Skip to content
2000
image of Alterations of Mitophagy (BNIP3), Apoptosis (CASP3), and Autophagy (BECN1) Genes in the Frontal Cortex in an Ischemic Model of Alzheimer's Disease with Long-Term Survival

Abstract

Introduction

Currently, there is no information on changes in the (), ), and () genes in the frontal cortex after brain ischemia with animal survival for 2 years. Furthermore, it is not known whether the and genes possess any influence on neurons in the frontal cortex due to ischemia.

Aims

The goal of the investigation was to evaluate alterations in the behavior of , and genes in the frontal cortex following ischemia with survival of 2 years.

Materials and Methods

Gene expression was assessed using an RT-PCR protocol at 2-30 days and 6-24-months after ischemia.

Results

gene expression after ischemic injury was lower than the control group during 7-30- days and 18 months, whereas overexpression was noted after 2 days, 6-, 12- and 24 months. In the case of gene expression, it was lower than the control group for 2-7 days and higher than the control throughout the remaining time after ischemia. Increased expression of the gene was observed except on days 7-30 following ischemia when its expression was lower compared to control values.

Discussion

The data seem to indicate that the observed changes in gene expression may reflect the activation and inhibition of different mechanisms involved in the advancement of neurodegeneration after ischemia.

Conclusion

Overexpression of gene is likely to be associated with the induction of neuroprotective phenomena, whereas overexpression of and genes can cause harmful effects.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050385480250619045022
2025-07-02
2025-09-10
Loading full text...

Full text loading...

