Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD) is a complex neurodegenerative disorder and a growing global health challenge, driven by increasing life expectancy and an aging population. This review provides a comprehensive exploration of AD pathophysiology, integrating current hypotheses such as the amyloid cascade, tau protein pathology, cholinergic dysfunction, neuroinflammation, vascular contributions, and potential infection-related mechanisms. The multifactorial etiology of AD, encompassing genetic predispositions and environmental factors, underscores its intricate nature. This study delves into the diagnostic advancements, including the identification and utilization of biomarkers for early detection and disease monitoring. Therapeutic approaches are critically evaluated, highlighting anti-amyloid and anti-tau strategies, alongside emerging innovations in stem cell therapy and nanobiotechnology. A detailed examination of clinical trials offers insights into the achievements and setbacks of translating research into effective treatments. By synthesizing epidemiological trends, molecular mechanisms, and therapeutic developments, this review aims to advance our understanding of AD and foster collaborative efforts to develop transformative solutions. It emphasizes the urgency of addressing this multifaceted disease, presenting a nuanced perspective on its complexity while illuminating future directions for research and clinical practice.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050368798250626075628
2025-07-04
2025-10-28
Loading full text...

Full text loading...

References

  1. JessenF. GeorgesJ. WortmannM. Benham-HermetzS. What matters to patients with Alzheimer’s disease and their care partners? Implications for understanding the value of future interventions.J. Prev. Alzheimers Dis.20229355055510.14283/jpad.2022.2235841256
    [Google Scholar]
  2. HampelH. CaraciF. CuelloA.C. CarusoG. NisticòR. CorboM. BaldacciF. ToschiN. GaraciF. ChiesaP.A. VerdoonerS.R. Akman-AndersonL. HernándezF. ÁvilaJ. EmanueleE. ValenzuelaP.L. LucíaA. WatlingM. ImbimboB.P. VergalloA. ListaS. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease.Front. Immunol.20201145610.3389/fimmu.2020.0045632296418
    [Google Scholar]
  3. GoldeT.E. Alzheimer’s disease – the journey of a healthy brain into organ failure.Mol. Neurodegener.20221711810.1186/s13024‑022‑00523‑135248124
    [Google Scholar]
  4. PrinceM. AliG.C. GuerchetM. PrinaA.M. AlbaneseE. WuY.T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia.Alzheimers Res. Ther.2016812310.1186/s13195‑016‑0188‑827473681
    [Google Scholar]
  5. JackC.R.Jr TherneauT.M. WeigandS.D. WisteH.J. KnopmanD.S. VemuriP. LoweV.J. MielkeM.M. RobertsR.O. MachuldaM.M. Graff-RadfordJ. JonesD.T. SchwarzC.G. GunterJ.L. SenjemM.L. RoccaW.A. PetersenR.C. Prevalence of biologically vs. clinically defined Alzheimer spectrum entities using the National Institute on Aging–Alzheimer’s Association research framework.JAMA Neurol.201976101174118310.1001/jamaneurol.2019.197131305929
    [Google Scholar]
  6. LaneC.A. BarnesJ. NicholasJ.M. SudreC.H. CashD.M. MaloneI.B. ParkerT.D. KeshavanA. BuchananS.M. KeussS.E. JamesS.N. LuK. Murray-SmithH. WongA. GordonE. CoathW. ModatM. ThomasD. RichardsM. FoxN.C. SchottJ.M. Associations between vascular risk across adulthood and brain pathology in late life: evidence from a British birth cohort.JAMA Neurol.202077217518310.1001/jamaneurol.2019.377431682678
    [Google Scholar]
  7. GhoweriA.O. GagolewiczP. FrazierH.N. GantJ.C. AndrewR.D. BennettB.M. ThibaultO. Neuronal calcium imaging, excitability, and plasticity changes in the Aldh2–/–mouse model of sporadic Alzheimer’s disease.J. Alzheimers Dis.20207741623163710.3233/JAD‑20061732925058
    [Google Scholar]
  8. RaoC.V. FarooquiM. MadhavaramA. ZhangY. AschA.S. YamadaH.Y. GSK3-ARC/Arg3.1 and GSK3-Wnt signaling axes trigger amyloid-β accumulation and neuroinflammation in middle-aged Shugoshin 1 mice.Aging Cell20201910e1322110.1111/acel.1322132857910
    [Google Scholar]
  9. ZhangW. JiaoB. XiaoT. LiuX. LiaoX. XiaoX. GuoL. YuanZ. YanX. TangB. ShenL. Association of rare variants in neurodegenerative genes with familial Alzheimer’s disease.Ann. Clin. Transl. Neurol.20207101985199510.1002/acn3.5119732941707
    [Google Scholar]
  10. HanM.R. SchellenbergG.D. WangL.S. Alzheimer’s Disease Neuroimaging Initiative Genome-wide association reveals genetic effects on human Aβ 42 and τ protein levels in cerebrospinal fluids: A case control study.BMC Neurol.20101019010.1186/1471‑2377‑10‑9020932310
    [Google Scholar]
  11. ZhuY. PengL. HuJ. ChenY. ChenF. Current anti-Alzheimer’s disease effect of natural products and their principal targets.J. Integr. Neurosci.201918332733910.31083/j.jin.2019.03.110531601083
    [Google Scholar]
  12. LiuP.P. XieY. MengX.Y. KangJ.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease.Signal Transduct. Target. Ther.2019412910.1038/s41392‑019‑0063‑831637009
    [Google Scholar]
  13. LaneC HardyJ. Alzheimer’s disease. Eur. J. Neurol201825597010.1111/ene.13439
    [Google Scholar]
  14. BagyinszkyE. GiauV.V. YounY.C. AnS.S. KimS. Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases.Neuropsychiatr. Dis. Treat.2018142067208510.2147/NDT.S16544530147320
    [Google Scholar]
  15. AwasthiM. SinghS. PandeyV.P. DwivediU.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products.J. Neurol. Sci.201636125627110.1016/j.jns.2016.01.00826810552
    [Google Scholar]
  16. KaurA. NigamK. SrivastavaS. TyagiA. DangS. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease.J. Microencapsul.202037535536510.1080/02652048.2020.175697132293915
    [Google Scholar]
  17. SilvaJ.H.C. FerreiraR.S. PereiraE.P. Braga-de-SouzaS. AlmeidaM.M.A. SantosC.C. ButtA.M. CaiazzoE. CapassoR. SilvaV.D.A. CostaS.L. Amburana cearensis: Pharmacological and neuroprotective effects of its compounds.Molecules20202515339410.3390/molecules2515339432726999
    [Google Scholar]
  18. XuJ. PatassiniS. BegleyP. ChurchS. WaldvogelH.J. FaullR.L.M. UnwinR.D. CooperG.J.S. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease.Biochem. Biophys. Res. Commun.2020527367668110.1016/j.bbrc.2020.05.01532416962
    [Google Scholar]
