Risk factors for cognitive impairment and dementia after stroke: A systematic review and meta-analysis.Lancet Healthy Longev.202451e31e4410.1016/S2666‑7568(23)00217‑938101426
    [Google Scholar]
  3. van GroenT. PuurunenK. MäkiH.M. SiveniusJ. JolkkonenJ. Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats.Stroke20053671551155610.1161/01.STR.0000169933.88903.cf15933257
    [Google Scholar]
  4. PlutaR. UłamekM. JabłońskiM. Alzheimer’s mechanisms in ischemic brain degeneration.Anat. Rec.2009292121863188110.1002/ar.2101819943340
    [Google Scholar]
  5. HatsutaH. TakaoM. NogamiA. UchinoA. SumikuraH. TakataT. MorimotoS. KanemaruK. AdachiT. AraiT. HasegawaM. MurayamaS. Tau and TDP-43 accumulation of the basal nucleus of Meynert in individuals with cerebral lobar infarcts or hemorrhage.Acta Neuropathol. Commun.2019714910.1186/s40478‑019‑0700‑z30922392
    [Google Scholar]
  6. RadenovicL. NenadicM. Ułamek-KoziołM. JanuszewskiS. CzuczwarS.J. AndjusP.R. PlutaR. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival.Aging20201212122511226710.18632/aging.10341132501292
    [Google Scholar]
  7. LyuY. MengZ. HuY. JiangB. YangJ. ChenY. ZhouJ. LiM. WangH. Mechanisms of mitophagy and oxidative stress in cerebral ischemia–reperfusion, vascular dementia, and Alzheimer’s disease.Front. Mol. Neurosci.202417139493210.3389/fnmol.2024.139493239169952
    [Google Scholar]
  8. PlutaR. JabłońskiM. CzuczwarS.J. Postischemic dementia with Alzheimer phenotype: Selectively vulnerable versus resistant areas of the brain and neurodegeneration versus β-amyloid peptide.Folia Neuropathol.201250210110922773455
    [Google Scholar]
  9. DengL. GuptaV.K. WuY. PushpithaK. ChitranshiN. GuptaV.B. FitzhenryM.J. MoghaddamM.Z. KarlT. SalekdehG.H. GrahamS.L. HaynesP.A. MirzaeiM. Mouse model of Alzheimer’s disease demonstrates differential effects of early disease pathology on various brain regions.Proteomics2021217-8200021310.1002/pmic.20200021333559908
    [Google Scholar]
  10. MançanoA.S.F. PinaJ.G. FroesB.R. ScianiJ.M. Autophagy-lysosomal pathway impairment and cathepsin dysregulation in Alzheimer’s disease.Front. Mol. Biosci.202411149027510.3389/fmolb.2024.149027539544403
    [Google Scholar]
  11. PlutaR. A look at the etiology of Alzheimer’s disease based on the brain ischemia model.Curr. Alzheimer Res.202421316618210.2174/011567205032092124062705073638963100
    [Google Scholar]
  12. LiX. LiL. SiX. ZhangZ. NiZ. ZhouY. LiuK. XiaW. ZhangY. GuX. HuangJ. YinC. ShaoA. JiangL. The regulatory roles of circular RNAs via autophagy in ischemic stroke.Front. Neurol.20221396350810.3389/fneur.2022.96350836330428
    [Google Scholar]
  13. CastellaniR.J. JamshidiP. Plascencia-VillaG. PerryG. The amyloid cascade hypothesis: A conclusion in search of support.Am. J. Pathol.2024S0002-94402400407-310.1016/j.ajpath.2024.10.014
    [Google Scholar]
  14. Elman-ShinaK. EfratiS. Ischemia as a common trigger for Alzheimer’s disease.Front. Aging Neurosci.202214101277910.3389/fnagi.2022.101277936225888
    [Google Scholar]
  15. LecordierS. PonsV. RivestS. ElAliA. Multifocal cerebral microinfarcts modulate early Alzheimer’s disease pathology in a sex-dependent manner.Front. Immunol.20221281353610.3389/fimmu.2021.81353635173711
    [Google Scholar]