References

  1. Dammavalam V. Rupert D. Lanio M. Jin Z. Nadkarni N. Tsirka S.E. Bergese S.D. Dementia after ischemic stroke, from molecular biomarkers to therapeutic options. Int. J. Mol. Sci. 2024 25 14 7772 10.3390/ijms25147772 39063013
    [Google Scholar]
  2. Filler J. Georgakis M.K. Dichgans M. Risk factors for cognitive impairment and dementia after stroke: A systematic review and meta-analysis. Lancet Healthy Longev. 2024 5 1 e31 e44 10.1016/S2666‑7568(23)00217‑9 38101426
    [Google Scholar]
  3. van Groen T. Puurunen K. Mäki H.M. Sivenius J. Jolkkonen J. Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 2005 36 7 1551 1556 10.1161/01.STR.0000169933.88903.cf 15933257
    [Google Scholar]
  4. Pluta R. Ułamek M. Jabłoński M. Alzheimer’s mechanisms in ischemic brain degeneration. Anat. Rec. 2009 292 12 1863 1881 10.1002/ar.21018 19943340
    [Google Scholar]
  5. Hatsuta H. Takao M. Nogami A. Uchino A. Sumikura H. Takata T. Morimoto S. Kanemaru K. Adachi T. Arai T. Hasegawa M. Murayama S. Tau and TDP-43 accumulation of the basal nucleus of Meynert in individuals with cerebral lobar infarcts or hemorrhage. Acta Neuropathol. Commun. 2019 7 1 49 10.1186/s40478‑019‑0700‑z 30922392
    [Google Scholar]
  6. Radenovic L. Nenadic M. Ułamek-Kozioł M. Januszewski S. Czuczwar S.J. Andjus P.R. Pluta R. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival. Aging 2020 12 12 12251 12267 10.18632/aging.103411 32501292
    [Google Scholar]
  7. Lyu Y. Meng Z. Hu Y. Jiang B. Yang J. Chen Y. Zhou J. Li M. Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia–reperfusion, vascular dementia, and Alzheimer’s disease. Front. Mol. Neurosci. 2024 17 1394932 10.3389/fnmol.2024.1394932 39169952
    [Google Scholar]
  8. Pluta R. Jabłoński M. Czuczwar S.J. Postischemic dementia with Alzheimer phenotype: Selectively vulnerable versus resistant areas of the brain and neurodegeneration versus β-amyloid peptide. Folia Neuropathol. 2012 50 2 101 109 22773455
    [Google Scholar]
  9. Deng L. Gupta V.K. Wu Y. Pushpitha K. Chitranshi N. Gupta V.B. Fitzhenry M.J. Moghaddam M.Z. Karl T. Salekdeh G.H. Graham S.L. Haynes P.A. Mirzaei M. Mouse model of Alzheimer’s disease demonstrates differential effects of early disease pathology on various brain regions. Proteomics 2021 21 7-8 2000213 10.1002/pmic.202000213 33559908
    [Google Scholar]
  10. Mançano A.S.F. Pina J.G. Froes B.R. Sciani J.M. Autophagy-lysosomal pathway impairment and cathepsin dysregulation in Alzheimer’s disease. Front. Mol. Biosci. 2024 11 1490275 10.3389/fmolb.2024.1490275 39544403
    [Google Scholar]
  11. Pluta R. A look at the etiology of alzheimer’s disease based on the brain ischemia model. Curr. Alzheimer Res. 2024 21 3 166 182 10.2174/0115672050320921240627050736 38963100
    [Google Scholar]
  12. Li X. Li L. Si X. Zhang Z. Ni Z. Zhou Y. Liu K. Xia W. Zhang Y. Gu X. Huang J. Yin C. Shao A. Jiang L. The regulatory roles of circular RNAs via autophagy in ischemic stroke. Front. Neurol. 2022 13 963508 10.3389/fneur.2022.963508 36330428
    [Google Scholar]
  13. Castellani R.J. Jamshidi P. Plascencia-Villa G. Perry G. The amyloid cascade hypothesis: A conclusion in search of support. Am. J. Pathol. 2024 S0002-9440(24)00407-3 10.1016/j.ajpath.2024.10.014
    [Google Scholar]
  14. Elman-Shina K. Efrati S. Ischemia as a common trigger for Alzheimer’s disease. Front. Aging Neurosci. 2022 14 1012779 10.3389/fnagi.2022.1012779 36225888
    [Google Scholar]