  19. GazitN. VertkinI. ShapiraI. HelmM. SlomowitzE. SheibaM. MorY. RizzoliS. SlutskyI. IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses.Neuron201689358359710.1016/j.neuron.2015.12.03426804996
    [Google Scholar]
  20. Perez OrtizJ.M. SwerdlowR.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities.Br. J. Pharmacol.2019176183489350710.1111/bph.1458530675901
    [Google Scholar]
  21. WilkinsH.M. MorrisJ.K. New therapeutics to modulate mitochondrial function in neurodegenerative disorders.Curr. Pharm. Des.201723573175210.2174/138161282266616123014451728034353
    [Google Scholar]
  22. ChangX.L. TanM.S. TanL. YuJ.T. The role of TDP-43 in Alzheimer’s disease.Mol. Neurobiol.20165353349335910.1007/s12035‑015‑9264‑526081142
    [Google Scholar]
  23. ChungY.H. LinC.W. HuangH.Y. ChenS.L. HuangH.J. SunY.C. LeeG.C. Lee-ChenG.J. ChangY.C. Hsieh-LiH.M. Targeting inflammation, PHA-767491 shows a broad spectrum in protein aggregation diseases.J. Mol. Neurosci.20207071140115210.1007/s12031‑020‑01521‑y32170713
    [Google Scholar]
  24. CascellaR. FaniG. BigiA. ChitiF. CecchiC. Partial failure of proteostasis systems counteracting TDP-43 aggregates in neurodegenerative diseases.Int. J. Mol. Sci.20192015368510.3390/ijms2015368531357627
    [Google Scholar]
  25. FangY.S. TsaiK.J. ChangY.J. KaoP. WoodsR. KuoP.H. WuC.C. LiaoJ.Y. ChouS.C. LinV. JinL.W. YuanH.S. ChengI.H. TuP.H. ChenY.R. Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients.Nat. Commun.201451482410.1038/ncomms582425215604
    [Google Scholar]
  26. RobinsonJ.L. PortaS. GarrettF.G. ZhangP. XieS.X. SuhE. Van DeerlinV.M. AbnerE.L. JichaG.A. BarberJ.M. LeeV.M.Y. LeeE.B. TrojanowskiJ.Q. NelsonP.T. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration.Brain202014392844285710.1093/brain/awaa21932830216
    [Google Scholar]
  27. OkaM. ItoK. KogaM. KusumiI. Changes in subunit composition of NMDA receptors in animal models of schizophrenia by repeated administration of methamphetamine.Prog. Neuropsychopharmacol. Biol. Psychiatry202010310998410.1016/j.pnpbp.2020.10998432473191
    [Google Scholar]
  28. GomezG. SaboridoM.D. BernardiM.A. GershanikO.S. TaraviniI.R. FerrarioJ.E. Regulation of pleiotrophin and fyn in the striatum of rats undergoing L-DOPA-induced dyskinesia.Neurosci. Lett.201866651010.1016/j.neulet.2017.12.02429241709
    [Google Scholar]
  29. NygaardH.B. Targeting Fyn kinase in Alzheimer’s disease.Biol. Psychiatry201883436937610.1016/j.biopsych.2017.06.00428709498
    [Google Scholar]
  30. ChunH. LeeC.J. Reactive astrocytes in Alzheimer’s disease: A double-edged sword.Neurosci. Res.2018126445210.1016/j.neures.2017.11.01229225140
    [Google Scholar]
  31. WangX.P. YeP. LvJ. ZhouL. QianZ.Y. HuangY.J. MuZ.H. WangX. LiuX. WanQ. YangZ.H. WangF. ZouY.Y. Expression changes of NMDA and AMPA receptor subunits in the hippocampus in rats with diabetes induced by streptozotocin coupled with memory impairment.Neurochem. Res.201944497899310.1007/s11064‑019‑02733‑430747310
    [Google Scholar]
  32. MuraokaS. JedrychowskiM.P. YanamandraK. IkezuS. GygiS.P. IkezuT. Proteomic profiling of extracellular vesicles derived from cerebrospinal fluid of Alzheimer’s disease patients: A pilot study.Cells202099195910.3390/cells909195932854315
    [Google Scholar]
  33. CaiZ. HussainM.D. YanL.J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease.Int. J. Neurosci.2014124530732110.3109/00207454.2013.83351023930978
    [Google Scholar]
  34. SimpsonR.J. JensenS.S. LimJ.W.E. Proteomic profiling of exosomes: Current perspectives.Proteomics20088194083409910.1002/pmic.20080010918780348
    [Google Scholar]
  35. TamboliI.Y. BarthE. ChristianL. SiepmannM. KumarS. SinghS. TolksdorfK. HenekaM.T. LütjohannD. WunderlichP. WalterJ. Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion.J. Biol. Chem.201028548374053741410.1074/jbc.M110.14946820876579
    [Google Scholar]
  36. MalmT. LoppiS. KanninenK.M. Exosomes in Alzheimer’s disease.Neurochem. Int.20169719319910.1016/j.neuint.2016.04.01127131734
    [Google Scholar]
  37. PeyressatreM. LaureA. PelleranoM. BoukhaddaouiH. SoussiI. MorrisM.C. Fluorescent biosensor of CDK5 kinase activity in glioblastoma cell extracts and living cells.Biotechnol. J.2020159190047410.1002/biot.20190047432379380
    [Google Scholar]
  38. MonciniS. LunghiM. ValmadreA. GrassoM. Del VescovoV. RivaP. DentiM.A. VenturinM. The miR-15/107 family of microRNA genes regulates CDK5R1/p35 with implications for Alzheimer’s disease pathogenesis.Mol. Neurobiol.20175464329434210.1007/s12035‑016‑0002‑427343180
    [Google Scholar]
  39. DuncanR.S. SongB. KoulenP. Presenilins as drug targets for Alzheimer’s disease—recent insights from cell biology and electrophysiology as novel opportunities in drug development.Int. J. Mol. Sci.2018196162110.3390/ijms1906162129857474
    [Google Scholar]
  40. HermsJ. SchneiderI. DewachterI. CaluwaertsN. KretzschmarH. Van LeuvenF. Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein.J. Biol. Chem.200327842484248910.1074/jbc.M20676920012431992
    [Google Scholar]
  41. EricksonM.A. DohiK. BanksW.A. Neuroinflammation: A common pathway in CNS diseases as mediated at the blood-brain barrier.Neuroimmunomodulation201219212113010.1159/00033024722248728
    [Google Scholar]
  42. MorrisG.P. ClarkI.A. VisselB. Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease.Acta Neuropathol.2018136566368910.1007/s00401‑018‑1918‑830349969
    [Google Scholar]
  43. HardyJ.A. HigginsG.A. Alzheimer’s disease: The amyloid cascade hypothesis.Science1992256505418418510.1126/science.15660671566067
    [Google Scholar]
  44. SwerdlowR.H. BurnsJ.M. KhanS.M. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives.Biochim. Biophys. Acta Mol. Basis Dis.2014184281219123110.1016/j.bbadis.2013.09.01024071439
    [Google Scholar]
  45. AznaourovaM. JangaH. SefriedS. KaufmannA. DornaJ. VolkersS.M. GeorgP. LechnerM. HoppeJ. DökelS. SchmererN. GruberA.D. LinneU. BauerS. SanderL.E. SchmeckB. SchulteL.N. Noncoding RNA MaIL1 is an integral component of the TLR4–TRIF pathway.Proc. Natl. Acad. Sci. USA2020117169042905310.1073/pnas.192039311732241891
    [Google Scholar]
  46. AksoyY.A. DengW. StoddartJ. ChungR. GuilleminG. ColeN.J. NeelyG.G. HesselsonD. “STRESSED OUT”: The role of FUS and TDP-43 in amyotrophic lateral sclerosis.Int. J. Biochem. Cell Biol.202012610582110.1016/j.biocel.2020.10582132758633
    [Google Scholar]