  16. DasT.K. GaneshB.P. Fatima-ShadK. Common signaling pathways involved in Alzheimer’s disease and stroke: Two faces of the same coin.J. Alzheimers Dis. Rep.20237138139810.3233/ADR‑22010837220617
    [Google Scholar]
  17. TranM. ReddyP.H. Defective autophagy and mitophagy in aging and Alzheimer’s disease.Front. Neurosci.20211461275710.3389/fnins.2020.61275733488352
    [Google Scholar]
  18. XuZ. HuJ. WeiZ. LeiY. AfewerkyH. K. GaoY. WanL LiL LeiL LiuY HuangF YuT WangJZ LiHL LiuR WangX. Dynamic changes in lysosome-related pathways in APP/PS1 mice with aging.MedComm20245e540
    [Google Scholar]
  19. StanzioneR. PietrangeloD. CotugnoM. ForteM. RubattuS. Role of autophagy in ischemic stroke: Insights from animal models and preliminary evidence in the human disease.Front. Cell Dev. Biol.202412136001410.3389/fcell.2024.136001438590779
    [Google Scholar]
  20. WangS. LiaoZ. ZhangQ. HanX. LiuC. WangJ. Mitochondrial dysfunction in Alzheimer’s disease: A key frontier for future targeted therapies.Front. Immunol.202515148437310.3389/fimmu.2024.148437339877373
    [Google Scholar]
  21. EshraghiM. AdlimoghaddamA. MahmoodzadehA. SharifzadF. Yasavoli-SharahiH. LorzadehS. AlbensiB.C. GhavamiS. Alzheimer’s disease pathogenesis: Role of autophagy and mitophagy focusing in microglia.Int. J. Mol. Sci.2021227333010.3390/ijms2207333033805142
    [Google Scholar]
  22. HuK. GaoY. ChuS. ChenN. Review of the effects and mechanisms of microglial autophagy in ischemic stroke.Int. Immunopharmacol.202210810876110.1016/j.intimp.2022.10876135729827
    [Google Scholar]
  23. PanY. XinW. WeiW. TatenhorstL. GrafI. Popa-WagnerA. GernerS.T. HuberS.E. KilicE. HermannD.M. BährM. HuttnerH.B. DoeppnerT.R. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy.Cell. Mol. Life Sci.20248113010.1007/s00018‑023‑05045‑738212456
    [Google Scholar]
  24. Ułamek-KoziołM. KockiJ. Bogucka-KockaA. PetniakA. Gil-KulikP. JanuszewskiS. BoguckiJ. JabłońskiM. Furmaga-JabłońskaW. BrzozowskaJ. CzuczwarS.J. PlutaR. Dysregulation of autophagy, mitophagy, and apoptotic genes in the medial temporal lobe cortex in an ischemic model of Alzheimer’s disease.J. Alzheimers Dis.201654111312110.3233/JAD‑16038727472881
    [Google Scholar]
  25. Ułamek-KoziołM. KockiJ. Bogucka-KockaA. JanuszewskiS. BoguckiJ. CzuczwarS.J. PlutaR. Autophagy, mitophagy and apoptotic gene changes in the hippocampal CA1 area in a rat ischemic model of Alzheimer’s disease.Pharmacol. Rep.20176961289129410.1016/j.pharep.2017.07.01529128811
    [Google Scholar]
  26. Ułamek-KoziołM. CzuczwarS.J. KockiJ. JanuszewskiS. BoguckiJ. Bogucka-KockaA. PlutaR. Dysregulation of autophagy, mitophagy, and apoptosis genes in the ca3 region of the hippocampus in the ischemic model of alzheimer’s disease in the rat.J. Alzheimers Dis.20197241279128610.3233/JAD‑19096631707369
    [Google Scholar]
  27. PlutaR. Bogucka-KockaA. BoguckiJ. KockiJ. CzuczwarS.J. Apoptosis, autophagy, and mitophagy genes in the ca3 area in an ischemic model of alzheimer’s disease with 2-year survival.J. Alzheimers Dis.20249941375138310.3233/JAD‑24040138759019
    [Google Scholar]
  28. PlutaR. LossinskyA.S. MossakowskiM.J. FasoL. WisniewskiH.M. Reassessment of a new model of complete cerebral ischemia in rats.Acta Neuropathol.199183111110.1007/BF002944241792862
    [Google Scholar]
