Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Nowadays, the large increase in environmental pollutants has led to the occurrence and development of an increasing number of diseases. Studies have shown that exposure to environmental pollutants, such as methyl-4-hydroxybenzoate (MEP) may lead to Alzheimer's disease (AD). Therefore, the purpose of this study was to elucidate the complex effects and potential molecular mechanisms of environmental pollutants MEP on AD.

Methods

Through exhaustive exploration of databases, such as ChEMBL, STITCH, SwissTargetPrediction, and Gene Expression Omnibus DataSets (GEO DataSets), we have identified a comprehensive list of 46 potential targets closely related to MEP and AD. After rigorous screening using the STRING platform and Cytoscape software, we narrowed the list to nine candidate targets and ultimately identified six hub targets using three proven machine learning methods (LASSO, RF, and SVM): CREBBP, BCL6, CXCR4, GRIN1, GOT2, and ITGA5. The “clusterProfiler” R package was used to conduct GO and KEGG enrichment analysis. At the same time, we also constructed disease prediction models for core genes. At last, six hub targets were executed molecular docking.

Results

We derived 46 key target genes related to MEP and AD and conducted gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. MEP might play a role in AD by affecting the pathways of neuroactive ligand-receptor interaction. Nine genes were screened as pivotal targets, followed by machine learning methods to identify six hub targets. Molecular docking analysis showed a good binding ability between MEP and CREBBP, BCL6, CXCR4, GRIN1, GOT2 and ITGA5. In addition, changes in the immune microenvironment revealed a significant impact of immune status on AD.

Discussions

This study revealed that MEP may induce AD through multiple mechanisms, such as oxidative stress, neurotoxicity, and immune regulation, and identified six core targets (CREBBP, BCL6, ) and found that they are related to changes in the immune microenvironment, such as T cells and B cells, providing new molecular targets for AD intervention.

Conclusion

Overall, CREBBP, BCL6, CXCR4, GRIN1, GOT2, and ITGA5 have been identified as the crucial targets correlating with AD. Our findings provide a theoretical framework for understanding the complex molecular mechanisms underlying the effects of MEP on AD and provide insights for the development of prevention and treatment of AD caused by exposure to MEP.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050399031250623062112
2025-07-15
2025-10-29
Loading full text...

Full text loading...