  15. Lecordier S. Pons V. Rivest S. ElAli A. Multifocal cerebral microinfarcts modulate early Alzheimer’s disease pathology in a sex-dependent manner. Front. Immunol. 2022 12 813536 10.3389/fimmu.2021.813536 35173711
    [Google Scholar]
  16. Das T.K. Ganesh B.P. Fatima-Shad K. Common signaling pathways involved in Alzheimer’s disease and stroke: Two faces of the same coin. J. Alzheimers Dis. Rep. 2023 7 1 381 398 10.3233/ADR‑220108 37220617
    [Google Scholar]
  17. Tran M. Reddy P.H. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front. Neurosci. 2021 14 612757 10.3389/fnins.2020.612757 33488352
    [Google Scholar]
  18. Xu Z. Hu J. Wei Z. Lei Y. Afewerky H. K. Gao Y. Wan L Li L Lei L Liu Y Huang F Yu T Wang JZ Li HL Liu R Wang X. Dynamic changes in lysosome-related pathways in APP/PS1 mice with aging. MedComm 2024 5 e540
    [Google Scholar]
  19. Stanzione R. Pietrangelo D. Cotugno M. Forte M. Rubattu S. Role of autophagy in ischemic stroke: Insights from animal models and preliminary evidence in the human disease. Front. Cell Dev. Biol. 2024 12 1360014 10.3389/fcell.2024.1360014 38590779
    [Google Scholar]
  20. Wang S. Liao Z. Zhang Q. Han X. Liu C. Wang J. Mitochondrial dysfunction in Alzheimer’s disease: A key frontier for future targeted therapies. Front. Immunol. 2025 15 1484373 10.3389/fimmu.2024.1484373 39877373
    [Google Scholar]
  21. Eshraghi M. Adlimoghaddam A. Mahmoodzadeh A. Sharifzad F. Yasavoli-Sharahi H. Lorzadeh S. Albensi B.C. Ghavami S. Alzheimer’s disease pathogenesis: Role of autophagy and mitophagy focusing in microglia. Int. J. Mol. Sci. 2021 22 7 3330 10.3390/ijms22073330 33805142
    [Google Scholar]
  22. Hu K. Gao Y. Chu S. Chen N. Review of the effects and mechanisms of microglial autophagy in ischemic stroke. Int. Immunopharmacol. 2022 108 108761 10.1016/j.intimp.2022.108761 35729827
    [Google Scholar]
  23. Pan Y. Xin W. Wei W. Tatenhorst L. Graf I. Popa-Wagner A. Gerner S.T. Huber S.E. Kilic E. Hermann D.M. Bähr M. Huttner H.B. Doeppner T.R. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy. Cell. Mol. Life Sci. 2024 81 1 30 10.1007/s00018‑023‑05045‑7 38212456
    [Google Scholar]
  24. Ułamek-Kozioł M. Kocki J. Bogucka-Kocka A. Petniak A. Gil-Kulik P. Januszewski S. Bogucki J. Jabłoński M. Furmaga-Jabłońska W. Brzozowska J. Czuczwar S.J. Pluta R. Dysregulation of autophagy, mitophagy, and apoptotic genes in the medial temporal lobe cortex in an ischemic model of Alzheimer’s disease. J. Alzheimers Dis. 2016 54 1 113 121 10.3233/JAD‑160387 27472881
    [Google Scholar]
  25. Ułamek-Kozioł M. Kocki J. Bogucka-Kocka A. Januszewski S. Bogucki J. Czuczwar S.J. Pluta R. Autophagy, mitophagy and apoptotic gene changes in the hippocampal CA1 area in a rat ischemic model of Alzheimer’s disease. Pharmacol. Rep. 2017 69 6 1289 1294 10.1016/j.pharep.2017.07.015 29128811
    [Google Scholar]
  26. Ułamek-Kozioł M. Czuczwar S.J. Kocki J. Januszewski S. Bogucki J. Bogucka-Kocka A. Pluta R. Dysregulation of autophagy, mitophagy, and apoptosis genes in the ca3 region of the hippocampus in the ischemic model of alzheimer’s disease in the rat. J. Alzheimers Dis. 2019 72 4 1279 1286 10.3233/JAD‑190966 31707369
    [Google Scholar]
  27. Pluta R. Bogucka-Kocka A. Bogucki J. Kocki J. Czuczwar S.J. Apoptosis, autophagy, and mitophagy genes in the ca3 area in an ischemic model of alzheimer’s disease with 2-year survival. J. Alzheimers Dis. 2024 99 4 1375 1383 10.3233/JAD‑240401 38759019
    [Google Scholar]