  29. KockiJ. Ułamek-KoziołM. Bogucka-KockaA. JanuszewskiS. JabłońskiM. Gil-KulikP. BrzozowskaJ. PetniakA. Furmaga-JabłońskaW. BoguckiJ. CzuczwarS.J. PlutaR. Dysregulation of amyloid-β protein precursor, β-secretase, presenilin 1 and 2 genes in the rat selectively vulnerable CA1 subfield of hippocampus following transient global brain ischemia.J. Alzheimers Dis.20154741047105610.3233/JAD‑15029926401782
    [Google Scholar]
  30. Percie du SertN. HurstV. AhluwaliaA. AlamS. AveyM.T. BakerM. BrowneW.J. ClarkA. CuthillI.C. DirnaglU. EmersonM. GarnerP. HolgateS.T. HowellsD.W. KarpN.A. LazicS.E. LidsterK. MacCallumC.J. MacleodM. PearlE.J. PetersenO.H. RawleF. ReynoldsP. RooneyK. SenaE.S. SilberbergS.D. StecklerT. WürbelH. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.PLoS Biol.2020187e300041010.1371/journal.pbio.300041032663219
    [Google Scholar]
  31. NingZ. ZhongX. WangY. HuD. TangX. DengM. Cerebral ischemic injury impairs autophagy and exacerbates cognitive impairment in APP/PS1 mice.Int. Immunopharmacol.2024143Pt 311358110.1016/j.intimp.2024.11358139522311
    [Google Scholar]
  32. LiJ. NingZ. ZhongX. HuD. WangY. ChengX. DengM. Dynamic changes in Beclin-1, LC3B, and p62 in aldose reductase-knockout mice at different time points after ischemic stroke.Heliyon20241019e3806810.1016/j.heliyon.2024.e3806839386838
    [Google Scholar]
  33. ChenW. WangH. ZhuZ. FengJ. ChenL. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 Axis. Mol. Ther. Nucleic Acids20202265767210.1016/j.omtn.2020.09.02733230464
    [Google Scholar]
  34. DengY. DuanR. DingW. GuQ. LiuM. ZhouJ. SunJ. ZhuJ. Astrocyte-derived exosomal nicotinamide phosphoribosyl transferase (Nampt) ameliorates ischemic stroke injury by targeting AMPK/mTOR signaling to induce autophagy.Cell Death Dis.20221312105710.1038/s41419‑022‑05454‑936539418
    [Google Scholar]
  35. LiuX. YeQ. HuangZ. LiX. ZhangL. LiuX. WuY.C. BrockmeierU. HermannD.M. WangY.C. RenL. BAG3 overexpression attenuates ischemic stroke injury by activating autophagy and inhibiting apoptosis.Stroke20235482114212510.1161/STROKEAHA.123.04178337377010
    [Google Scholar]
  36. LiuY. XueX. ZhangH. CheX. LuoJ. WangP. XuJ. XingZ. YuanL. LiuY. FuX. SuD. SunS. ZhangH. WuC. YangJ. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia.Autophagy201915349350910.1080/15548627.2018.153119630304977
    [Google Scholar]
  37. YangZ. HuangC. WenX. LiuW. HuangX. LiY. ZangJ. WengZ. LuD. TsangC.K. LiK. XuA. Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion.Mol. Ther.20223031275128710.1016/j.ymthe.2021.11.00434763084
    [Google Scholar]
  38. ForteM. BianchiF. CotugnoM. MarchittiS. De FalcoE. RaffaS. StanzioneR. Di NonnoF. ChimentiI. PalmerioS. PaganoF. PetrozzaV. MicaloniA. MadonnaM. RelucentiM. TorrisiM.R. FratiG. VolpeM. RubattuS. SciarrettaS. Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence.Autophagy20201681468148110.1080/15548627.2019.168721531679456
    [Google Scholar]
  39. WangC. LiY. ZhangY. SmerinD. GuL. JiangS. XiongX. Triolein alleviates ischemic stroke brain injury by regulating autophagy and inflammation through the AKT/mTOR signaling pathway.Mol. Med.202430124210.1186/s10020‑024‑00995‑539639187
    [Google Scholar]
  40. SalminenA. KaarnirantaK. KauppinenA. OjalaJ. HaapasaloA. SoininenH. HiltunenM. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome.Prog. Neurobiol.2013106-107335410.1016/j.pneurobio.2013.06.00223827971