References

  1. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  2. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  3. TahamiM.A.A. ByrnesM.J. WhiteL.A. ZhangQ. Alzheimer’s disease: Epidemiology and clinical progression.Neurol. Ther.202211255356910.1007/s40120‑022‑00338‑835286590
    [Google Scholar]
  4. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  5. SheppardO. ColemanM. Alzheimer’s disease: Etiology, neuropathology and pathogenesis.Alzheimer’s Disease: Drug Discovery HuangX. Brisbane (AU)Exon Publications2020
    [Google Scholar]
  6. MirR.H. SawhneyG. PottooF.H. Mohi-ud-dinR. MadishettiS. JachakS.M. AhmedZ. MasoodiM.H. Role of environmental pollutants in Alzheimer’s disease: A review.Environ. Sci. Pollut. Res. Int.20202736447244474210.1007/s11356‑020‑09964‑x32715424
    [Google Scholar]
  7. MaY.H. ChenH.S. LiuC. FengQ.S. FengL. ZhangY.R. HuH. DongQ. TanL. KanH.D. ZhangC. SucklingJ. ZengY. ChenR.J. YuJ.T. Association of long-term exposure to ambient air pollution with cognitive decline and Alzheimer’s disease–related amyloidosis.Biol. Psychiatry202393978078910.1016/j.biopsych.2022.05.01735953319
    [Google Scholar]
  8. VasefiM. Ghaboolian-ZareE. AbedelwahabH. OsuA. Environmental toxins and Alzheimer’s disease progression.Neurochem. Int.202014110485210.1016/j.neuint.2020.10485233010393
    [Google Scholar]
  9. ManivannanB. YegambaramM. SupowitS. BeachT.G. HaldenR.U. Assessment of persistent, bioaccumulative and toxic organic environmental pollutants in liver and adipose tissue of Alzheimer’s disease patients and age-matched controls.Curr. Alzheimer Res.201916111039104910.2174/156720501666619101011474431660829
    [Google Scholar]
  10. DhapolaR. SharmaP. KumariS. BhattiJ.S. HariKrishnaReddyD. Environmental toxins and Alzheimer’s disease: A comprehensive analysis of pathogenic mechanisms and therapeutic modulation.Mol. Neurobiol.20246163657367710.1007/s12035‑023‑03805‑x38006469
    [Google Scholar]
  11. OlloquequiJ. Díaz-PeñaR. VerdaguerE. EttchetoM. AuladellC. CaminsA. From inhalation to neurodegeneration: Air pollution as a modifiable risk factor for Alzheimer’s disease.Int. J. Mol. Sci.20242513692810.3390/ijms2513692839000036
    [Google Scholar]
  12. KuntićM. HahadO. MünzelT. DaiberA. Crosstalk between oxidative stress and inflammation caused by noise and air pollution—implications for neurodegenerative diseases.Antioxidants202413326610.3390/antiox1303026638539800
    [Google Scholar]
  13. SongH. ZhouH. YangS. HeC. Combining mendelian randomization analysis and network toxicology strategy to identify causality and underlying mechanisms of environmental pollutants with glioblastoma: A study of Methyl-4-hydroxybenzoate.Ecotoxicol. Environ. Saf.202428711731110.1016/j.ecoenv.2024.11731139536568
    [Google Scholar]
  14. SharfalddinA. DavaasurenB. EmwasA.H. JaremkoM. JaremkoŁ. HussienM. Single crystal, Hirshfeld surface and theoretical analysis of methyl 4-hydroxybenzoate, a common cosmetic, drug and food preservative—Experiment versus theory.PLoS One20201510023920010.1371/journal.pone.023920033021975
    [Google Scholar]
  15. XiangJ. LvB.R. ShiY. ChenW. ZhangJ. Environmental pollution of paraben needs attention: A study of methylparaben and butylparaben co-exposure trigger neurobehavioral toxicity in zebrafish.Environ. Pollut.202435612437010.1016/j.envpol.2024.12437038876377
    [Google Scholar]
  16. SeymoreT.N. Rivera-NúñezZ. StapletonP.A. AdibiJ.J. BarrettE.S. Phthalate exposures and placental health in animal models and humans: A systematic review.Toxicol. Sci.2022188215317910.1093/toxsci/kfac06035686923
    [Google Scholar]