  28. Pluta R. Lossinsky A.S. Mossakowski M.J. Faso L. Wisniewski H.M. Reassessment of a new model of complete cerebral ischemia in rats. Acta Neuropathol. 1991 83 1 1 11 10.1007/BF00294424 1792862
    [Google Scholar]
  29. Kocki J. Ułamek-Kozioł M. Bogucka-Kocka A. Januszewski S. Jabłoński M. Gil-Kulik P. Brzozowska J. Petniak A. Furmaga-Jabłońska W. Bogucki J. Czuczwar S.J. Pluta R. Dysregulation of amyloid-β protein precursor, β-secretase, presenilin 1 and 2 genes in the rat selectively vulnerable CA1 subfield of hippocampus following transient global brain ischemia. J. Alzheimers Dis. 2015 47 4 1047 1056 10.3233/JAD‑150299 26401782
    [Google Scholar]
  30. Percie du Sert N. Hurst V. Ahluwalia A. Alam S. Avey M.T. Baker M. Browne W.J. Clark A. Cuthill I.C. Dirnagl U. Emerson M. Garner P. Holgate S.T. Howells D.W. Karp N.A. Lazic S.E. Lidster K. MacCallum C.J. Macleod M. Pearl E.J. Petersen O.H. Rawle F. Reynolds P. Rooney K. Sena E.S. Silberberg S.D. Steckler T. Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020 18 7 e3000410 10.1371/journal.pbio.3000410 32663219
    [Google Scholar]
  31. Ning Z. Zhong X. Wang Y. Hu D. Tang X. Deng M. Cerebral ischemic injury impairs autophagy and exacerbates cognitive impairment in APP/PS1 mice. Int. Immunopharmacol. 2024 143 Pt 3 113581 10.1016/j.intimp.2024.113581 39522311
    [Google Scholar]
  32. Li J. Ning Z. Zhong X. Hu D. Wang Y. Cheng X. Deng M. Dynamic changes in Beclin-1, LC3B, and p62 in aldose reductase-knockout mice at different time points after ischemic stroke. Heliyon 2024 10 19 e38068 10.1016/j.heliyon.2024.e38068 39386838
    [Google Scholar]
  33. Chen W. Wang H. Zhu Z. Feng J. Chen L. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 Axis. Mol. Ther. Nucleic Acids 2020 22 657 672 10.1016/j.omtn.2020.09.027 33230464
    [Google Scholar]
  34. Deng Y. Duan R. Ding W. Gu Q. Liu M. Zhou J. Sun J. Zhu J. Astrocyte-derived exosomal nicotinamide phosphoribosyl transferase (Nampt) ameliorates ischemic stroke injury by targeting AMPK/mTOR signaling to induce autophagy. Cell Death Dis. 2022 13 12 1057 10.1038/s41419‑022‑05454‑9 36539418
    [Google Scholar]
  35. Liu X. Ye Q. Huang Z. Li X. Zhang L. Liu X. Wu Y.C. Brockmeier U. Hermann D.M. Wang Y.C. Ren L. BAG3 overexpression attenuates ischemic stroke injury by activating autophagy and inhibiting apoptosis. Stroke 2023 54 8 2114 2125 10.1161/STROKEAHA.123.041783 37377010
    [Google Scholar]
  36. Liu Y. Xue X. Zhang H. Che X. Luo J. Wang P. Xu J. Xing Z. Yuan L. Liu Y. Fu X. Su D. Sun S. Zhang H. Wu C. Yang J. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy 2019 15 3 493 509 10.1080/15548627.2018.1531196 30304977
    [Google Scholar]
  37. Yang Z. Huang C. Wen X. Liu W. Huang X. Li Y. Zang J. Weng Z. Lu D. Tsang C.K. Li K. Xu A. Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol. Ther. 2022 30 3 1275 1287 10.1016/j.ymthe.2021.11.004 34763084
    [Google Scholar]
  38. Forte M. Bianchi F. Cotugno M. Marchitti S. De Falco E. Raffa S. Stanzione R. Di Nonno F. Chimenti I. Palmerio S. Pagano F. Petrozza V. Micaloni A. Madonna M. Relucenti M. Torrisi M.R. Frati G. Volpe M. Rubattu S. Sciarretta S. Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence. Autophagy 2020 16 8 1468 1481 10.1080/15548627.2019.1687215 31679456
    [Google Scholar]
  39. Wang C. Li Y. Zhang Y. Smerin D. Gu L. Jiang S. Xiong X. Triolein alleviates ischemic stroke brain injury by regulating autophagy and inflammation through the AKT/mTOR signaling pathway. Mol. Med. 2024 30 1 242 10.1186/s10020‑024‑00995‑5 39639187
    [Google Scholar]