  47. NolanM. ScottC. GamarallageM.P. LunnD. CarpenterK. McDonoughE. MeyerD. KaanumalleS. Santamaria-PangA. TurnerM.R. TalbotK. AnsorgeO. Quantitative patterns of motor cortex proteinopathy across ALS genotypes.Acta Neuropathol. Commun.2020819810.1186/s40478‑020‑00961‑232616036
    [Google Scholar]
  48. StegmüllerJ. SynofzikM. New transgenic ALS/FTD models on the rat-walk: An Editorial Highlight for’Increased Ubqln2 expression causes neuron death in transgenic rats.Wiley Online Library2016159161
    [Google Scholar]
  49. ArsovićA. HalbachM.V. Canet-PonsJ. Esen-SehirD. DöringC. FreudenbergF. CzechowskaN. SeidelK. BaaderS.L. GispertS. SenN.E. AuburgerG. Mouse ataxin-2 expansion downregulates CamKII and other calcium signaling factors, impairing granule—Purkinje neuron synaptic strength.Int. J. Mol. Sci.20202118667310.3390/ijms2118667332932600
    [Google Scholar]
  50. AksnesM. MüllerE.G. TiimanA. EdwinT.H. TereniusL. RevheimM.E. VukojevićV. BogdanovićN. KnapskogA.B. Amyloidogenic nanoplaques in cerebrospinal fluid: relationship to amyloid brain uptake and clinical Alzheimer’s disease in a memory clinic cohort.J. Alzheimers Dis.202077283184210.3233/JAD‑20023732741818
    [Google Scholar]
  51. AbdelazizG. Shamsel-DinH.A. SarhanM.O. GizawyM.A. Tau protein targeting via radioiodinated azure A for brain theranostics: radiolabeling, molecular docking, in vitro and in vivo biological evaluation.J. Labelled Comp. Radiopharm.2020631334210.1002/jlcr.381931785209
    [Google Scholar]
  52. CoughlinD.G. IttyerahR. PetersonC. PhillipsJ.S. MillerS. RascovskyK. WeintraubD. SiderowfA.D. DudaJ.E. HurtigH.I. WolkD.A. McMillanC.T. YushkevichP.A. GrossmanM. LeeE.B. TrojanowskiJ.Q. IrwinD.J. Hippocampal subfield pathologic burden in Lewy body diseases vs. Alzheimer’s disease.Neuropathol. Appl. Neurobiol.202046770772110.1111/nan.1265932892355
    [Google Scholar]
  53. KalyanaramanB. Teaching the basics of repurposing mitochondria-targeted drugs: From Parkinson’s disease to cancer and back to Parkinson’s disease.Redox Biol.20203610166510.1016/j.redox.2020.10166532795938
    [Google Scholar]
  54. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  55. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  56. MakinS. The amyloid hypothesis on trial.Nature2018599S410.1038/d41586‑018‑05719‑4
    [Google Scholar]
  57. MastersC.L. BatemanR. BlennowK. RoweC.C. SperlingR.A. CummingsJ.L. Alzheimer’s disease.Nat. Rev. Dis. Primers2015111505610.1038/nrdp.2015.5627188934
    [Google Scholar]
  58. CebersG. AlexanderR.C. HaeberleinS.B. HanD. GoldwaterR. EreshefskyL. OlssonT. YeN. RosenL. RussellM. MaltbyJ. EketjällS. KuglerA.R. AZD3293: Pharmacokinetic and pharmacodynamic effects in healthy subjects and patients with Alzheimer’s disease.J. Alzheimers Dis.20165531039105310.3233/JAD‑16070127767991
    [Google Scholar]
  59. KennedyM.E. StamfordA.W. ChenX. CoxK. CummingJ.N. DockendorfM.F. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients.Sci. Transl. Med.20168363363ra150363ra15010.1126/scitranslmed.aad97042016
    [Google Scholar]
  60. WesselsA.M. TariotP.N. ZimmerJ.A. SelzlerK.J. BraggS.M. AndersenS.W. LandryJ. KrullJ.H. DowningA.M. WillisB.A. ShcherbininS. MullenJ. BarkerP. SchumiJ. SheringC. MatthewsB.R. SternR.A. VellasB. CohenS. MacSweeneyE. BoadaM. SimsJ.R. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ randomized clinical trials.JAMA Neurol.202077219920910.1001/jamaneurol.2019.398831764959
    [Google Scholar]
  61. HenleyD. RaghavanN. SperlingR. AisenP. RamanR. RomanoG. Preliminary results of a trial of atabecestat in preclinical Alzheimer’s Disease.N. Engl. J. Med.2019380151483148510.1056/NEJMc181343530970197
    [Google Scholar]
  62. NovakG. StrefferJ.R. TimmersM. HenleyD. BrashearH.R. BogertJ. RussuA. JanssensL. TesseurI. TritsmansL. Van NuetenL. EngelborghsS. Long-term safety and tolerability of atabecestat (JNJ-54861911), an oral BACE1 inhibitor, in early Alzheimer’s disease spectrum patients: A randomized, double-blind, placebo-controlled study and a two-period extension study.Alzheimers Res. Ther.20201215810.1186/s13195‑020‑00614‑532410694
    [Google Scholar]
  63. RogersM.B. Picking through the rubble, field tries to salvage BACE inhibitors.2019Available from: https://www.alzforum.org/news/conference-coverage/picking-through-rubble-field-tries-salvage-bace-inhibitors
  64. GrattonR. TricaricoP.M. MoltrasioC. Lima Estevão de OliveiraA.S. BrandãoL. MarzanoA.V. ZupinL. CrovellaS. Pleiotropic role of notch signaling in human skin diseases.Int. J. Mol. Sci.20202112421410.3390/ijms2112421432545758
    [Google Scholar]
  65. YangT. DangY. OstaszewskiB. MengelD. SteffenV. RabeC. BittnerT. WalshD.M. SelkoeD.J. Target engagement in an Alzheimer trial: Crenezumab lowers amyloid β oligomers in cerebrospinal fluid.Ann. Neurol.201986221522410.1002/ana.2551331168802
    [Google Scholar]
  66. XiaW. γ-Secretase and its modulators: Twenty years and beyond.Neurosci. Lett.201970116216910.1016/j.neulet.2019.02.01130763650
    [Google Scholar]
  67. GreenR.C. SchneiderL.S. AmatoD.A. BeelenA.P. WilcockG. SwabbE.A. ZavitzK.H. Tarenflurbil Phase 3 Study Group Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial.JAMA2009302232557256410.1001/jama.2009.186620009055
    [Google Scholar]
  68. ChenX.Q. MobleyW.C. Alzheimer disease pathogenesis: Insights from molecular and cellular biology studies of oligomeric Aβ and tau species.Front. Neurosci.20191365910.3389/fnins.2019.0065931293377
    [Google Scholar]
  69. ClineE.N. BiccaM.A. ViolaK.L. KleinW.L. The amyloid-β oligomer hypothesis: Beginning of the third decade.J. Alzheimers Dis.201864s1S567S61010.3233/JAD‑17994129843241
    [Google Scholar]
  70. WangZ.X. TanL. LiuJ. YuJ.T. The essential role of soluble Aβ oligomers in Alzheimer’s disease.Mol. Neurobiol.20165331905192410.1007/s12035‑015‑9143‑025833098
    [Google Scholar]
  71. FeniliD. BrownM. RappaportR. McLaurinJ. Properties of scyllo–inositol as a therapeutic treatment of AD-like pathology.J. Mol. Med. (Berl.)200785660361110.1007/s00109‑007‑0156‑717279347
    [Google Scholar]
  72. SallowayS. SperlingR. KerenR. PorsteinssonA.P. van DyckC.H. TariotP.N. GilmanS. ArnoldD. AbushakraS. HernandezC. CransG. LiangE. QuinnG. BairuM. PastrakA. CedarbaumJ.M. ELND005-AD201 Investigators A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease.Neurology201177131253126210.1212/WNL.0b013e3182309fa521917766