    [Google Scholar]
  41. MengT. LinS. ZhuangH. HuangH. HeZ. HuY. GongQ. FengD. Recent progress in the role of autophagy in neurological diseases.Cell Stress20193514116110.15698/cst2019.05.18631225510
    [Google Scholar]
  42. ReddyP.H. OliverD.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease.Cells20198548810.3390/cells805048831121890
    [Google Scholar]
  43. ZhangZ. YangX. SongY.Q. TuJ. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives.Ageing Res. Rev.20217210146410.1016/j.arr.2021.10146434551326
    [Google Scholar]
  44. ChoiI. WangM. YooS. XuP. SeegobinS.P. LiX. HanX. WangQ. PengJ. ZhangB. YueZ. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence.Nat. Cell Biol.202325796397410.1038/s41556‑023‑01158‑037231161
    [Google Scholar]
  45. ZhaoG.X. PanH. OuyangD.Y. HeX.H. The critical molecular interconnections in regulating apoptosis and autophagy.Ann. Med.201547430531510.3109/07853890.2015.104083125982797
    [Google Scholar]
  46. AlthausJ. BernaudinM. PetitE. ToutainJ. TouzaniO. RamiA. Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1α (HIF-1α) protein following focal cerebral ischemia in rats.Neurochem. Int.200648868769510.1016/j.neuint.2005.12.00816464515
    [Google Scholar]
  47. LuP. KambojA. GibsonS.B. AndersonC.M. Poly(ADP-ribose) polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3.J. Neurosci.20143448159751598710.1523/JNEUROSCI.2499‑14.201425429139
    [Google Scholar]
  48. ShiR.Y. ZhuS.H. LiV. GibsonS.B. XuX.S. KongJ.M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke.CNS Neurosci. Ther.201420121045105510.1111/cns.1232525230377
    [Google Scholar]
  49. DengZ. OuH. RenF. GuanY. HuanY. CaiH. SunB. LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells.Biol. Res.20205313810.1186/s40659‑020‑00304‑432912324
    [Google Scholar]
  50. HwangJ.A. ShinN. ShinH.J. YinY. KwonH.H. ParkH. ShinJ. KimS.I. KimD.W. SongH.J. Protective effects of ShcA protein silencing for photothrombotic cerebral infarction.Transl. Stroke Res.202112586687810.1007/s12975‑020‑00874‑133242144
    [Google Scholar]
  51. XueL. ChenS. XueS. LiuP. LiuH. LncRNA TUG1 compromised neuronal mitophagy in cerebral ischemia/reperfusion injury by targeting sirtuin 1.Cell Biol. Toxicol.20223861121113610.1007/s10565‑022‑09700‑w35348966
    [Google Scholar]
  52. ZhuY. ZhangJ. DengQ. ChenX. Mitophagy-associated programmed neuronal death and neuroinflammation.Front. Immunol.202415146028610.3389/fimmu.2024.146028639416788
    [Google Scholar]
  53. HongT. ZhouY. PengL. WuX. LiY. LiY. ZhaoY. Knocking down peroxiredoxin 6 aggravates cerebral ischemia-reperfusion injury by enhancing mitophagy.Neuroscience2022482304210.1016/j.neuroscience.2021.11.04334863856
    [Google Scholar]
  54. ChoiS.G. ShinJ. LeeK.Y. ParkH. KimS.I. YiY.Y. KimD.W. SongH.J. ShinH.J. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke.Glia20237151294131010.1002/glia.2433936655313
    [Google Scholar]
  55. YangQ. ChenT. LiS. YangC. ZhengX. MaoS. LiuN. MoS. LiD. YangM. LuZ. TangL. HuangX. LiuX. JianC. YinY. ShangJ. Inhibition of autophagy attenuates cognitive decline and mitochondrial dysfunction in an Alzheimer’s disease mouse model with chronic cerebral hypoperfusion.Brain Res.2025185014941610.1016/j.brainres.2024.14941639710054
    [Google Scholar]
