Skip to content
2000
image of Mapping the Connection Between Circadian Rhythms, Metabolism, and Neurodegeneration: Exploring Therapeutic Strategies

Abstract

Circadian rhythms are crucial for essential physiological functions such as metabolism, sleep-wake cycles, hormone balance, and cognitive abilities, which are regulated by the central Suprachiasmatic Nucleus (SCN) and peripheral clocks. Disruptions to circadian rhythms, which may be caused by aging, lifestyle factors, and environmental influences, are linked to metabolic disorders and Neurodegenerative Diseases (NDs). This review examines the reciprocal relationship between circadian control and metabolism, highlighting the molecular processes that maintain circadian rhythms and how these processes change with age. Aging diminishes SCN efficiency and disrupts peripheral clock alignment, leading to impaired physiological functions, increased oxidative stress, and neuroinflammation, all of which contribute to the progression of NDs such as Alzheimer’s (AD), Parkinson's disease (PD), Huntington's disease (HD), Emerging therapeutic strategies aim to restore circadian function through interventions, including bright light therapy, melatonin supplementation, and pharmacological agents targeting clock gene regulators and neuropeptides. Furthermore, lifestyle modifications, such as Structured Physical Activity (SPA) and Time-Restricted Feeding (TRF), can enhance circadian health by synchronizing metabolic and hormonal rhythms. Future directions include chrono-pharmacology, gene editing, and Artificial Intelligence (AI)-driven personalized medicine, all of which emphasize the development of tailored circadian therapies. Advancing circadian research holds the potential to facilitate better health outcomes and improve quality of life, while also addressing the growing concerns of the aging population and NDs.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050381989250626071304
2025-07-16
2025-11-01
Loading full text...

Full text loading...

References

  1. Walker W.H. II Walton J.C. DeVries A.C. Nelson R.J. Circadian rhythm disruption and mental health. Transl. Psychiatry 2020 10 1 28 10.1038/s41398‑020‑0694‑0 32066704
    [Google Scholar]
  2. de Assis L.V.M. Oster H. The circadian clock and metabolic homeostasis: Entangled networks. Cell. Mol. Life Sci. 2021 78 10 4563 4587 10.1007/s00018‑021‑03800‑2 33683376
    [Google Scholar]
  3. Pilorz V. Helfrich-Förster C. Oster H. The role of the circadian clock system in physiology. Pflugers Arch. 2018 470 2 227 239 10.1007/s00424‑017‑2103‑y 29302752
    [Google Scholar]
  4. Leng Y. Musiek E.S. Hu K. Cappuccio F.P. Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019 18 3 307 318 10.1016/S1474‑4422(18)30461‑7 30784558
    [Google Scholar]
  5. Zielinski M.R. Gibbons A.J. Neuroinflammation, sleep, and circadian rhythms. Front. Cell. Infect. Microbiol. 2022 12 853096 10.3389/fcimb.2022.853096 35392608
    [Google Scholar]
  6. Wilking M. Ndiaye M. Mukhtar H. Ahmad N. Circadian rhythm connections to oxidative stress: Implications for human health. Antioxid. Redox Signal. 2013 19 2 192 208 10.1089/ars.2012.4889 23198849
    [Google Scholar]
  7. Fatima N. Rana S. Metabolic implications of circadian disruption. Pflugers Arch. 2020 472 5 513 526 10.1007/s00424‑020‑02381‑6 32363530
    [Google Scholar]
  8. Buijink M.R. Michel S. A multi‐level assessment of the bidirectional relationship between aging and the circadian clock. J. Neurochem. 2021 157 1 73 94 10.1111/jnc.15286 33370457
    [Google Scholar]
  9. Nassan M. Videnovic A. Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 2022 18 1 7 24 10.1038/s41582‑021‑00577‑7 34759373
    [Google Scholar]