  17. ComecheA. Martín-VillamilM. PicóY. VaróI. Effect of methylparaben in Artemia franciscana.Comp. Biochem. Physiol. C Toxicol. Pharmacol.20171999810510.1016/j.cbpc.2017.04.00428428009
    [Google Scholar]
  18. da SilveiraF.F.C.L. PortoV.A. de SousaB.L.C. de SouzaE.V. Lo NostroF.L. RochaT.L. de JesusL.W.O. Bioaccumulation and ecotoxicity of parabens in aquatic organisms: Current status and trends.Environ. Pollut.2024363Pt 212521310.1016/j.envpol.2024.12521339477001
    [Google Scholar]
  19. HuC. BaiY. LiJ. SunB. ChenL. Endocrine disruption and reproductive impairment of methylparaben in adult zebrafish.Food Chem. Toxicol.202317111354510.1016/j.fct.2022.11354536470324
    [Google Scholar]
  20. NowakK. JabłońskaE. GarleyM. RadziwonP. Ratajczak-WronaW. Methylparaben-induced regulation of estrogenic signaling in human neutrophils.Mol. Cell. Endocrinol.202153811147010.1016/j.mce.2021.11147034606965
    [Google Scholar]
  21. MushtaqG. GreigN. KhanJ. KamalM. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus.CNS Neurol. Disord. Drug Targets20141381432143910.2174/187152731366614102314154525345511
    [Google Scholar]
  22. McGleenonB.M. DynanK.B. PassmoreA.P. Acetylcholinesterase inhibitors in Alzheimer’s disease.Br. J. Clin. Pharmacol.199948447148010.1046/j.1365‑2125.1999.00026.x10583015
    [Google Scholar]
  23. AlouiM. El fadiliM. MujwarS. Er-rajyM. AbuelizzH.A. Er-rahmaniS. ZarouguiS. MenanaE. In silico design of novel pyridazine derivatives as balanced multifunctional agents against Alzheimer’s disease.Sci. Rep.20251511591010.1038/s41598‑025‑98182‑x40335607
    [Google Scholar]
  24. LiuS. WangZ. ZhuR. WangF. ChengY. LiuY. Three differential expression analysis methods for RNA sequencing: Limma, EdgeR, DESeq2.J. Vis. Exp.20211752021-09-1810.3791/62528
    [Google Scholar]
  25. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  26. TianL. WuW. YuT. Graph random forest: A graph embedded algorithm for identifying highly connected important features.Biomolecules2023137115310.3390/biom1307115337509188
    [Google Scholar]
  27. XuL. ShiM. QinG. LinX. HuangB. Environmental pollutant Di-(2-ethylhexyl) phthalate induces asthenozoospermia: New insights from network toxicology.Molec. Divers.20252932179219210.1007/s11030‑024‑10976‑9
    [Google Scholar]
  28. DarbreP.D. ByfordJ.R. ShawL.E. HallS. ColdhamN.G. PopeG.S. SauerM.J. Oestrogenic activity of benzylparaben.J. Appl. Toxicol.2003231435110.1002/jat.88612518336
    [Google Scholar]
  29. GindorfM. StorckS.E. OhlerA. ScharfenbergF. Becker- PaulyC. PietrzikC.U. Meprin β: A novel regulator of blood–brain barrier integrity.J. Cereb. Blood Flow Metab.2021411314410.1177/0271678X2090520632065075
    [Google Scholar]
  30. ReitzC. BrayneC. MayeuxR. Epidemiology of Alzheimer disease.Nat. Rev. Neurol.20117313715210.1038/nrneurol.2011.221304480
    [Google Scholar]
  31. GoW. IshakI.H. ZarkasiK.Z. AzzamG. Salvianolic acids modulate lifespan and gut microbiota composition in amyloid-β- expressing Drosophila melanogaster.World J. Microbiol. Biotechnol.2024401135810.1007/s11274‑024‑04163‑z39428437
    [Google Scholar]
  32. MartinsF.C. OliveiraM.M. GaivãoI. A VideiraR. PeixotoF. The administration of methyl and butyl parabens interferes with the enzymatic antioxidant system and induces genotoxicity in rat testis: Possible relation to male infertility.Drug Chem. Toxicol.202447332232910.1080/01480545.2023.217651236756703
    [Google Scholar]
  33. SearsS.M.S. HewettS.J. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance.Exp. Biol. Med.202124691069108310.1177/153537022198926333554649
    [Google Scholar]