  40. Salminen A. Kaarniranta K. Kauppinen A. Ojala J. Haapasalo A. Soininen H. Hiltunen M. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog. Neurobiol. 2013 106-107 33 54 10.1016/j.pneurobio.2013.06.002 23827971
    [Google Scholar]
  41. Meng T. Lin S. Zhuang H. Huang H. He Z. Hu Y. Gong Q. Feng D. Recent progress in the role of autophagy in neurological diseases. Cell Stress 2019 3 5 141 161 10.15698/cst2019.05.186 31225510
    [Google Scholar]
  42. Reddy P.H. Oliver D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019 8 5 488 10.3390/cells8050488 31121890
    [Google Scholar]
  43. Zhang Z. Yang X. Song Y.Q. Tu J. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res. Rev. 2021 72 101464 10.1016/j.arr.2021.101464 34551326
    [Google Scholar]
  44. Choi I. Wang M. Yoo S. Xu P. Seegobin S.P. Li X. Han X. Wang Q. Peng J. Zhang B. Yue Z. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat. Cell Biol. 2023 25 7 963 974 10.1038/s41556‑023‑01158‑0 37231161
    [Google Scholar]
  45. Zhao G.X. Pan H. Ouyang D.Y. He X.H. The critical molecular interconnections in regulating apoptosis and autophagy. Ann. Med. 2015 47 4 305 315 10.3109/07853890.2015.1040831 25982797
    [Google Scholar]
  46. Althaus J. Bernaudin M. Petit E. Toutain J. Touzani O. Rami A. Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1α (HIF-1α) protein following focal cerebral ischemia in rats. Neurochem. Int. 2006 48 8 687 695 10.1016/j.neuint.2005.12.008 16464515
    [Google Scholar]
  47. Lu P. Kamboj A. Gibson S.B. Anderson C.M. Poly(ADP-ribose) polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3. J. Neurosci. 2014 34 48 15975 15987 10.1523/JNEUROSCI.2499‑14.2014 25429139
    [Google Scholar]
  48. Shi R.Y. Zhu S.H. Li V. Gibson S.B. Xu X.S. Kong J.M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci. Ther. 2014 20 12 1045 1055 10.1111/cns.12325 25230377
    [Google Scholar]
  49. Deng Z. Ou H. Ren F. Guan Y. Huan Y. Cai H. Sun B. LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol. Res. 2020 53 1 38 10.1186/s40659‑020‑00304‑4 32912324
    [Google Scholar]
  50. Hwang J.A. Shin N. Shin H.J. Yin Y. Kwon H.H. Park H. Shin J. Kim S.I. Kim D.W. Song H.J. Protective effects of ShcA protein silencing for photothrombotic cerebral infarction. Transl. Stroke Res. 2021 12 5 866 878 10.1007/s12975‑020‑00874‑1 33242144
    [Google Scholar]
  51. Xue L. Chen S. Xue S. Liu P. Liu H. LncRNA TUG1 compromised neuronal mitophagy in cerebral ischemia/reperfusion injury by targeting sirtuin 1. Cell Biol. Toxicol. 2022 38 6 1121 1136 10.1007/s10565‑022‑09700‑w 35348966
    [Google Scholar]
  52. Zhu Y. Zhang J. Deng Q. Chen X. Mitophagy-associated programmed neuronal death and neuroinflammation. Front. Immunol. 2024 15 1460286 10.3389/fimmu.2024.1460286 39416788
    [Google Scholar]
  53. Hong T. Zhou Y. Peng L. Wu X. Li Y. Li Y. Zhao Y. Knocking down peroxiredoxin 6 aggravates cerebral ischemia-reperfusion injury by enhancing mitophagy. Neuroscience 2022 482 30 42 10.1016/j.neuroscience.2021.11.043 34863856
    [Google Scholar]
  54. Choi S.G. Shin J. Lee K.Y. Park H. Kim S.I. Yi Y.Y. Kim D.W. Song H.J. Shin H.J. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Glia 2023 71 5 1294 1310 10.1002/glia.24339 36655313
    [Google Scholar]
  55. Yang Q. Chen T. Li S. Yang C. Zheng X. Mao S. Liu N. Mo S. Li D. Yang M. Lu Z. Tang L. Huang X. Liu X. Jian C. Yin Y. Shang J. Inhibition of autophagy attenuates cognitive decline and mitochondrial dysfunction in an Alzheimer’s disease mouse model with chronic cerebral hypoperfusion. Brain Res. 2025 1850 149416 10.1016/j.brainres.2024.149416 39710054
    [Google Scholar]
  56. Qian M. Fang X. Wang X. Autophagy and inflammation. Clin. Transl. Med. 2017 6 1 e24 10.1186/s40169‑017‑0154‑5 28748360
    [Google Scholar]
  57. Agrawal I. Jha S. Mitochondrial dysfunction and Alzheimer’s disease: Role of microglia. Front. Aging Neurosci. 2020 12 252 10.3389/fnagi.2020.00252 32973488
    [Google Scholar]
  58. Pluta R. Neuroinflammation in the post-ischemic brain in the presence of amyloid and tau protein. Discov. Med. 2025 37 192 1 18 10.24976/Discov.Med.202537192.1 39851219
    [Google Scholar]
  59. Pomilio C. Gorojod R.M. Riudavets M. Vinuesa A. Presa J. Gregosa A. Bentivegna M. Alaimo A. Alcon S.P. Sevlever G. Kotler M.L. Beauquis J. Saravia F. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: Evidence from experimental models and Alzheimer’s disease patients. Geroscience 2020 42 2 613 632 10.1007/s11357‑020‑00161‑9 31975051
    [Google Scholar]
  60. Houtman J. Freitag K. Gimber N. Schmoranzer J. Heppner F.L. Jendrach M. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP 3. EMBO J. 2019 38 4 e99430 10.15252/embj.201899430 30617086
    [Google Scholar]
  61. Fang E.F. Hou Y. Palikaras K. Adriaanse B.A. Kerr J.S. Yang B. Lautrup S. Hasan-Olive M.M. Caponio D. Dan X. Rocktäschel P. Croteau D.L. Akbari M. Greig N.H. Fladby T. Nilsen H. Cader M.Z. Mattson M.P. Tavernarakis N. Bohr V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019 22 3 401 412 10.1038/s41593‑018‑0332‑9 30742114
    [Google Scholar]
  62. Jia K. Shen R. Li Y. Shi W. Xia W. LAMP3 exacerbates autophagy-mediated neuronal damage through NF-kB in microglia. Cell. Signal. 2025 129 111658 10.1016/j.cellsig.2025.111658 39954716
    [Google Scholar]
  63. Yuan Y.J. Chen T. Yang Y.L. Han H.N. Xu L.M. E2F1/CDK5/DRP1 axis mediates microglial mitochondrial division and autophagy in the pathogenesis of cerebral ischemia-reperfusion injury. Clin. Transl. Med. 2025 15 2 e70197 10.1002/ctm2.70197 39968698
    [Google Scholar]
  64. Peng L. Hu G. Yao Q. Wu J. He Z. Law B.Y.K. Hu G. Zhou X. Du J. Wu A. Yu L. Microglia autophagy in ischemic stroke: A double-edged sword. Front. Immunol. 2022 13 1013311 10.3389/fimmu.2022.1013311 36466850
    [Google Scholar]
  65. Means J.C. Venkatesan A. Gerdes B. Fan J.Y. Bjes E.S. Price J.L. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy. PLoS Genet. 2015 11 5 e1005171 10.1371/journal.pgen.1005171 25951229
    [Google Scholar]
  66. Dhage P.A. Sharbidre A.A. Magdum S.M. Interlacing the relevance of caspase activation in the onset and progression of Alzheimer’s disease. Brain Res. Bull. 2023 192 83 92 10.1016/j.brainresbull.2022.11.008 36372374
    [Google Scholar]
  67. Wen Y. Yang S.H. Liu R. Perez E.J. Brun-Zinkernagel A.M. Koulen P. Simpkins J.W. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim. Biophys. Acta Mol. Basis Dis. 2007 1772 4 473 483 10.1016/j.bbadis.2006.10.011 17113760
    [Google Scholar]
  68. Hanger D.P. Wray S. Tau cleavage and tau aggregation in neurodegenerative disease. Biochem. Soc. Trans. 2010 38 4 1016 1020 10.1042/BST0381016 20658996
    [Google Scholar]
  69. Padurariu M. Ciobica A. Mavroudis I. Fotiou D. Baloyannis S. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients. Psychiatr. Danub. 2012 24 2 152 158 22706413
    [Google Scholar]
  70. Walls K.C. Ghosh A.P. Ballestas M.E. Klocke B.J. Roth K.A. bcl-2/Adenovirus E1B 19-kd interacting protein 3 (BNIP3) regulates hypoxia-induced neural precursor cell death. J. Neuropathol. Exp. Neurol. 2009 68 12 1326 1338 10.1097/NEN.0b013e3181c3b9be 19915483
    [Google Scholar]
  71. Xingyong C. Xicui S. Huanxing S. Jingsong O. Yi H. Xu Z. Ruxun H. Zhong P. Upregulation of myeloid cell leukemia-1 potentially modulates beclin-1-dependent autophagy in ischemic stroke in rats. BMC Neurosci. 2013 14 1 56 10.1186/1471‑2202‑14‑56 23688351
    [Google Scholar]
  72. Siddiqui M. Mukherjee S. Manivannan P. Malathi K. RNase L cleavage products promote switch from autophagy to apoptosis by caspase-mediated cleavage of beclin-1. Int. J. Mol. Sci. 2015 16 8 17611 17636 10.3390/ijms160817611 26263979
    [Google Scholar]
  73. Bamahel A.S. Sun X. Wu W. Mu C. Liu J. Bi S. Xu H. Regulatory roles and therapeutic potential of miR-122-5p in hypoxic-ischemic brain injury: Comprehensive review. Cell Biochem. Biophys. 2025 1-18 10.1007/s12013‑025‑01686‑6 40016565
    [Google Scholar]
  74. Hu J. Hu Z. Xia J. Chen Y. Cordato D. Cheng Q. Wang J. Targeting intracellular autophagic process for the treatment of post-stroke ischemia/reperfusion injury. Animal Model. Exp. Med. 2025 8 3 389 404 10.1002/ame2.12528 39908171
    [Google Scholar]
  75. Zhang X. Wang X. Khurm M. Zhan G. Zhang H. Ito Y. Guo Z. Alterations of brain quantitative proteomics profiling revealed the molecular mechanisms of diosgenin against cerebral ischemia reperfusion effects. J. Proteome Res. 2020 19 3 1154 1168 10.1021/acs.jproteome.9b00667 31940440
    [Google Scholar]
  76. Li H. Zhang J. Ma K. Ji J. An C. Jiang H. Qu H. Tang R. Ren X. Du Y. Zhao Q. Advancements in the treatment of cerebral ischemia reperfusion injury: Acupuncture combined with mesenchymal stem cells transplantation. Medicine 2025 104 2 e41075
    [Google Scholar]
  77. Xue L.L. Cheng J. Du R.L. Luo B.Y. Chen L. Xiao Q.X. Zhou H.S. She H.Q. Wang S.F. Chen T.B. Hu C.Y. He Y.Q. Wang T.H. Xiong L.L. Bone marrow mesenchymal stem cells alleviate neurological dysfunction by reducing autophagy damage via downregulation of SYNPO2 in neonatal hypoxic–ischemic encephalopathy rats. Cell Death Dis. 2025 16 1 131 10.1038/s41419‑025‑07439‑w 40000609
    [Google Scholar]
  78. Gao Y. Li L. Zhao F. Cheng Y. Jin M. Xue F.S. Esketamine at a clinical dose attenuates cerebral ischemia/reperfusion injury by inhibiting AKT signaling pathway to facilitate microglia m2 polarization and autophagy. Drug Des. Devel. Ther. 2025 19 369 387 10.2147/DDDT.S504179 39867864
    [Google Scholar]
  79. Lu T. Feng Z. Xue H. Jin C. Zhang Y. Ai Y. Zheng M. Shi D. Song K. Network pharmacology analysis and experimental validation of tectoridin in the treatment of ischemic stroke by inhibiting apoptosis and regulating inflammation. Int. J. Mol. Sci. 2025 26 4 1402 10.3390/ijms26041402 40003867
    [Google Scholar]
  80. Li R. Li Q. Yang C. Liu H. Xiao Y. Yang P. Gong G. Wu W. HBCOC attenuates cerebral ischemia-reperfusion injury in mice by inhibiting the inflammatory response and autophagy via TREM-1/ERK/NF-κB. J. Stroke Cerebrovasc. Dis. 2025 34 5 108280 10.1016/j.jstrokecerebrovasdis.2025.108280 40057252
    [Google Scholar]
  81. Wang J. Gu D. Jin K. Shen H. Qian Y. The role of G-protein-coupled receptor kinase 4 in modulating mitophagy and oxidative stress in cerebral ischemia–reperfusion injury. Neuromolecular Med. 2025 27 1 21 10.1007/s12017‑025‑08843‑3 40055267
    [Google Scholar]
/content/journals/car/10.2174/0115672050385480250619045022
Loading
/content/journals/car/10.2174/0115672050385480250619045022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test