    [Google Scholar]
  73. AbushakraS. PorsteinssonA. ScheltensP. SadowskyC. VellasB. CummingsJ. GauthierS. HeyJ.A. PowerA. WangP. ShenL. TolarM. Clinical effects of tramiprosate in APOE4/4 homozygous patients with mild Alzheimer’s disease suggest disease modification potential.J. Prev. Alzheimers Dis.2017431810.14283/jpad.2017.2629182706
    [Google Scholar]
  74. HeyJ.A. YuJ.Y. VersavelM. AbushakraS. KocisP. PowerA. KaplanP.L. AmedioJ. TolarM. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease.Clin. Pharmacokinet.201857331533310.1007/s40262‑017‑0608‑329063518
    [Google Scholar]
  75. ForoutanN. HopkinsR.B. TarrideJ.E. FlorezI.D. LevineM. Safety and efficacy of active and passive immunotherapy in mild-to-moderate Alzheimer’s disease: A systematic review and network meta-analysis.Clin. Invest. Med.2019421E53E6510.25011/cim.v42i1.3239330904037
    [Google Scholar]
  76. LoureiroJ.C. PaisM.V. StellaF. RadanovicM. TeixeiraA.L. ForlenzaO.V. de SouzaL.C. Passive antiamyloid immunotherapy for Alzheimer’s disease.Curr. Opin. Psychiatry202033328429110.1097/YCO.000000000000058732040044
    [Google Scholar]
  77. PlotkinS.S. CashmanN.R. Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease.Neurobiol. Dis.202014410501010.1016/j.nbd.2020.10501032682954
    [Google Scholar]
  78. OrgogozoJ.M. GilmanS. DartiguesJ.F. LaurentB. PuelM. KirbyL.C. JouannyP. DuboisB. EisnerL. FlitmanS. MichelB.F. BoadaM. FrankA. HockC. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization.Neurology2003611465410.1212/01.WNL.0000073623.84147.A812847155
    [Google Scholar]
  79. NicollJ.A.R. BucklandG.R. HarrisonC.H. PageA. HarrisS. LoveS. NealJ.W. HolmesC. BocheD. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease.Brain201914272113212610.1093/brain/awz14231157360
    [Google Scholar]
  80. FarlowM.R. AndreasenN. RiviereM.E. VostiarI. VitalitiA. SovagoJ. CaputoA. WinbladB. GrafA. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease.Alzheimers Res. Ther.2015712310.1186/s13195‑015‑0108‑325918556
    [Google Scholar]
  81. Lopez LopezC. TariotP.N. CaputoA. LangbaumJ.B. LiuF. RiviereM.E. LangloisC. Rouzade-DominguezM.L. ZalesakM. HendrixS. ThomasR.G. VigliettaV. LenzR. RyanJ.M. GrafA. ReimanE.M. The Alzheimer’s prevention initiative generation program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease.Alzheimers Dement. (N. Y.)20195121622710.1016/j.trci.2019.02.00531211217
    [Google Scholar]
  82. AraiH. SuzukiH. YoshiyamaT. Vanutide cridificar and the QS-21 adjuvant in Japanese subjects with mild to moderate Alzheimer’s disease: Results from two phase 2 studies.Curr. Alzheimer Res.201512324225410.2174/156720501266615030215412125731629
    [Google Scholar]
  83. HullM. SadowskyC. AraiH. Le Prince LetermeG. HolsteinA. BoothK. PengY. YoshiyamaT. SuzukiH. KetterN. LiuE. RyanJ.M. Long-Term extensions of randomized vaccination trials of ACC-001 and QS-21 in mild to moderate alzheimer’s disease.Curr. Alzheimer Res.201714769670828124589
    [Google Scholar]
  84. DavtyanH. GhochikyanA. PetrushinaI. HovakimyanA. DavtyanA. PoghosyanA. MarleauA.M. MovsesyanN. KiyatkinA. RasoolS. LarsenA.K. MadsenP.J. WegenerK.M. DitlevsenD.K. CribbsD.H. PedersenL.O. AgadjanyanM.G. Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: Prelude to a clinical trial.J. Neurosci.201333114923493410.1523/JNEUROSCI.4672‑12.201323486963
    [Google Scholar]
  85. MuhsA. HickmanD.T. PihlgrenM. ChuardN. GiriensV. MeerschmanC. van der AuweraI. van LeuvenF. SugawaraM. WeingertnerM.C. BechingerB. GreferathR. KolonkoN. Nagel-StegerL. RiesnerD. BradyR.O. PfeiferA. NicolauC. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice.Proc. Natl. Acad. Sci. USA2007104239810981510.1073/pnas.070313710417517595
    [Google Scholar]
  86. SchneebergerA. HendrixS. MandlerM. EllisonN. BürgerV. BrunnerM. FrölichL. MimicaN. HortJ. RainerM. ImarhiagbeD. KurzA. PetersO. GertzH.J. TierneyL. MattnerF. SchmidtW. DuboisB. Results from a phase II study to assess the clinical and immunological activity of affitope® ad02 in patients with early Alzheimer’s disease.J. Prev. Alzheimers Dis.20152211210.14283/jpad.2015.6329231230
    [Google Scholar]
  87. KleinG. DelmarP. VoyleN. RehalS. HofmannC. Abi-SaabD. AndjelkovicM. RisticS. WangG. BatemanR. KerchnerG.A. BaudlerM. FontouraP. DoodyR. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis.Alzheimers Res. Ther.201911110110.1186/s13195‑019‑0559‑z31831056
    [Google Scholar]
  88. YangG. ZhouR. ZhouQ. GuoX. YanC. KeM. LeiJ. ShiY. Structural basis of Notch recognition by human γ-secretase.Nature2019565773819219710.1038/s41586‑018‑0813‑830598546
    [Google Scholar]
  89. DoodyR.S. ThomasR.G. FarlowM. IwatsuboT. VellasB. JoffeS. KieburtzK. RamanR. SunX. AisenP.S. SiemersE. Liu-SeifertH. MohsR. Alzheimer’s Disease Cooperative Study Steering Committee Solanezumab Study Group Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370431132110.1056/NEJMoa131288924450890
    [Google Scholar]
  90. VandenbergheR. RinneJ.O. BoadaM. KatayamaS. ScheltensP. VellasB. TuchmanM. GassA. FiebachJ.B. HillD. LobelloK. LiD. McRaeT. LucasP. EvansI. BoothK. LuscanG. WymanB.T. HuaL. YangL. BrashearH.R. BlackR.S. Bapineuzumab 3000 and 3001 Clinical Study Investigators Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials.Alzheimers Res. Ther.2016811810.1186/s13195‑016‑0189‑727176461
    [Google Scholar]
  91. HonigL.S. VellasB. WoodwardM. BoadaM. BullockR. BorrieM. HagerK. AndreasenN. ScarpiniE. Liu-SeifertH. CaseM. DeanR.A. HakeA. SundellK. Poole HoffmannV. CarlsonC. KhannaR. MintunM. DeMattosR. SelzlerK.J. SiemersE. Trial of solanezumab for mild dementia due to Alzheimer’s disease.N. Engl. J. Med.2018378432133010.1056/NEJMoa170597129365294
    [Google Scholar]
  92. Hoffmann-La RocheL. Roche to discontinue Phase III CREAD 1 and 2 clinical studies of crenezumab in early Alzheimer's disease (AD) - other company programmes in AD continue.2019Available from: https://www.roche.com/media/releases/med-cor-2019-01-30
  93. AndreasenN. SimeoniM. OstlundH. LisjoP.I. FladbyT. LoercherA.E. ByrneG.J. MurrayF. Scott-StevensP.T. WallinA. ZhangY.Y. BrongeL.H. ZetterbergH. NordbergA.K. YeoA.J. KhanS.A. HilpertJ. MistryP.C. First administration of the Fc-attenuated anti-β amyloid antibody GSK933776 to patients with mild Alzheimer’s disease: A randomized, placebo-controlled study.PLoS One2015103e009815310.1371/journal.pone.009815325789616
    [Google Scholar]
  94. LandenJ.W. CohenS. BillingC.B.Jr CronenbergerC. StyrenS. BursteinA.H. SattlerC. LeeJ.H. JackC.R.Jr KantarciK. SchwartzP.F. DugganW.T. ZhaoQ. SprengerK. BednarM.M. BinnemanB. Multiple-dose ponezumab for mild-to-moderate Alzheimer’s disease: Safety and efficacy.Alzheimers Dement. (N. Y.)20173333934710.1016/j.trci.2017.04.00329067341
    [Google Scholar]
  95. LeyheT. AndreasenN. SimeoniM. ReichA. von ArnimC.A.F. TongX. YeoA. KhanS. LoercherA. ChalkerM. HottensteinC. ZetterbergH. HilpertJ. MistryP. Modulation of β-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: A phase I study.Alzheimers Res. Ther.2014621910.1186/alzrt24924716469
    [Google Scholar]
  96. OxfordA.E. StewartE.S. RohnT.T. Clinical trials in Alzheimer’s disease: A hurdle in the path of remedy.Int. J. Alzheimers Dis.20202020538034610.1155/2020/5380346
    [Google Scholar]
  97. PenkeB. SzűcsM. BogárF. Oligomerization and conformational change turn monomeric β-amyloid and tau proteins toxic: Their role in Alzheimer’s pathogenesis.Molecules2020257165910.3390/molecules2507165932260279
    [Google Scholar]
  98. MroczkoB. GroblewskaM. Litman-ZawadzkaA. The role of protein misfolding and tau oligomers (TauOs) in Alzheimer’s disease (AD).Int. J. Mol. Sci.20192019466110.3390/ijms2019466131547024
    [Google Scholar]
  99. GulisanoW. MaugeriD. BaltronsM.A. FàM. AmatoA. PalmeriA. D’AdamioL. GrassiC. DevanandD.P. HonigL.S. PuzzoD. ArancioO. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade.J. Alzheimers Dis.201864s1S611S63110.3233/JAD‑17993529865055
    [Google Scholar]
  100. HanP. ShiJ. A theoretical analysis of the synergy of amyloid and tau in Alzheimer’s disease.J. Alzheimers Dis.20165241461147010.3233/JAD‑15120627104897
    [Google Scholar]
  101. BejaninA. SchonhautD.R. La JoieR. KramerJ.H. BakerS.L. SosaN. AyaktaN. CantwellA. JanabiM. LauriolaM. O’NeilJ.P. Gorno-TempiniM.L. MillerZ.A. RosenH.J. MillerB.L. JagustW.J. RabinoviciG.D. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease.Brain2017140123286330010.1093/brain/awx24329053874
    [Google Scholar]
  102. KametaniF. HasegawaM. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease.Front. Neurosci.2018122510.3389/fnins.2018.0002529440986
    [Google Scholar]
  103. LovestoneS. BoadaM. DuboisB. HüllM. RinneJ.O. HuppertzH.J. CaleroM. AndrésM.V. Gómez-CarrilloB. LeónT. del SerT. ARGO investigators A phase II trial of tideglusib in Alzheimer’s disease.J. Alzheimers Dis.2015451758810.3233/JAD‑14195925537011
    [Google Scholar]
  104. ForlenzaO.V. DinizB.S. RadanovicM. SantosF.S. TalibL.L. GattazW.F. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: Randomised controlled trial.Br. J. Psychiatry2011198535135610.1192/bjp.bp.110.08004421525519
    [Google Scholar]
  105. WischikC.M. StaffR.T. WischikD.J. BenthamP. MurrayA.D. StoreyJ.M.D. KookK.A. HarringtonC.R. Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease.J. Alzheimers Dis.201544270572010.3233/JAD‑14287425550228
    [Google Scholar]
  106. MorimotoB.H. SchmechelD. HirmanJ. BlackwellA. KeithJ. GoldM. AL-108-211 Study A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment.Dement. Geriatr. Cogn. Disord.2013355-632533910.1159/00034834723594991
    [Google Scholar]
  107. PhaseI. Axon announces positive results from Phase II ADAMANT trial for AADvac1 in Alzheimer’s Disease.2019Available from: https://www.axon-neuroscience.eu/docs/press_release_Axon_announces_positive_result_9-9-2019.pdf
  108. LaurettiE. DincerO. PraticòD. Glycogen synthase kinase-3 signaling in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Cell Res.20201867511866410.1016/j.bbamcr.2020.11866432006534
    [Google Scholar]
  109. MatsunagaS. FujishiroH. TakechiH. Efficacy and safety of glycogen synthase kinase 3 inhibitors for Alzheimer’s disease: a systematic review and meta-analysis.J. Alzheimers Dis.20196941031103910.3233/JAD‑19025631156177
    [Google Scholar]
  110. SaraswatiA.P. Ali HussainiS.M. KrishnaN.H. BabuB.N. KamalA. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions.Eur. J. Med. Chem.201814484385810.1016/j.ejmech.2017.11.10329306837
    [Google Scholar]
  111. CarmassiC. Del GrandeC. GesiC. MusettiL. Dell’OssoL. A new look at an old drug: Neuroprotective effects and therapeutic potentials of lithium salts.Neuropsychiatr. Dis. Treat.2016121687170310.2147/NDT.S10647927468233
    [Google Scholar]
  112. HampelH. ListaS. MangoD. NisticòR. PerryG. AvilaJ. HernandezF. GeertsH. VergalloA. AfsharM. AguilarL.F. Akman-AndersonL. ArenasJ. AvilaJ. BabiloniC. BaldacciF. BatrlaR. BendaN. BlackK.L. BokdeA.L.W. BonuccelliU. BroichK. CacciolaF. CaraciF. CastrilloJ. CavedoE. CeravoloR. ChiesaP.A. CorvolJ-C. CuelloA.C. CummingsJ.L. DepypereH. DuboisB. DuggentoA. EmanueleE. Escott-PriceV. FederoffH. FerrettiM.T. FiandacaM. FrankR.A. GaraciF. GeertsH. GiorgiF.S. GoetzlE.J. GrazianiM. HaberkampM. HabertM-O. HampelH. HerholzK. HernandezF. KapogiannisD. KarranE. KiddleS.J. KimS.H. KoronyoY. Koronyo-HamaouiM. LangevinT. LehéricyS. LucíaA. ListaS. LorenceauJ. MangoD. MapstoneM. NeriC. NisticóR. O’BryantS.E. PalermoG. PerryG. RitchieC. RossiS. SaidiA. SantarnecchiE. SchneiderL.S. SpornsO. ToschiN. VerdoonerS.R. VergalloA. VillainN. WelikovitchL.A. WoodcockJ. YounesiE. Alzheimer Precision Medicine Initiative (APMI) Lithium as a treatment for Alzheimer’s disease: The systems pharmacology perspective.J. Alzheimers Dis.201969361562910.3233/JAD‑19019731156173
    [Google Scholar]
  113. NunesM.A. VielT.A. BuckH.S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease.Curr. Alzheimer Res.201310110410722746245
    [Google Scholar]
  114. GauthierS. FeldmanH.H. SchneiderL.S. WilcockG.K. FrisoniG.B. HardlundJ.H. MoebiusH.J. BenthamP. KookK.A. WischikD.J. SchelterB.O. DavisC.S. StaffR.T. BracoudL. ShamsiK. StoreyJ.M.D. HarringtonC.R. WischikC.M. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial.Lancet2016388100622873288410.1016/S0140‑6736(16)31275‑227863809
    [Google Scholar]