  10. Abbott S.M. Malkani R.G. Zee P.C. Circadian disruption and human health: A bidirectional relationship. Eur. J. Neurosci. 2020 51 1 567 583 10.1111/ejn.14298 30549337
    [Google Scholar]
  11. Ruiz-Gayo M. Olmo N.D. Interaction between Circadian Rhythms, energy metabolism, and cognitive function. Curr. Pharm. Des. 2020 26 20 2416 2425 10.2174/1381612826666200310145006 32156228
    [Google Scholar]
  12. Teleanu D.M. Niculescu A.G. Lungu I.I. Radu C.I. Vladâcenco O. Roza E. Costăchescu B. Grumezescu A.M. Teleanu R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 11 5938 10.3390/ijms23115938 35682615
    [Google Scholar]
  13. Giannotta G. Ruggiero M. Trabacca A. Chronobiology in paediatric neurological and neuropsychiatric disorders: Harmonizing care with biological clocks. J. Clin. Med. 2024 13 24 7737 10.3390/jcm13247737 39768659
    [Google Scholar]
  14. Samanta S. Bagchi D. An intricate relationship between circadian rhythm dysfunction and psychiatric diseases. Explorat. Neuroscience 2024 3 4 321 351 10.37349/en.2024.00053
    [Google Scholar]
  15. Van Erum J. Van Dam D. De Deyn P.P. Sleep and Alzheimer’s disease: A pivotal role for the suprachiasmatic nucleus. Sleep Med. Rev. 2018 40 17 27 10.1016/j.smrv.2017.07.005 29102282
    [Google Scholar]
  16. Kim E. Yoo S.H. Chen Z. Circadian stabilization loop: The regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000 Res. 2022 11 1236 10.12688/f1000research.126364.1 36415204
    [Google Scholar]
  17. Ruan W. Yuan X. Eltzschig H.K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug Discov. 2021 20 4 287 307 10.1038/s41573‑020‑00109‑w 33589815
    [Google Scholar]
  18. Hood S. Amir S. The aging clock: Circadian rhythms and later life. J. Clin. Invest. 2017 127 2 437 446 10.1172/JCI90328 28145903
    [Google Scholar]
  19. Pandi-Perumal S.R. Cardinali D.P. Zaki N.F.W. Karthikeyan R. Spence D.W. Reiter R.J. Brown G.M. Timing is everything: Circadian rhythms and their role in the control of sleep. Front. Neuroendocrinol. 2022 66 100978 10.1016/j.yfrne.2022.100978 35033557
    [Google Scholar]
  20. Van Drunen R. Eckel-Mahan K. Circadian rhythms of the hypothalamus: From function to physiology. Clocks Sleep 2021 3 1 189 226 10.3390/clockssleep3010012 33668705
    [Google Scholar]
  21. Astiz M. Heyde I. Oster H. Mechanisms of communication in the mammalian circadian timing system. Int. J. Mol. Sci. 2019 20 2 343 10.3390/ijms20020343 30650649
    [Google Scholar]
  22. Kim P. Oster H. Lehnert H. Schmid S.M. Salamat N. Barclay J.L. Maronde E. Inder W. Rawashdeh O. Coupling the circadian clock to homeostasis: The role of period in timing physiology. Endocr. Rev. 2019 40 1 66 95 10.1210/er.2018‑00049 30169559
    [Google Scholar]
  23. Kessel L. Siganos G. Jørgensen T. Larsen M. Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep 2011 34 9 1215 1219 10.5665/SLEEP.1242 21886359
    [Google Scholar]
  24. Foster R.G. Fundamentals of circadian entrainment by light. Light. Res. Technol. 2021 53 5 377 393 10.1177/14771535211014792
    [Google Scholar]
  25. Ko G.Y.P. Circadian regulation in the retina: From molecules to network. Eur. J. Neurosci. 2020 51 1 194 216 10.1111/ejn.14185 30270466
    [Google Scholar]
  26. Ospri L.L. Prusky G. Hattar S. Mood, the circadian system, and melanopsin retinal ganglion cells. Annu. Rev. Neurosci. 2017 40 1 539 556 10.1146/annurev‑neuro‑072116‑031324 28525301
    [Google Scholar]
  27. Reghunandanan V. Vasopressin in circadian function of SCN. J. Biosci. 2020 45 1 140 10.1007/s12038‑020‑00109‑3 33361631
    [Google Scholar]
  28. Reghunandanan V. Functional interactions between neurotransmitters and neuropeptides in regulating suprachiasmatic nucleus function and circadian rhythms. Explor Neurosci. 2024 3 434 477 10.37349/en.2024.00059
    [Google Scholar]