  34. WangY. XiaJ. ShenM. ZhouY. WuZ. ShiY. XuJ. HouL. ZhangR. QiuZ. XieQ. ChenH. ZhangY. WangH. Effects of BIS-MEP on reversing amyloid plaque deposition and spatial learning and memory impairments in a mouse model of β-amyloid peptide- and ibotenic acid-induced Alzheimer’s disease.Front. Aging Neurosci.201911310.3389/fnagi.2019.0000330723404
    [Google Scholar]
  35. FarinaM. AschnerM. RochaJ.B.T. Oxidative stress in MeHg-induced neurotoxicity.Toxicol. Appl. Pharmacol.2011256340541710.1016/j.taap.2011.05.00121601588
    [Google Scholar]
  36. PolunasM. HalladayA. TjalkensR.B. PhilbertM.A. LowndesH. ReuhlK. Role of oxidative stress and the mitochondrial permeability transition in methylmercury cytotoxicity.Neurotoxicology201132552653410.1016/j.neuro.2011.07.00621871920
    [Google Scholar]
  37. KandimallaR. ReddyP.H. Therapeutics of neurotransmitters in Alzheimer’s disease.J. Alzheimers Dis.20175741049106910.3233/JAD‑16111828211810
    [Google Scholar]
  38. YangZ. ZouY. WangL. Neurotransmitters in prevention and treatment of Alzheimer’s disease.Int. J. Mol. Sci.2023244384110.3390/ijms2404384136835251
    [Google Scholar]
  39. WangR. ReddyP.H. Role of glutamate and NMDA receptors in Alzheimer’s disease.J. Alzheimers Dis.20175741041104810.3233/JAD‑16076327662322
    [Google Scholar]
  40. ConnK.A. BorsomE.M. CopeE.K. Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer’s disease.Gut Microbes2024161237195010.1080/19490976.2024.237195039008552
    [Google Scholar]
  41. KocahanS. DoğanZ. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, n-methyl-d-aspartate receptors, tau protein and other risk factors.Clin. Psychopharmacol. Neurosci.20171511810.9758/cpn.2017.15.1.128138104
    [Google Scholar]
  42. BrodinL. ShupliakovO. Retromer in synaptic function and pathology.Front. Synaptic Neurosci.2018103710.3389/fnsyn.2018.0003730405388
    [Google Scholar]
  43. LamasJ.A. SelyankoA.A. BrownD.A. Effects of a cognition-enhancer, linopirdine (DuP 996), on M-type potassium currents (IK(M)) and some other voltage- and ligand-gated membrane currents in rat sympathetic neurons.Eur. J. Neurosci.19979360561610.1111/j.1460‑9568.1997.tb01637.x9104602
    [Google Scholar]
  44. HuC. BaiY. SunB. ZhouX. ChenL. Exposure to methylparaben at environmentally realistic concentrations significantly impairs neuronal health in adult zebrafish.J. Environ. Sci.202313213414410.1016/j.jes.2022.07.01237336604
    [Google Scholar]
  45. LiS. XiaoJ. HuangC. SunJ. Identification and validation of oxidative stress and immune-related hub genes in Alzheimer’s disease through bioinformatics analysis.Sci. Rep.202313165710.1038/s41598‑023‑27977‑736635346
    [Google Scholar]
  46. ZhangJ. MohamadF.H. WongJ.H. MohamadH. IsmailA.H. Mohamed YusoffA.A. OsmanH. WongK.T. IdrisZ. AbdullahJ.M. The effects of 4-hydroxybenzoic acid identified from bamboo (Dendrocalamus asper) shoots on kv1.4 channel.Malays. J. Med. Sci.201825110111310.21315/mjms2018.25.1.1229599640
    [Google Scholar]
  47. WinterA.N. BrennerM.C. PunessenN. SnodgrassM. ByarsC. AroraY. LinsemanD.A. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid.Oxid. Med. Cell. Longev.201720171629708010.1155/2017/629708028740571
    [Google Scholar]
  48. WangQ. QiaoW. ZhangH. LiuB. LiJ. ZangC. MeiT. ZhengJ. ZhangY. Nomogram established on account of Lasso- Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma.Front. Immunol.202213101963810.3389/fimmu.2022.101963836505501
    [Google Scholar]
  49. DaiP. ChangW. XinZ. ChengH. OuyangW. LuoA. Retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in China based on random forest and LASSO regression.Front. Public Health2021967827610.3389/fpubh.2021.67827634211956
    [Google Scholar]
  50. SilvaG.F.S. FagundesT.P. TeixeiraB.C. ChiavegattoF.A.D.P. Machine learning for hypertension prediction: A systematic review.Curr. Hypertens. Rep.2022241152353310.1007/s11906‑022‑01212‑635731335
    [Google Scholar]
  51. AlamroH. ThafarM.A. AlbaradeiS. GojoboriT. EssackM. GaoX. Exploiting machine learning models to identify novel Alzheimer’s disease biomarkers and potential targets.Sci. Rep.2023131497910.1038/s41598‑023‑30904‑536973386
    [Google Scholar]
  52. ZhaoS. YeB. ChiH. ChengC. LiuJ. Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer’s disease using single-cell sequencing.Heliyon2023971745410.1016/j.heliyon.2023.e1745437449151
    [Google Scholar]
  53. DongY. LiT. MaZ. ZhouC. WangX. LiJ. HSPA1A, HSPA2, and HSPA8 are potential molecular biomarkers for prognosis among HSP70 family in Alzheimer’s disease.Dis. Markers2022202211610.1155/2022/948039836246562
    [Google Scholar]
  54. RahmanM.R. IslamT. TuranliB. ZamanT. FaruqueeH.M. RahmanM.M. MollahM.N.H. NandaR.K. ArgaK.Y. GovE. MoniM.A. Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer’s disease.Comput. Biol. Chem.20197843143910.1016/j.compbiolchem.2018.12.01130606694
    [Google Scholar]
  55. BellenieB.R. CheungK.M.J. VarelaA. PierratO.A. CollieG.W. BoxG.M. BrightM.D. GowanS. HayesA. RodriguesM.J. ShettyK.N. CarterM. DavisO.A. HenleyA.T. InnocentiP. JohnsonL.D. LiuM. de KlerkS. Le BihanY.V. LloydM.G. McAndrewP.C. ShehuE. TalbotR. WoodwardH.L. BurkeR. KirkinV. van MontfortR.L.M. RaynaudF.I. RossaneseO.W. HoelderS. Achieving in vivo target depletion through the discovery and optimization of benzimidazolone BCL6 degraders.J. Med. Chem.20206384047406810.1021/acs.jmedchem.9b0207632275432
    [Google Scholar]
  56. BaronB.W. BaronR.M. BaronJ.M. The ITM2B (BRI2) gene is a target of BCL6 repression: Implications for lymphomas and neurodegenerative diseases.Biochim. Biophys. Acta Mol. Basis Dis.20151852574274810.1016/j.bbadis.2014.12.01825557390
    [Google Scholar]
  57. BaronB.W. PytelP. Expression pattern of the BCL6 and itm2b proteins in normal human brains and in Alzheimer disease.Appl. Immunohistochem. Mol. Morphol.201725748949610.1097/PAI.000000000000032926862951
    [Google Scholar]
  58. KimK. WangX. RagonnaudE. BodogaiM. IllouzT. DeLucaM. McDevittR.A. GusevF. OkunE. RogaevE. BiragynA. Therapeutic B-cell depletion reverses progression of Alzheimer’s disease.Nat. Commun.2021121218510.1038/s41467‑021‑22479‑433846335
    [Google Scholar]
  59. BezziP. DomercqM. BrambillaL. GalliR. ScholsD. De ClercqE. VescoviA. BagettaG. KolliasG. MeldolesiJ. VolterraA. CXCR4-activated astrocyte glutamate release via TNFα: Amplification by microglia triggers neurotoxicity.Nat. Neurosci.20014770271010.1038/8949011426226
    [Google Scholar]
  60. ParachikovaA. AgadjanyanM.G. CribbsD.H. Blurton-JonesM. PerreauV. RogersJ. BeachT.G. CotmanC.W. Inflammatory changes parallel the early stages of Alzheimer disease.Neurobiol. Aging200728121821183310.1016/j.neurobiolaging.2006.08.01417052803
    [Google Scholar]
  61. ParachikovaA. CotmanC.W. Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease.Neurobiol. Dis.200728214315310.1016/j.nbd.2007.07.00117764962
    [Google Scholar]
  62. RagnarssonL. ZhangZ. DasS.S. TranP. AnderssonÅ. des PortesV. Desmettre AltuzarraC. RemerandG. LabalmeA. ChatronN. SanlavilleD. LescaG. AnggonoV. VetterI. KeramidasA. GRIN1 variants associated with neurodevelopmental disorders reveal channel gating pathomechanisms.Epilepsia202364123377338810.1111/epi.1777637734923
    [Google Scholar]
  63. KorinekM. Candelas SerraM. Abdel RahmanF.E.S. DobrovolskiM. KuchtiakV. AbramovaV. FiliK. TomovicE. Hrcka KrausovaB. KrusekJ. CernyJ. VyklickyL. BalikA. SmejkalovaT. Disease-associated variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA receptor structure, function, and pathophysiology.Physiol. Res.202473Suppl. 1S413S43410.33549/physiolres.93534638836461
    [Google Scholar]
  64. MitraS. BpK. C RS. SaikumarN.V. PhilipP. NarayananM. Alzheimer’s disease rewires gene coexpression networks coupling different brain regions.NPJ Syst. Biol. Appl.20241015010.1038/s41540‑024‑00376‑y38724582
    [Google Scholar]
  65. HanY. ChenK. YuH. CuiC. LiH. HuY. ZhangB. LiG. Maf1 loss regulates spinogenesis and attenuates cognitive impairment in Alzheimer’s disease.Brain202414762128214310.1093/brain/awae01538226680
    [Google Scholar]
  66. LiY. LiB. XuY. QianL. XuT. MengG. LiH. WangY. ZhangL. JiangX. LiuQ. XieY. ChengC. SunB. YuD. GOT2 silencing promotes reprogramming of glutamine metabolism and sensitizes hepatocellular carcinoma to glutaminase inhibitors.Cancer Res.202282183223323510.1158/0008‑5472.CAN‑22‑004235895805
    [Google Scholar]
  67. KangS. LeeY. LeeJ.E. Metabolism-centric overview of the pathogenesis of Alzheimer’s disease.Yonsei Med. J.201758347948810.3349/ymj.2017.58.3.47928332351
    [Google Scholar]
  68. EzkurdiaA. RamírezM.J. SolasM. Metabolic syndrome as a risk factor for Alzheimer’s disease: A focus on insulin resistance.Int. J. Mol. Sci.2023245435410.3390/ijms2405435436901787
    [Google Scholar]
  69. ChenZ. BalachandranY.L. ChongW.P. ChanK.W.Y. Roles of cytokines in Alzheimer’s disease.Int. J. Mol. Sci.20242511580310.3390/ijms2511580338891990
    [Google Scholar]
  70. GoelP. ChakrabartiS. GoelK. BhutaniK. ChopraT. BaliS. Neuronal cell death mechanisms in Alzheimer’s disease: An insight.Front. Mol. Neurosci.20221593713310.3389/fnmol.2022.93713336090249
    [Google Scholar]
  71. GaoC. JiangJ. TanY. ChenS. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets.Signal Transduct. Target. Ther.20238135910.1038/s41392‑023‑01588‑037735487
    [Google Scholar]
  72. LiangC. YuanZ. YangS. ZhuY. ChenZ. CanD. LeiA. LiH. LengL. ZhangJ. Mannose promotes β-amyloid pathology by regulating BACE1 glycosylation in Alzheimer’s disease.Adv. Sci.2025129240910510.1002/advs.20240910539807036
    [Google Scholar]
  73. LiS. ZhangN. LiuS. ZhangH. LiuJ. QiY. ZhangQ. LiX. ITGA5 is a novel oncogenic biomarker and correlates with tumor immune microenvironment in gliomas.Front. Oncol.20221284414410.3389/fonc.2022.84414435371978
    [Google Scholar]
  74. MahzarniaA. LutzM.W. BadeaA. A continuous extension of gene set enrichment analysis using the likelihood ratio test statistics identifies vascular endothelial growth factor as a candidate pathway for Alzheimer’s disease via ITGA5.J. Alzheimers Dis.202497263564810.3233/JAD‑23093438160360
    [Google Scholar]
  75. BurgalettoC. MunafòA. Di BenedettoG. De FrancisciC. CaraciF. Di MauroR. BucoloC. BernardiniR. CantarellaG. The immune system on the TRAIL of Alzheimer's disease.J. Neuroinflamm.20201712982020-10-1310.1186/s12974‑020‑01968‑1
    [Google Scholar]
  76. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement.20184157559010.1016/j.trci.2018.06.01430406177
    [Google Scholar]
  77. LinzhuZ. ZhangJ. FanW. SuC. JinZ. Influence of immune cells and inflammatory factors on Alzheimer’s disease axis: Evidence from mediation Mendelian randomization study.BMC Neurol.20252514910.1186/s12883‑025‑04057‑z39910474
    [Google Scholar]
/content/journals/car/10.2174/0115672050399031250623062112
Loading
/content/journals/car/10.2174/0115672050399031250623062112
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Supplementary Fig. (). Correction curves and decision curves of predictive models. Supplementary Table . ProTox-3.0 - Prediction of toxicity of chemicals. Supplementary Table . Univariate logistic regression results.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test