  115. WilcockG.K. GauthierS. FrisoniG.B. JiaJ. HardlundJ.H. MoebiusH.J. BenthamP. KookK.A. SchelterB.O. WischikD.J. DavisC.S. StaffR.T. VuksanovicV. AhearnT. BracoudL. ShamsiK. MarekK. SeibylJ. RiedelG. StoreyJ.M.D. HarringtonC.R. WischikC.M. Potential of low dose leuco-methylthioninium bis (hydromethanesulphonate)(LMTM) monotherapy for treatment of mild Alzheimer’s disease: Cohort analysis as modified primary outcome in a phase III clinical trial.J. Alzheimers Dis.201761143545710.3233/JAD‑17056029154277
    [Google Scholar]
  116. BarbierP. ZejneliO. MartinhoM. LasorsaA. BelleV. Smet-NoccaC. TsvetkovP.O. DevredF. LandrieuI. Role of tau as a microtubule-associated protein: Structural and functional aspects.Front. Aging Neurosci.20191120410.3389/fnagi.2019.0020431447664
    [Google Scholar]
  117. GozesI. Ivashko-PachimaY. SayasC.L. ADNP, a microtubule interacting protein, provides neuroprotection through end binding proteins and tau: An amplifier effect.Front. Mol. Neurosci.20181115110.3389/fnmol.2018.0015129765303
    [Google Scholar]
  118. ZhangB. CarrollJ. TrojanowskiJ.Q. YaoY. IbaM. PotuzakJ.S. HoganA.M.L. XieS.X. BallatoreC. SmithA.B.III LeeV.M.Y. BrundenK.R. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice.J. Neurosci.201232113601361110.1523/JNEUROSCI.4922‑11.201222423084
    [Google Scholar]
  119. BittarA. BhattN. KayedR. Advances and considerations in AD tau-targeted immunotherapy.Neurobiol. Dis.202013410470710.1016/j.nbd.2019.10470731841678
    [Google Scholar]
  120. CongdonE.E. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.201814739941510.1038/s41582‑018‑0013‑z29895964
    [Google Scholar]
  121. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.17355432941929
    [Google Scholar]
  122. NovakP. ZilkaN. ZilkovaM. KovacechB. SkrabanaR. OndrusM. FialovaL. KontsekovaE. OttoM. NovakM. AADvac1, an active immunotherapy for Alzheimer’s disease and non Alzheimer tauopathies: an overview of preclinical and clinical development.J. Prev. Alzheimers Dis.201961636910.14283/jpad.2018.4530569088
    [Google Scholar]
  123. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.00131564456
    [Google Scholar]
  124. SevignyJ. ChiaoP. BussièreT. WeinrebP.H. WilliamsL. MaierM. DunstanR. SallowayS. ChenT. LingY. O’GormanJ. QianF. ArastuM. LiM. ChollateS. BrennanM.S. Quintero-MonzonO. ScannevinR.H. ArnoldH.M. EngberT. RhodesK. FerreroJ. HangY. MikulskisA. GrimmJ. HockC. NitschR.M. SandrockA. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature1932327582220
    [Google Scholar]
  125. van DyckC.H. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise.Biol. Psychiatry201883431131910.1016/j.biopsych.2017.08.01028967385
    [Google Scholar]
  126. van der FlierP.W. ScheltensP. Bart DeS. Alzheimer's disease.Lancet20213971577159010.1016/S0140‑6736(20)32205‑4
    [Google Scholar]
  127. EganM.F. KostJ. VossT. MukaiY. AisenP.S. CummingsJ.L. TariotP.N. VellasB. van DyckC.H. BoadaM. ZhangY. LiW. FurtekC. MahoneyE. Harper MozleyL. MoY. SurC. MichelsonD. Randomized trial of verubecestat for prodromal Alzheimer’s disease.N. Engl. J. Med.2019380151408142010.1056/NEJMoa181284030970186
    [Google Scholar]
  128. WangX. SunG. FengT. ZhangJ. HuangX. WangT. XieZ. ChuX. YangJ. WangH. ChangS. GongY. RuanL. ZhangG. YanS. LianW. DuC. YangD. ZhangQ. LinF. LiuJ. ZhangH. GeC. XiaoS. DingJ. GengM. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression.Cell Res.2019291078780310.1038/s41422‑019‑0216‑x31488882
    [Google Scholar]
  129. BatemanR.J. BenzingerT.L. BerryS. CliffordD.B. DugganC. FaganA.M. FanningK. FarlowM.R. HassenstabJ. McDadeE.M. MillsS. PaumierK. QuintanaM. SallowayS.P. SantacruzA. SchneiderL.S. WangG. XiongC. DIAN-TU Pharma Consortium for the Dominantly Inherited Alzheimer Network The DIAN-TU next generation Alzheimer’s prevention trial: Adaptive design and disease progression model.Alzheimers Dement.201713181910.1016/j.jalz.2016.07.00527583651
    [Google Scholar]
  130. DecourtB. NoordaK. NoordaK. ShiJ. SabbaghM.N. Review of advanced drug trials focusing on the reduction of brain Beta-Amyloid to prevent and treat dementia.J. Exp. Pharmacol.20221433135210.2147/JEP.S26562636339394
    [Google Scholar]
  131. AtriA. FrölichL. BallardC. TariotP.N. MolinuevoJ.L. BonevaN. WindfeldK. RaketL.L. CummingsJ.L. Effect of idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with Alzheimer disease: Three randomized clinical trials.JAMA2018319213014210.1001/jama.2017.2037329318278
    [Google Scholar]
  132. CummingsJ. BallardC. TariotP. OwenR. FoffE. YouakimJ. NortonJ. StankovicS. Pimavanserin: Potential treatment for dementia-related psychosis.J. Prev. Alzheimers Dis.20185425325810.14283/jpad.2018.2930298184
    [Google Scholar]
  133. LiuC.S. RuthirakuhanM. ChauS.A. HerrmannN. CarvalhoA.F. LanctôtK.L. Pharmacological management of agitation and aggression in Alzheimer’s disease: A review of current and novel treatments.Curr. Alzheimer Res.201613101134114410.2174/156720501366616050212293327137221
    [Google Scholar]
  134. JantoK. PrichardJ.R. PusalavidyasagarS. An update on dual orexin receptor antagonists and their potential role in insomnia therapeutics.J. Clin. Sleep Med.20181481399140810.5664/jcsm.728230092886
    [Google Scholar]
  135. SameemB. SaeediM. MahdaviM. ShafieeA. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease.Eur. J. Med. Chem.201712833234510.1016/j.ejmech.2016.10.06027876467
    [Google Scholar]
  136. MarttinenM. TakaloM. NatunenT. WittrahmR. GabboujS. KemppainenS. LeinonenV. TanilaH. HaapasaloA. HiltunenM. Molecular mechanisms of synaptotoxicity and neuroinflammation in Alzheimer’s disease.Front. Neurosci.20181296310.3389/fnins.2018.0096330618585
    [Google Scholar]
  137. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑126921134
    [Google Scholar]
  138. SelkoeD.J. Alzheimer disease and aducanumab: Adjusting our approach.Nat. Rev. Neurol.201915736536610.1038/s41582‑019‑0205‑131138932
    [Google Scholar]
  139. EganM.F. KostJ. TariotP.N. AisenP.S. CummingsJ.L. VellasB. SurC. MukaiY. VossT. FurtekC. MahoneyE. Harper MozleyL. VandenbergheR. MoY. MichelsonD. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2018378181691170310.1056/NEJMoa170644129719179
    [Google Scholar]
  140. CummingsJ.L. TongG. BallardC. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options.J. Alzheimers Dis.201967377979410.3233/JAD‑18076630689575
    [Google Scholar]
  141. ModregoP. LoboA. A good marker does not mean a good target for clinical trials in Alzheimer’s disease: the amyloid hypothesis questioned.Neurodegener. Dis. Manag.20199311912110.2217/nmt‑2019‑000631116074
    [Google Scholar]
  142. AbuznaitA.H. QosaH. BusnenaB.A. El SayedK.A. KaddoumiA. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies.ACS Chem. Neurosci.20134697398210.1021/cn400024q23414128
    [Google Scholar]
  143. TianZ. WangJ. XuM. WangY. ZhangM. ZhouY. Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats.Cell. Physiol. Biochem.20164061670167710.1159/00045321628006780
    [Google Scholar]
  144. ChangK.A. LeeJ.H. SuhY.H. Therapeutic potential of human adipose-derived stem cells in neurological disorders.J. Pharmacol. Sci.2014126429330110.1254/jphs.14R10CP25409785
    [Google Scholar]
  145. ZhangQ. WuH. WangY. GuG. ZhangW. XiaR. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease.J. Neurochem.2016136481582510.1111/jnc.1341326525612
    [Google Scholar]
  146. Martínez-MoralesP.L. RevillaA. OcañaI. GonzálezC. SainzP. McGuireD. ListeI. Progress in stem cell therapy for major human neurological disorders.Stem Cell Rev.20139568569910.1007/s12015‑013‑9443‑623681704
    [Google Scholar]
  147. ShroffG. A review on stem cell therapy for multiple sclerosis: Special focus on human embryonic stem cells.Stem Cells Cloning20181111110.2147/SCCAA.S13541529483778
    [Google Scholar]
  148. YuB. MaH. KongL. ShiY. LiuY. Experimental research Enhanced connexin 43 expression following neural stem cell transplantation in a rat model of traumatic brain injury.Arch. Med. Sci.20131113213810.5114/aoms.2012.3143823515364
    [Google Scholar]
  149. KimS.U. LeeH.J. KimY.B. Neural stem cell-based treatment for neurodegenerative diseases.Neuropathology201333549150410.1111/neup.1202023384285
    [Google Scholar]
  150. XuanA.G. LongD.H. GuH.G. YangD.D. HongL.P. LengS.L. BDNF improves the effects of neural stem cells on the rat model of Alzheimer’s disease with unilateral lesion of fimbria-fornix.Neurosci. Lett.2008440333133510.1016/j.neulet.2008.05.10718579298
    [Google Scholar]
  151. AgerR.R. DavisJ.L. AgazaryanA. BenaventeF. PoonW.W. LaFerlaF.M. Blurton-JonesM. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss.Hippocampus201525781382610.1002/hipo.2240525530343
    [Google Scholar]
  152. FanX. SunD. TangX. CaiY. YinZ.Q. XuH. Stem-cell challenges in the treatment of Alzheimer’s disease: A long way from bench to bedside.Med. Res. Rev.201434595797810.1002/med.2130924500883
    [Google Scholar]
  153. XuanA.G. LuoM. JiW.D. LongD.H. Effects of engrafted neural stem cells in Alzheimer’s disease rats.Neurosci. Lett.2009450216717110.1016/j.neulet.2008.12.00119070649
    [Google Scholar]
  154. PhinneyD.G. ProckopD.J. Concise review: Mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views.Stem Cells200725112896290210.1634/stemcells.2007‑063717901396
    [Google Scholar]
  155. OhI.H. Mesenchymal stromal cells: New insight on their identity and potential role in cell therapy.Korean J. Hematol.201045421922110.5045/kjh.2010.45.4.21921253420
    [Google Scholar]
  156. YunH KimH ParkK ShinJ KangA SongS Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1–42-infused mouse model of Alzheimer’s disease.Cell death. disease2013412e95810.1038/cddis.2013.490
    [Google Scholar]
  157. ZhouX. GuJ. GuY. HeM. BiY. ChenJ. LiT. Human umbilical cord-derived mesenchymal stem cells improve learning and memory function in hypoxic-ischemic brain-damaged rats via an IL-8-mediated secretion mechanism rather than differentiation pattern induction.Cell. Physiol. Biochem.20153562383240110.1159/00037404025896602
    [Google Scholar]
  158. LeeJ.H. OhI.H. LimH.K. Stem cell therapy: A prospective treatment for Alzheimer’s disease.Psychiatry Investig.201613658358910.4306/pi.2016.13.6.58327909447
    [Google Scholar]
  159. TangJ. XuH. FanX. LiD. RancourtD. ZhouG. LiZ. YangL. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Aβ(1–40) injured rats.Neurosci. Res.2008622869610.1016/j.neures.2008.06.00518634835
    [Google Scholar]
  160. HoveiziE. MohammadiT. MoazediA.A. ZamaniN. EskandaryA. Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model.Cytotherapy201820796497310.1016/j.jcyt.2018.03.03630025963
    [Google Scholar]
  161. LirasA. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects.J. Transl. Med.20108113110.1186/1479‑5876‑8‑13121143967
    [Google Scholar]
  162. YeL. SwingenC. ZhangJ. Induced pluripotent stem cells and their potential for basic and clinical sciences.Curr. Cardiol. Rev.201391637222935022
    [Google Scholar]
  163. TakahashiK. OkitaK. NakagawaM. YamanakaS. Induction of pluripotent stem cells from fibroblast cultures.Nat. Protoc.20072123081308910.1038/nprot.2007.41818079707
    [Google Scholar]
  164. JonesB. TREM2 linked to late-onset AD.Nat. Rev. Neurol.201391510.1038/nrneurol.2012.25423208114
    [Google Scholar]
  165. FouadG.I. Stem cells as a promising therapeutic approach for Alzheimer’s disease: a review.Bull. Natl. Res. Cent.20194315210.1186/s42269‑019‑0078‑x
    [Google Scholar]
  166. GuptaJ. FatimaM.T. IslamZ. KhanR.H. UverskyV.N. SalahuddinP. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease.Int. J. Biol. Macromol.201913051552610.1016/j.ijbiomac.2019.02.15630826404
    [Google Scholar]
  167. KarthivashanG. GanesanP. ParkS.Y. KimJ.S. ChoiD.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease.Drug Deliv.201825130732010.1080/10717544.2018.142824329350055
    [Google Scholar]
  168. RassuG. SodduE. PosadinoA.M. PintusG. SarmentoB. GiunchediP. GaviniE. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy.Colloids Surf. B Biointerfaces201715229630110.1016/j.colsurfb.2017.01.03128126681
    [Google Scholar]
  169. LoureiroJ. AndradeS. DuarteA. NevesA. QueirozJ. NunesC. SevinE. FenartL. GosseletF. CoelhoM. PereiraM. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease.Molecules201722227710.3390/molecules2202027728208831
    [Google Scholar]
  170. MisraS. ChopraK. SinhaV.R. MedhiB. Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations.Drug Deliv.20162341434144310.3109/10717544.2015.108995626405825
    [Google Scholar]
  171. PolchiA. MaginiA. MazurykJ. TanciniB. GapińskiJ. PatkowskiA. GiovagnoliS. EmilianiC. Rapamycin loaded solid lipid nanoparticles as a new tool to deliver mTOR inhibitors: formulation and in vitro characterization.Nanomaterials2016658710.3390/nano605008728335215
    [Google Scholar]
  172. ElnaggarY.S.R. EtmanS.M. AbdelmonsifD.A. AbdallahO.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity.J. Pharm. Sci.2015104103544355610.1002/jps.24557
    [Google Scholar]
  173. LiuH. DongX. LiuF. ZhengJ. SunY. Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn2+-mediated amyloid β-protein aggregation and cytotoxicity.J. Colloid Interface Sci.201750597398210.1016/j.jcis.2017.06.09328693098
    [Google Scholar]
  174. LiuY. AnS. LiJ. KuangY. HeX. GuoY. MaH. ZhangY. JiB. JiangC. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice.Biomaterials201680334510.1016/j.biomaterials.2015.11.06026706474
    [Google Scholar]
  175. PurasG. SalvadorA. IgartuaM. HernándezR.M. PedrazJ.L. Encapsulation of Aβ1–15 in PLGA microparticles enhances serum antibody response in mice immunized by subcutaneous and intranasal routes.Eur. J. Pharm. Sci.201144320020610.1016/j.ejps.2011.07.01021820509
    [Google Scholar]
  176. LiuZ. GaoX. KangT. JiangM. MiaoD. GuG. HuQ. SongQ. YaoL. TuY. ChenH. JiangX. ChenJ. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide.Bioconjug. Chem.2013246997100710.1021/bc400055h23718945
    [Google Scholar]
  177. MathewA. FukudaT. NagaokaY. HasumuraT. MorimotoH. YoshidaY. MaekawaT. VenugopalK. KumarD.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease.PLoS One201273e3261610.1371/journal.pone.003261622403681
    [Google Scholar]
  178. ContiE. GregoriM. RadiceI. Da ReF. GranaD. ReF. SalvatiE. MasseriniM. FerrareseC. ZoiaC.P. TremolizzoL. Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer’s disease.Neurochem. Int.2017108606510.1016/j.neuint.2017.02.01228238790
    [Google Scholar]
  179. KuoY.C. LinC.Y. LiJ.S. LouY.I. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment.Int. J. Nanomedicine2017121757177410.2147/IJN.S12839628280340
    [Google Scholar]
  180. SmithA. GiuntaB. BickfordP.C. FountainM. TanJ. ShytleR.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease.Int. J. Pharm.20103891-220721210.1016/j.ijpharm.2010.01.01220083179
    [Google Scholar]
  181. SongjiangZ. LixiangW. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB.AAPS PharmSciTech200910390090510.1208/s12249‑009‑9279‑119609682
    [Google Scholar]
  182. LohanS. RazaK. MehtaS.K. BhattiG.K. SainiS. SinghB. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence.Int. J. Pharm.20175301-226327810.1016/j.ijpharm.2017.07.08028774853
    [Google Scholar]
  183. SorokinaS.A. StroylovaY.Y. ShifrinaZ.B. MuronetzV.I. Disruption of amyloid prion protein aggregates by cationic pyridylphenylene dendrimers.Macromol. Biosci.201616226627510.1002/mabi.20150026826445143
    [Google Scholar]
  184. AliT. KimM.J. RehmanS.U. AhmadA. KimM.O. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ 1–42 mouse model of Alzheimer’s disease.Mol. Neurobiol.20175486490650610.1007/s12035‑016‑0136‑427730512
    [Google Scholar]
  185. LuppiB. BigucciF. CoraceG. DeluccaA. CerchiaraT. SorrentiM. CatenacciL. Di PietraA.M. ZecchiV. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine.Eur. J. Pharm. Sci.201144455956510.1016/j.ejps.2011.10.00222009109
    [Google Scholar]
  186. LuoS. MaC. ZhuM.Q. JuW.N. YangY. WangX. Application of iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer’s disease.Front. Cell. Neurosci.2020142110.3389/fncel.2020.0002132184709
    [Google Scholar]
  187. LalliG. SchottJ.M. HardyJ. De StrooperB. Aducanumab: a new phase in therapeutic development for Alzheimer’s disease?EMBO Mol. Med.2021138e1478110.15252/emmm.20211478134338436
    [Google Scholar]
  188. CummingsJ. FeldmanH.H. ScheltensP. The “rights” of precision drug development for Alzheimer’s disease.Alzheimers Res. Ther.20191117610.1186/s13195‑019‑0529‑531470905
    [Google Scholar]
  189. CummingsJ. LeeG. ZhongK. FonsecaJ. TaghvaK. Alzheimer’s disease drug development pipeline: 2021.Alzheimers Dement. (N. Y.)202171e1217910.1002/trc2.1217934095440
    [Google Scholar]
  190. LeeM.H. SiddowayB. KaeserG.E. SegotaI. RiveraR. RomanowW.J. LiuC.S. ParkC. KennedyG. LongT. ChunJ. Somatic APP gene recombination in Alzheimer’s disease and normal neurons.Nature2018563773363964510.1038/s41586‑018‑0718‑630464338
    [Google Scholar]
  191. PardridgeW.M. Alzheimer’s disease: Future drug development and the blood-brain barrier.Expert Opin. Investig. Drugs201928756957210.1080/13543784.2019.162732531155971
    [Google Scholar]
  192. CohenM.L. KimC. HaldimanT. ElHagM. MehndirattaP. PichetT. LissemoreF. SheaM. CohenY. ChenW. BlevinsJ. ApplebyB.S. SurewiczK. SurewiczW.K. SajatovicM. TatsuokaC. ZhangS. MayoP. ButkiewiczM. HainesJ.L. LernerA.J. SafarJ.G. Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-β.Brain201513841009102210.1093/brain/awv00625688081
    [Google Scholar]
  193. KatohM. KatohM. Precision medicine for human cancers with Notch signaling dysregulation (Review).Int. J. Mol. Med.202045227929731894255
    [Google Scholar]
  194. De SimoneA. TumiattiV. AndrisanoV. MilelliA. Glycogen synthase kinase 3β: A new gold rush in anti-alzheimer’s disease multitarget drug discovery? Miniperspective.J. Med. Chem.2021641264110.1021/acs.jmedchem.0c0093133346659
    [Google Scholar]
  195. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. Contributors NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.01829653606
    [Google Scholar]
  196. LeuzyA. SmithR. OssenkoppeleR. SantilloA. BorroniE. KleinG. OhlssonT. JögiJ. PalmqvistS. Mattsson-CarlgrenN. StrandbergO. StomrudE. HanssonO. Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders.JAMA Neurol.202077895596510.1001/jamaneurol.2020.098932391858
    [Google Scholar]
  197. RenemaP. PittetJ.F. BrandonA.P. LealS.M.Jr GuS. PromerG. HackneyA. BraswellP. PickeringA. RafieldG. VothS. BalczonR. LinM.T. MorrowK.A. BellJ. AudiaJ.P. AlvarezD. StevensT. WagenerB.M. Tau and Aβ42 in lavage fluid of pneumonia patients are associated with end-organ dysfunction: A prospective exploratory study.PLoS One2024192e029881610.1371/journal.pone.029881638394060
    [Google Scholar]
  198. SrivastavaS. AhmadR. KhareS.K. Alzheimer’s disease and its treatment by different approaches: A review.Eur. J. Med. Chem.202121611332010.1016/j.ejmech.2021.11332033652356
    [Google Scholar]
/content/journals/car/10.2174/0115672050368798250626075628
Loading
/content/journals/car/10.2174/0115672050368798250626075628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test