  29. Gerhold L.M. Rosewell K.L. Wise P.M. Suppression of vasoactive intestinal polypeptide in the suprachiasmatic nucleus leads to aging-like alterations in cAMP rhythms and activation of gonadotropin-releasing hormone neurons. J. Neurosci. 2005 25 1 62 67 10.1523/JNEUROSCI.3598‑04.2005 15634767
    [Google Scholar]
  30. Kim K. Choe H.K. Role of hypothalamus in aging and its underlying cellular mechanisms. Mech. Ageing Dev. 2019 177 74 79 10.1016/j.mad.2018.04.008 29729230
    [Google Scholar]
  31. Ono D. Honma K. Honma S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm. J. Neurochem. 2021 157 1 31 41 10.1111/jnc.15012 32198942
    [Google Scholar]
  32. Albers H.E. Walton J.C. Gamble K.L. McNeill J.K. IV Hummer D.L. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front. Neuroendocrinol. 2017 44 35 82 10.1016/j.yfrne.2016.11.003 27894927
    [Google Scholar]
  33. Aton S.J. Colwell C.S. Harmar A.J. Waschek J. Herzog E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 2005 8 4 476 483 10.1038/nn1419 15750589
    [Google Scholar]
  34. Vasalou C. Herzog E.D. Henson M.A. Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus. J. Biol. Rhythms 2009 24 3 243 254 10.1177/0748730409333220 19465701
    [Google Scholar]
  35. Choi H.J. Lee C.J. Schroeder A. Kim Y.S. Jung S.H. Kim J.S. Kim D.Y. Son E.J. Han H.C. Hong S.K. Colwell C.S. Kim Y.I. Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci. 2008 28 21 5450 5459 10.1523/JNEUROSCI.5750‑07.2008 18495878
    [Google Scholar]
  36. Golombek D.A. Casiraghi L.P. Agostino P.V. Paladino N. Duhart J.M. Plano S.A. Chiesa J.J. The times they’re a-changing: Effects of circadian desynchronization on physiology and disease. J. Physiol. Paris 2013 107 4 310 322 10.1016/j.jphysparis.2013.03.007 23545147
    [Google Scholar]
  37. Liu J.A. Walton J.C. DeVries A.C. Nelson R.J. Disruptions of circadian rhythms and thrombolytic therapy during ischemic stroke intervention. Front. Neurosci. 2021 15 675732 10.3389/fnins.2021.675732 34177452
    [Google Scholar]
  38. Potter G.D.M. Skene D.J. Arendt J. Cade J.E. Grant P.J. Hardie L.J. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocr. Rev. 2016 37 6 584 608 10.1210/er.2016‑1083 27763782
    [Google Scholar]
  39. Brown S.A. Azzi A. Peripheral circadian oscillators in mammals BT - Circadian clocks. Handb Exp Pharmacol 2013 2013 45 66 10.1007/978‑3‑642‑25950‑0_3
    [Google Scholar]
  40. Csép K. Transcription factors of the core feedback loop in the molecular circadian clock machinery: Internal timekeeping and beyond. Acta Marisiensis - Ser. Medica (Stuttg) 2021 67 3 11 10.2478/amma‑2021‑0007
    [Google Scholar]
  41. Pacheco-Bernal I. Becerril-Pérez F. Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: Implications of chromatin interactions for cyclic transcription. Clin. Epigenetics 2019 11 1 79 10.1186/s13148‑019‑0677‑2 31092281
    [Google Scholar]
  42. Kim Y.H. Lazar M.A. Transcriptional control of Circadian Rhythms and metabolism: A matter of time and space. Endocr. Rev. 2020 41 5 707 732 10.1210/endrev/bnaa014 32392281
    [Google Scholar]
  43. Buijs R. Salgado R. Sabath E. Escobar C. Peripheral circadian oscillators: Time and food. Chronobiology: Biological Timing in Health and Disease Academic Press 2013 119 83-103
    [Google Scholar]
  44. Barclay J.L. Tsang A.H. Oster H. Interaction of central and peripheral clocks in physiological regulation. The Neurobiology of Circadian Timing; Kalsbeek. Elsevier 2012 163 181
    [Google Scholar]
  45. Kwapis J.L. Alaghband Y. Kramár E.A. López A.J. Vogel Ciernia A. White A.O. Shu G. Rhee D. Michael C.M. Montellier E. Liu Y. Magnan C.N. Chen S. Sassone-Corsi P. Baldi P. Matheos D.P. Wood M.A. Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat. Commun. 2018 9 1 3323 10.1038/s41467‑018‑05868‑0 30127461
    [Google Scholar]
  46. Wyse C.A. Coogan A.N. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 2010 1337 21 31 10.1016/j.brainres.2010.03.113 20382135
    [Google Scholar]
  47. Chen C.Y. Logan R.W. Ma T. Lewis D.A. Tseng G.C. Sibille E. McClung C.A. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA 2016 113 1 206 211 10.1073/pnas.1508249112 26699485
    [Google Scholar]
  48. Kalfalah F. Janke L. Schiavi A. Tigges J. Ix A. Ventura N. Boege F. Reinke H. Crosstalk of clock gene expression and autophagy in aging. Aging (Albany NY) 2016 8 9 1876 1895 10.18632/aging.101018 27574892
    [Google Scholar]
  49. Jiang H.J. Underwood T.C. Bell J.G. Ranjan S. Sasselov D. Whitesides G.M. Mimicking lighting-induced electrochemistry on the early earth. Proc. Natl. Acad. Sci. USA 2017 120 2017 10.1073/pnas
    [Google Scholar]
  50. Asai M. Yoshinobu Y. Kaneko S. Mori A. Nikaido T. Moriya T. Akiyama M. Shibata S. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J. Neurosci. Res. 2001 66 6 1133 1139 10.1002/jnr.10010 11746446
    [Google Scholar]
  51. Bass J. Circadian topology of metabolism. Nature 2012 491 7424 348 356 10.1038/nature11704 23151577
    [Google Scholar]
  52. Panda S. Circadian physiology of metabolism. Science 2016 354 1008 1015 10.1126/science.aah4967
    [Google Scholar]
  53. Paschos G.K. FitzGerald G.A. Circadian clocks and vascular function. Circ. Res. 2010 106 5 833 841 10.1161/CIRCRESAHA.109.211706 20299673
    [Google Scholar]
  54. Sancar G. Brunner M. Circadian clocks and energy metabolism. Cell. Mol. Life Sci. 2014 71 14 2667 2680 10.1007/s00018‑014‑1574‑7 24515123
    [Google Scholar]
  55. Asher G. Sassone-Corsi P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015 161 1 84 92 10.1016/j.cell.2015.03.015 25815987
    [Google Scholar]
  56. Eckel-Mahan K. Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol. Rev. 2013 93 1 107 135 10.1152/physrev.00016.2012 23303907
    [Google Scholar]
  57. Maury E. Ramsey K.M. Bass J. Circadian rhythms and metabolic syndrome: From experimental genetics to human disease. Circ. Res. 2010 106 3 447 462 10.1161/CIRCRESAHA.109.208355 20167942
    [Google Scholar]
  58. Scheer F.A.J.L. Hilton M.F. Mantzoros C.S. Shea S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009 106 11 4453 4458 10.1073/pnas.0808180106 19255424
    [Google Scholar]
  59. Hodkinson D.J. O’Daly O. Zunszain P.A. Pariante C.M. Lazurenko V. Zelaya F.O. Howard M.A. Williams S.C.R. Circadian and homeostatic modulation of functional connectivity and regional cerebral blood flow in humans under normal entrained conditions. J. Cereb. Blood Flow Metab. 2014 34 9 1493 1499 10.1038/jcbfm.2014.109 24938404
    [Google Scholar]
  60. Douma L.G. Barral D. Gumz M.L. Interplay of the circadian clock and endothelin system. Physiology (Bethesda) 2021 36 1 35 43 10.1152/physiol.00021.2020 33325818
    [Google Scholar]
  61. Crnko S. Cour M. Van Laake L.W. Lecour S. Vasculature on the clock: Circadian rhythm and vascular dysfunction. Vascul. Pharmacol. 2018 108 1 7 10.1016/j.vph.2018.05.003 29778521
    [Google Scholar]
  62. Anea C.B. Cheng B. Sharma S. Kumar S. Caldwell R.W. Yao L. Ali M.I. Merloiu A.M. Stepp D.W. Black S.M. Fulton D.J.R. Rudic R.D. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ. Res. 2012 111 9 1157 1165 10.1161/CIRCRESAHA.111.261750 22912383
    [Google Scholar]
  63. Anea C.B. Zhang M. Stepp D.W. Simkins G.B. Reed G. Fulton D.J. Rudic R.D. Vascular disease in mice with a dysfunctional circadian clock. Circulation 2009 119 11 1510 1517 10.1161/CIRCULATIONAHA.108.827477 19273720
    [Google Scholar]
  64. Conroy D.A. Spielman A.J. Scott R.Q. Daily rhythm of cerebral blood flow velocity. J. Circadian Rhythms 2005 3 0 3 10.1186/1740‑3391‑3‑3 15760472
    [Google Scholar]
  65. Mitchell J.W. