Skip to content
2000
image of Advancing Alzheimer's Disease Diagnosis Using VGG19 and XGBoost: A Neuroimaging-Based Method

Abstract

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that currently affects over 55 million individuals worldwide. Conventional diagnostic approaches often rely on subjective clinical assessments and isolated biomarkers, limiting their accuracy and early-stage effectiveness. With the rising global burden of AD, there is an urgent need for objective, automated tools that enhance diagnostic precision using neuroimaging data.

Methods

This study proposes a novel diagnostic framework combining a fine-tuned VGG19 deep convolutional neural network with an eXtreme Gradient Boosting (XGBoost) classifier. The model was trained and validated on the OASIS MRI dataset (Dataset 2), which was manually balanced to ensure equitable class representation across the four AD stages. The VGG19 model was pre-trained on ImageNet and fine-tuned by unfreezing its last ten layers. Data augmentation strategies, including random rotation and zoom, were applied to improve generalization. Extracted features were classified using XGBoost, incorporating class weighting, early stopping, and adaptive learning. Model performance was evaluated using accuracy, precision, recall, F1-score, and ROC-AUC.

Results

The proposed VGG19-XGBoost model achieved a test accuracy of 99.6%, with an average precision of 1.00, a recall of 0.99, and an F1-score of 0.99 on the balanced OASIS dataset. ROC curves indicated high separability across AD stages, confirming strong discriminatory power and robustness in classification.

Discussion

The integration of deep feature extraction with ensemble learning demonstrated substantial improvement over conventional single-model approaches. The hybrid model effectively mitigated issues of class imbalance and overfitting, offering stable performance across all dementia stages. These findings suggest the method’s practical viability for clinical decision support in early AD diagnosis.

Conclusion

This study presents a high-performing, automated diagnostic tool for Alzheimer’s disease based on neuroimaging. The VGG19-XGBoost hybrid architecture demonstrates exceptional accuracy and robustness, underscoring its potential for real-world applications. Future work will focus on integrating multimodal data and validating the model on larger and more diverse populations to enhance clinical utility and generalizability.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050393604250904081342
2025-09-15
2025-11-02
Loading full text...

Full text loading...

References

  1. Bringas S. Duque R. Lage C. Montaña J.L. CLADSI: Deep continual learning for Alzheimer’s disease stage identification using accelerometer data. IEEE J Biomed Health Inform 2024 28 6 3401 3410 10.1109/JBHI.2024.3392354 38648143
    [Google Scholar]
  2. Alzheimer’s disease facts and figures. Alzheimers Dement 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  3. Li X. Feng X. Sun X. Hou N. Han F. Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci 2022 14 1 937486 10.3389/fnagi.2022.937486 36299608
    [Google Scholar]
  4. Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care 2020 26 8 S177 S183 Suppl. 32840331
    [Google Scholar]
  5. Wang L. Sheng J. Zhang Q. Zhou R. Li Z. Xin Y. Zhang Q. Functional brain network measures for Alzheimer’s disease classification. IEEE Access 2023 11 111832 111845 10.1109/ACCESS.2023.3323250
    [Google Scholar]
  6. Zhang J. He X. Qing L. Gao F. Wang B. BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis. Comput Methods Programs Biomed 2022 217 106676 10.1016/j.cmpb.2022.106676 35167997
    [Google Scholar]
  7. Doering S. McCullough A.A. Gordon B.A. Chen C.D. McKay N.S. Hobbs D.A. Keefe S.J. Flores S. Hornbeck R.C. Xiong C. Hassenstab J.J. Bateman R.J. Ances B. Morris J.C. Benzinger T.L.S. Evaluating regional importance for tau spatial spread in predicting cognitive impairment with machine learning. Alzheimers Dement 2023 19 S24 e082553 10.1002/alz.082553
    [Google Scholar]
  8. Richhariya B. Tanveer M. Rashid A.H. Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed Signal Process Control 2020 59 101903 10.1016/j.bspc.2020.101903
    [Google Scholar]
  9. Dubois B.R. The rationale behind the IWG criteria for Alzheimer’s disease. Alzheimers Dement 2022 18 S6 e060523 10.1002/alz.060523
    [Google Scholar]
  10. Rallabandi V.P.S. Tulpule K. Gattu M. Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer’s disease using structural MRI analysis. Inform Med Unlocked 2020 18 100305 10.1016/j.imu.2020.100305
    [Google Scholar]
  11. Liao S. Hsieh F. Unraveling heterogeneity of ADNI’s time-to-event data using conditional entropy Part-I: Cross-sectional study. IEEE Access 2023 12 3292 3314 10.1109/ACCESS.2023.3344319
    [Google Scholar]
  12. López-Bueno R. Yang L. Stamatakis E. del Pozo Cruz B. Moderate and vigorous leisure time physical activity in older adults and Alzheimer’s disease-related mortality in the USA: A dose–response, population-based study. Lancet Healthy Longev 2023 4 12 e703 e710 10.1016/S2666‑7568(23)00212‑X 38042163
    [Google Scholar]
  13. Yuan Y. Hu R. Chen S. Zhang X. Liu Z. Zhou G. CKG-IMC: An inductive matrix completion method enhanced by CKG and GNN for Alzheimer’s disease compound-protein interactions prediction. Comput Biol Med 2024 177 108612 2 10.1016/j.compbiomed.2024.108612 38838556
    [Google Scholar]
  14. Mahim SM Ali MS Hasan MO Nafi AAN Sadat A Hasan SA Unlocking the potential of XAI for improved Alzheimer’s disease detection and classification using a ViT-GRU model. IEEE Access 2024 12 8390 8412 10.1109/ACCESS.2024.3351809
    [Google Scholar]
  15. Yin K.F. Gu X.J. Su W.M. Chen T. Long J. Gong L. Ying Z.Y. Dou M. Jiang Z. Duan Q.Q. Cao B. Gao X. Chi L.Y. Chen Y.P. Causal association and mediating effect of blood biochemical metabolic traits and brain image-derived endophenotypes on Alzheimer’s disease. Heliyon 2024 10 8 e27422 e2 10.1016/j.heliyon.2024.e27422 38644883
    [Google Scholar]
  16. Gómez-Pascual A. Naccache T. Xu J. Hooshmand K. Wretlind A. Gabrielli M. Lombardo M.T. Shi L. Buckley N.J. Tijms B.M. Vos S.J.B. ten Kate M. Engelborghs S. Sleegers K. Frisoni G.B. Wallin A. Lleó A. Popp J. Martinez-Lage P. Streffer J. Barkhof F. Zetterberg H. Visser P.J. Lovestone S. Bertram L. Nevado-Holgado A.J. Gualerzi A. Picciolini S. Proitsi P. Verderio C. Botía J.A. Legido-Quigley C. Paired plasma lipidomics and proteomics analysis in the conversion from mild cognitive impairment to Alzheimer’s disease. Comput Biol Med 2024 176 108588 8 10.1016/j.compbiomed.2024.108588 38761503
    [Google Scholar]
  17. Joe E Segal-Gidan F Cummings JL Galasko D Tomaszewski Farias S Johnson DK Association between self- and proxy-reported depression and quality of life in mild-moderate Alzheimer's disease. Am J Geriatr Psychiatry 2024 32 1 58 67 10.1016/j.jagp.2023.08.004 37827916
    [Google Scholar]
  18. Sekhar JC Rajyalakshmi Ch Nagaraj S Sankar S Deep generative adversarial networks with marine predators algorithm for classification of Alzheimer’s disease using electroencephalogram. J King Saud Univ Comput Inf Sci 2023 35 10 101848 10.1016/j.jksuci.2023.101848
    [Google Scholar]
  19. Díaz-Álvarez J. García-Gutiérrez F. Bueso-Inchausti P. Cabrera-Martín M.N. Delgado-Alonso C. Delgado-Alvarez A. Diez-Cirarda M. Valls-Carbo A. Fernández-Romero L. Valles-Salgado M. Dauden-Oñate P. Matías-Guiu J. Peña-Casanova J. Ayala J.L. Matias-Guiu J.A. Data-driven prediction of regional brain metabolism using neuropsychological assessment in Alzheimer’s disease and behavioral variant Frontotemporal dementia. Cortex 2025 183 309 325 10.1016/j.cortex.2024.11.022 39793260
    [Google Scholar]
  20. Karim A. Khvostikov A Andrei K. Benois-Pineau J. Karim A. Gwénaëlle C. Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning. 018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS) Karlstad, Sweden, 18-21 June 2018, pp. 345-350. 10.1109/CBMS.2018.00067
    [Google Scholar]
  21. Jha D. Kim J.I. Kwon G.R. Diagnosis of Alzheimer’s disease using dual-tree complex wavelet transform, PCA, and feed-forward neural network. J Healthc Eng 2017 2017 1 13 10.1155/2017/9060124 29065663
    [Google Scholar]
  22. Ravikanti D. S S. EEGAlzheimer’sNet: Development of transformer-based attention long short term memory network for detecting Alzheimer disease using EEG signal. Biomed Signal Process Control 2023 86 105318 10.1016/j.bspc.2023.105318
    [Google Scholar]
  23. Faisal M. Alharbi A. Alhamadi A. Almutairi S. Alenezi S. Alsulaili A. Khan M. Khan F. Robot-based solution for helping Alzheimer patients. SLAS Technol 2024 29 3 100140 0 10.1016/j.slast.2024.100140 38729525
    [Google Scholar]
  24. Myszczynska M.A. Ojamies P.N. Lacoste A.M.B. Neil D. Saffari A. Mead R. Hautbergue G.M. Holbrook J.D. Ferraiuolo L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 2020 16 8 440 456 10.1038/s41582‑020‑0377‑8 32669685
    [Google Scholar]
  25. Meng X. Liu J. Fan X. Bian C. Wei Q. Wang Z. Liu W. Jiao Z. Multi-modal neuroimaging neural network-based feature detection for diagnosis of Alzheimer’s disease. Front Aging Neurosci 2022 14 911220 10.3389/fnagi.2022.911220 35651528
    [Google Scholar]
  26. Suk H.I. Lee S.W. Shen D. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 2014 101 569 582 10.1016/j.neuroimage.2014.06.077 25042445
    [Google Scholar]
  27. Basheer S. Bhatia S. Sakri S.B. Computational modeling of dementia prediction using deep neural network: Analysis on OASIS dataset. IEEE Access 2021 9 42449 42462 10.1109/ACCESS.2021.3066213
    [Google Scholar]
  28. Ryu S.E. Shin D.H. Chung K. Prediction model of dementia risk based on xgboost using derived variable extraction and hyper parameter optimization. IEEE Access 2020 8 177708 177720 10.1109/ACCESS.2020.3025553
    [Google Scholar]
  29. Bangyal W.H. Rehman N.U. Nawaz A. Nisar K. Ibrahim A.A.A. Shakir R. Rawat D.B. Constructing domain ontology for Alzheimer disease using deep learning based approach. Electronics 2022 11 12 1890 10.3390/electronics11121890
    [Google Scholar]
  30. Sharma S. Gupta S. Gupta D. Altameem A. Saudagar A.K.J. Poonia R.C. Nayak S.R. HTLML: Hybrid AI based model for detection of Alzheimer’s disease. Diagnostics 2022 12 8 1833 3 10.3390/diagnostics12081833 36010183
    [Google Scholar]
  31. Basaia S. Agosta F. Wagner L. Canu E. Magnani G. Santangelo R. Filippi M. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin 2019 21 101645 10.1016/j.nicl.2018.101645 30584016
    [Google Scholar]
  32. Qiu S. Miller M.I. Joshi P.S. Lee J.C. Xue C. Ni Y. Wang Y. De Anda-Duran I. Hwang P.H. Cramer J.A. Dwyer B.C. Hao H. Kaku M.C. Kedar S. Lee P.H. Mian A.Z. Murman D.L. O’Shea S. Paul A.B. Saint-Hilaire M.H. Alton Sartor E. Saxena A.R. Shih L.C. Small J.E. Smith M.J. Swaminathan A. Takahashi C.E. Taraschenko O. You H. Yuan J. Zhou Y. Zhu S. Alosco M.L. Mez J. Stein T.D. Poston K.L. Au R. Kolachalama V.B. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat Commun 2022 13 1 3404 10.1038/s41467‑022‑31037‑5 35725739
    [Google Scholar]
  33. Hu Z Wang Z Jin Y Hou W. VGG-TSwinformer: Transformer-based deep learning model for early Alzheimer's disease prediction. Comput Methods Programs Biomed 2023 229 107291 10.1016/j.cmpb.2022.107291 36516516
    [Google Scholar]
  34. Hazarika R.A. Maji A.K. Kandar D. Jasinska E. Krejci P. Leonowicz Z. Jasinski M. An approach for classification of Alzheimer’s disease using deep neural network and brain magnetic resonance imaging (MRI). Electronics 2023 12 3 676 10.3390/electronics12030676
    [Google Scholar]
  35. Kadri R. Bouaziz B. Tmar M. Gargouri F. Efficient multimodel method based on transformers and CoAtNet for Alzheimer’s diagnosis. Digit Signal Process 2023 143 104229 9 10.1016/j.dsp.2023.104229
    [Google Scholar]
  36. Murugan S. Venkatesan C. Sumithra M.G. Gao X.Z. Elakkiya B. Akila M. Manoharan S. DEMNET: A deep learning model for early diagnosis of alzheimer diseases and dementia from MR images. IEEE Access 2021 9 90319 90329 10.1109/ACCESS.2021.3090474
    [Google Scholar]
  37. Saleh A.W. Gupta G. Khan S.B. Alkhaldi N.A. Verma A. An Alzheimer’s disease classification model using transfer learning densenet with embedded healthcare decision support system. Decision Anal J. 2023 9 100348 10.1016/j.dajour.2023.100348
    [Google Scholar]
  38. Islam J. Zhang Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform 2018 5 2 2 10.1186/s40708‑018‑0080‑3 29881892
    [Google Scholar]
  39. Farooq A. Anwar S. Awais M. Rehman S. A deep CNN based multi-class classification of Alzheimer’s disease using MRI. 2017 IEEE International Conference on Imaging Systems and Techniques (IST) Beijing, China 2017 1 6 10.1109/IST.2017.8261460
    [Google Scholar]
  40. Mehmood A. Maqsood M. Bashir M. Shuyuan Y. A deep siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sci 2020 10 2 84 10.3390/brainsci10020084 32033462
    [Google Scholar]
  41. Nawaz H. Maqsood M. Afzal S. Aadil F. Mehmood I. Rho S. A deep feature-based real-time system for Alzheimer disease stage detection. Multimedia Tools Appl 2021 80 28-29 35789 35807 10.1007/s11042‑020‑09087‑y
    [Google Scholar]
  42. Wang S.H. Zhou Q. Yang M. Zhang Y.D. RETRACTED: ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation. Front Aging Neurosci 2021 13 687456 10.3389/fnagi.2021.687456 34220487
    [Google Scholar]
  43. Muksimova S. Umirzakova S. Iskhakova N. Khaitov A. Cho Y.I. Advanced convolutional neural network with attention mechanism for Alzheimer’s disease classification using MRI. Comput Biol Med 2025 190 110095 10.1016/j.compbiomed.2025.110095 40158456
    [Google Scholar]
  44. Jack C.R. Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. Liu E. Molinuevo J.L. Montine T. Phelps C. Rankin K.P. Rowe C.C. Scheltens P. Siemers E. Snyder H.M. Sperling R. Elliott C. Masliah E. Ryan L. Silverberg N. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  45. Available from: https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
  46. OASIS Alzheimer's detection. 2023 Available from: https://www.kaggle.com/datasets/ninadaithal/imagesoasis
  47. Ferdousi J. Lincoln S.I. Alom M.K. Foysal M. A deep learning approach for white blood cells image generation and classification using SRGAN and VGG19. Telemat Inform Rep 2024 16 100163 10.1016/j.teler.2024.100163
    [Google Scholar]
  48. Beheshti I. Demirel H. Farokhian F. Yang C. Matsuda H. Structural MRI-based detection of Alzheimer’s disease using feature ranking and classification error. Comput Methods Programs Biomed 2016 137 177 193 10.1016/j.cmpb.2016.09.019 28110723
    [Google Scholar]
  49. Neshat M. Ahmed M. Askari H. Thilakaratne M. Mirjalili S. Hybrid inception architecture with residual connection: Fine-tuned inception-resnet deep learning model for lung inflammation diagnosis from chest radiographs. Procedia Comput Sci 2024 235 1841 1850 10.1016/j.procs.2024.04.175
    [Google Scholar]
  50. Asif S. Zhao M. Tang F. Zhu Y. DCDS-Net: Deep transfer network based on depth-wise separable convolution with residual connection for diagnosing gastrointestinal diseases. Biomed Signal Process Control 2024 90 105866 10.1016/j.bspc.2023.105866
    [Google Scholar]
  51. Heaton J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet Program Evolvable 2018 19 1-2 305 307 10.1007/s10710‑017‑9314‑z
    [Google Scholar]
  52. Kim J. Kim S. Choi K. Park I.C. Hardware-efficient SoftMax architecture with bit-wise exponentiation and reciprocal calculation. IEEE Trans Circuits Syst I Regul Pap 2024 71 10 4574 4585 10.1109/TCSI.2024.3443270
    [Google Scholar]
  53. Mahjoubi M.A. Lamrani D. Saleh S. Moutaouakil W. Ouhmida A. Hamida S. Cherradi B. Raihani A. Optimizing ResNet50 performance using stochastic gradient descent on MRI images for Alzheimer’s disease classification. Intell Based Med 2025 11 100219 10.1016/j.ibmed.2025.100219
    [Google Scholar]
  54. Gharagoz M.M. Noureldin M. Kim J. Explainable machine learning (XML) framework for seismic assessment of structures using Extreme Gradient Boosting (XGBoost). Eng Struct 2025 327 119621 10.1016/j.engstruct.2025.119621
    [Google Scholar]
  55. Krizhevsky A. Sutskever I. Hinton G.E. ImageNet classification with deep convolutional neural networks. Commun ACM 2017 60 6 84 90 10.1145/3065386
    [Google Scholar]
  56. Litjens G. Kooi T. Bejnordi B.E. Setio A.A.A. Ciompi F. Ghafoorian M. van der Laak J.A.W.M. van Ginneken B. Sánchez C.I. A survey on deep learning in medical image analysis. Med Image Anal 2017 42 60 88 10.1016/j.media.2017.07.005 28778026
    [Google Scholar]
  57. Hochin T. Maeda T. Interpretation method of transformation matrix clarifying relationships between impression factors of multimedia data. Int J Affect Eng 2020 19 2 111 117 10.5057/ijae.IJAE‑D‑19‑00010
    [Google Scholar]
  58. Angel E. Shreiner D. An interactive introduction to computer graphics using WebGL. ACM SIGGRAPH 2022 Courses Vancouver, British Columbia 2022 1 91 10.1145/3532720.3535630
    [Google Scholar]
  59. Ronneberger O. Fischer P. Brox T. U-net: Convolutional networks for biomedical image segmentation. Lect Notes Comput Sci 2015 9351 234 241 10.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  60. Esteva A. Kuprel B. Novoa R.A. Ko J. Swetter S.M. Blau H.M. Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 542 7639 115 118 10.1038/nature21056 28117445
    [Google Scholar]
  61. Rumelhart D.E. Hinton G.E. Williams R.J. Learning representations by back-propagating errors. Nature 1986 323 6088 533 536 10.1038/323533a0
    [Google Scholar]
  62. Ramsay J. The elements of statistical learning: Data mining, inference, and prediction. Psychometrika 2003 68 4 611 612 10.1007/BF02295616
    [Google Scholar]
  63. Sokolova M. Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manage 2009 45 4 427 437 10.1016/j.ipm.2009.03.002
    [Google Scholar]
  64. Sait A.R.W. Nagaraj R. A feature-fusion technique-based Alzheimer’s disease classification using magnetic resonance imaging. Diagnostics 2024 14 21 2363 10.3390/diagnostics14212363 39518331
    [Google Scholar]
  65. Lahmiri S. Integrating convolutional neural networks, kNN, and Bayesian optimization for efficient diagnosis of Alzheimer’s disease in magnetic resonance images. Biomed Signal Process Control 2023 80 104375 10.1016/j.bspc.2022.104375
    [Google Scholar]
  66. Chui K.T. Gupta B.B. Alhalabi W. Alzahrani F.S. An MRI scans-based Alzheimer’s disease detection via Convolutional neural network and transfer learning. Diagnostics 2022 12 7 1531 10.3390/diagnostics12071531 35885437
    [Google Scholar]
  67. Jabason E. Ahmad M.O. Swamy M. Classification of Alzheimer’s disease from MRI data using an ensemble of hybrid deep Convolutional neural networks. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS) Dallas, TX, USA 2019 481 484 10.1109/MWSCAS.2019.8884939
    [Google Scholar]
  68. Fulton L. Dolezel D. Harrop J. Yan Y. Fulton C. Classification of Alzheimer’s disease with and without imagery using gradient boosted machines and resnet-50. Brain Sci 2019 9 9 212 10.3390/brainsci9090212 31443556
    [Google Scholar]
  69. Ghassan Al Rahbani R. Ioannou A. Wang T. Alzheimer’s disease multiclass detection through deep learning models and post-processing heuristics. Comput Methods Biomech Biomed Eng Imaging Vis 2024 12 1 2383219 10.1080/21681163.2024.2383219
    [Google Scholar]
  70. Oh K. Chung Y.C. Kim K.W. Kim W.S. Oh I.S. Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Sci Rep 2019 9 1 18150 10.1038/s41598‑019‑54548‑6 31796817
    [Google Scholar]
  71. Lazli L. Improved Alzheimer disease diagnosis with a machine learning approach and neuroimaging: Case study development. JMIRx Med 2025 6 v6i2e60866 10.2196/60866 40257754
    [Google Scholar]
  72. Hoang G.-M. Lee Y. Kim J. G. A reproducible 3D convolutional neural network with dual attention module (3D-DAM) for Alzheimer’s disease classification. arXiv 2023 arXiv:2310.12574v3 10.48550/arXiv.2310.12574
    [Google Scholar]
  73. Marcus D.S. Wang T.H. Parker J. Csernansky J.G. Morris J.C. Buckner R.L. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 2007 19 9 1498 1507 10.1162/jocn.2007.19.9.1498 17714011
    [Google Scholar]
  74. Liu S. Liu S. Cai W. Che H. Pujol S. Kikinis R. Feng D. Fulham M.J. Adni Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng 2015 62 4 1132 1140 10.1109/TBME.2014.2372011 25423647
    [Google Scholar]
  75. Jumaili M.L.F. Sonuç E. An attention-based CNN framework for Alzheimer’s disease staging with multi-technique XAI visualization. Comput Mater Continua 2025 83 2 2947 2969 10.32604/cmc.2025.062719
    [Google Scholar]
  76. Khatri U. Kwon G.R. Diagnosis of Alzheimer’s disease via optimized lightweight convolution-attention and structural MRI. Comput Biol Med 2024 171 108116 10.1016/j.compbiomed.2024.108116 38346370
    [Google Scholar]
  77. Timsina J. Ali M. Do A. Wang L. Western D. Sung Y.J. Cruchaga C. Harmonization of CSF and imaging biomarkers in Alzheimer’s disease: Need and practical applications for genetics studies and preclinical classification. Neurobiol Dis 2024 190 106373 10.1016/j.nbd.2023.106373 38072165
    [Google Scholar]
  78. Suk H.I. Lee S.W. Shen D. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct Funct 2016 221 5 2569 2587 10.1007/s00429‑015‑1059‑y 25993900
    [Google Scholar]
  79. Upadhyay P. Tomar P. Yadav S.P. Advancements in Alzheimer’s disease classification using deep learning frameworks for multimodal neuroimaging: A comprehensive review. Comput Electr Eng 2024 120 109796 10.1016/j.compeleceng.2024.109796
    [Google Scholar]
  80. Abdelaziz M. Wang T. Anwaar W. Elazab A. Multi-scale multimodal deep learning framework for Alzheimer’s disease diagnosis. Comput Biol Med 2025 184 109438 10.1016/j.compbiomed.2024.109438 39579666
    [Google Scholar]
  81. Zhou W. Luo W. Gong L. Peng B. Enhanced early diagnosis of Alzheimer’s disease with HybridCA-Net: A multimodal fusion approach. Expert Syst Appl 2025 292 128580 10.1016/j.eswa.2025.128580
    [Google Scholar]
  82. Vieira S. Pinaya W.H.L. Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev 2017 74 Pt A 58 75 10.1016/j.neubiorev.2017.01.002 28087243
    [Google Scholar]
  83. Belkeziz R. Chefira R. Samiri M.Y. Rakrak S. Conversational AI system for enhancing autonomy in individuals with Alzheimer’s disease. Procedia Comput Sci 2024 251 752 757 10.1016/j.procs.2024.11.180
    [Google Scholar]
  84. Chakraborty M. Naoal N. Momen S. Mohammed N. Analyze-ad: A comparative analysis of novel AI approaches for early Alzheimer’s detection. Array 2024 22 100352 10.1016/j.array.2024.100352
    [Google Scholar]
/content/journals/car/10.2174/0115672050393604250904081342
Loading
/content/journals/car/10.2174/0115672050393604250904081342
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Alzheimer's disease ; XGBoost ; MRI ; classification ; VGG19 ; OASIS dataset
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test