  56. QianM. FangX. WangX. Autophagy and inflammation.Clin. Transl. Med.201761e2410.1186/s40169‑017‑0154‑528748360
    [Google Scholar]
  57. AgrawalI. JhaS. Mitochondrial dysfunction and Alzheimer’s disease: Role of microglia.Front. Aging Neurosci.20201225210.3389/fnagi.2020.0025232973488
    [Google Scholar]
  58. PlutaR. Neuroinflammation in the post-ischemic brain in the presence of amyloid and tau protein.Discov. Med.20253719211810.24976/Discov.Med.202537192.139851219
    [Google Scholar]
  59. PomilioC. GorojodR.M. RiudavetsM. VinuesaA. PresaJ. GregosaA. BentivegnaM. AlaimoA. AlconS.P. SevleverG. KotlerM.L. BeauquisJ. SaraviaF. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: Evidence from experimental models and Alzheimer’s disease patients.Geroscience202042261363210.1007/s11357‑020‑00161‑931975051
    [Google Scholar]
  60. HoutmanJ. FreitagK. GimberN. SchmoranzerJ. HeppnerF.L. JendrachM. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP 3.EMBO J.2019384e9943010.15252/embj.20189943030617086
    [Google Scholar]
  61. FangE.F. HouY. PalikarasK. AdriaanseB.A. KerrJ.S. YangB. LautrupS. Hasan-OliveM.M. CaponioD. DanX. RocktäschelP. CroteauD.L. AkbariM. GreigN.H. FladbyT. NilsenH. CaderM.Z. MattsonM.P. TavernarakisN. BohrV.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease.Nat. Neurosci.201922340141210.1038/s41593‑018‑0332‑930742114
    [Google Scholar]
  62. JiaK. ShenR. LiY. ShiW. XiaW. LAMP3 exacerbates autophagy-mediated neuronal damage through NF-kB in microglia.Cell. Signal.202512911165810.1016/j.cellsig.2025.11165839954716
    [Google Scholar]
  63. YuanY.J. ChenT. YangY.L. HanH.N. XuL.M. E2F1/CDK5/DRP1 axis mediates microglial mitochondrial division and autophagy in the pathogenesis of cerebral ischemia-reperfusion injury.Clin. Transl. Med.2025152e7019710.1002/ctm2.7019739968698
    [Google Scholar]
  64. PengL. HuG. YaoQ. WuJ. HeZ. LawB.Y.K. HuG. ZhouX. DuJ. WuA. YuL. Microglia autophagy in ischemic stroke: A double-edged sword.Front. Immunol.202213101331110.3389/fimmu.2022.101331136466850
    [Google Scholar]
  65. MeansJ.C. VenkatesanA. GerdesB. FanJ.Y. BjesE.S. PriceJ.L. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.PLoS Genet.2015115e100517110.1371/journal.pgen.100517125951229
    [Google Scholar]
  66. DhageP.A. SharbidreA.A. MagdumS.M. Interlacing the relevance of caspase activation in the onset and progression of Alzheimer’s disease.Brain Res. Bull.2023192839210.1016/j.brainresbull.2022.11.00836372374
    [Google Scholar]
  67. WenY. YangS.H. LiuR. PerezE.J. Brun-ZinkernagelA.M. KoulenP. SimpkinsJ.W. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats.Biochim. Biophys. Acta Mol. Basis Dis.20071772447348310.1016/j.bbadis.2006.10.01117113760
    [Google Scholar]
  68. HangerD.P. WrayS. Tau cleavage and tau aggregation in neurodegenerative disease.Biochem. Soc. Trans.20103841016102010.1042/BST038101620658996
    [Google Scholar]
  69. PadurariuM. CiobicaA. MavroudisI. FotiouD. BaloyannisS. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients.Psychiatr. Danub.201224215215822706413
    [Google Scholar]
  70. WallsK.C. GhoshA.P. BallestasM.E. KlockeB.J. RothK.A. bcl-2/Adenovirus E1B 19-kd interacting protein 3 (BNIP3) regulates hypoxia-induced neural precursor cell death.J. Neuropathol. Exp. Neurol.200968121326133810.1097/NEN.0b013e3181c3b9be19915483
    [Google Scholar]
  71. XingyongC. XicuiS. HuanxingS. JingsongO. YiH. XuZ. RuxunH. ZhongP. Upregulation of myeloid cell leukemia-1 potentially modulates beclin-1-dependent autophagy in ischemic stroke in rats.BMC Neurosci.20131415610.1186/1471‑2202‑14‑5623688351
    [Google Scholar]
  72. SiddiquiM. MukherjeeS. ManivannanP. MalathiK. RNase L cleavage products promote switch from autophagy to apoptosis by caspase-mediated cleavage of beclin-1.Int. J. Mol. Sci.2015168176111763610.3390/ijms16081761126263979
    [Google Scholar]
  73. BamahelA.S. SunX. WuW. MuC. LiuJ. BiS. XuH. Regulatory roles and therapeutic potential of miR-122-5p in hypoxic-ischemic brain injury: Comprehensive review.Cell Biochem. Biophys.20251-1810.1007/s12013‑025‑01686‑640016565
    [Google Scholar]
  74. HuJ. HuZ. XiaJ. ChenY. CordatoD. ChengQ. WangJ. Targeting intracellular autophagic process for the treatment of post-stroke ischemia/reperfusion injury.Animal Model. Exp. Med.20258338940410.1002/ame2.1252839908171
    [Google Scholar]
  75. ZhangX. WangX. KhurmM. ZhanG. ZhangH. ItoY. GuoZ. Alterations of brain quantitative proteomics profiling revealed the molecular mechanisms of diosgenin against cerebral ischemia reperfusion effects.J. Proteome Res.20201931154116810.1021/acs.jproteome.9b0066731940440
    [Google Scholar]
  76. LiH. ZhangJ. MaK. JiJ. AnC. JiangH. QuH. TangR. RenX. DuY. ZhaoQ. Advancements in the treatment of cerebral ischemia reperfusion injury: Acupuncture combined with mesenchymal stem cells transplantation.Medicine20251042e41075
    [Google Scholar]
  77. XueL.L. ChengJ. DuR.L. LuoB.Y. ChenL. XiaoQ.X. ZhouH.S. SheH.Q. WangS.F. ChenT.B. HuC.Y. HeY.Q. WangT.H. XiongL.L. Bone marrow mesenchymal stem cells alleviate neurological dysfunction by reducing autophagy damage via downregulation of SYNPO2 in neonatal hypoxic–ischemic encephalopathy rats.Cell Death Dis.202516113110.1038/s41419‑025‑07439‑w40000609
    [Google Scholar]
  78. GaoY. LiL. ZhaoF. ChengY. JinM. XueF.S. Esketamine at a clinical dose attenuates cerebral ischemia/reperfusion injury by inhibiting AKT signaling pathway to facilitate microglia m2 polarization and autophagy.Drug Des. Devel. Ther.20251936938710.2147/DDDT.S50417939867864
    [Google Scholar]
  79. LuT. FengZ. XueH. JinC. ZhangY. AiY. ZhengM. ShiD. SongK. Network pharmacology analysis and experimental validation of tectoridin in the treatment of ischemic stroke by inhibiting apoptosis and regulating inflammation.Int. J. Mol. Sci.2025264140210.3390/ijms2604140240003867
    [Google Scholar]
  80. LiR. LiQ. YangC. LiuH. XiaoY. YangP. GongG. WuW. HBCOC attenuates cerebral ischemia-reperfusion injury in mice by inhibiting the inflammatory response and autophagy via TREM-1/ERK/NF-κB.J. Stroke Cerebrovasc. Dis.202534510828010.1016/j.jstrokecerebrovasdis.2025.10828040057252
    [Google Scholar]
  81. WangJ. GuD. JinK. ShenH. QianY. The role of G-protein-coupled receptor kinase 4 in modulating mitophagy and oxidative stress in cerebral ischemia–reperfusion injury.Neuromolecular Med.20252712110.1007/s12017‑025‑08843‑340055267
    [Google Scholar]
/content/journals/car/10.2174/0115672050385480250619045022
Loading
/content/journals/car/10.2174/0115672050385480250619045022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test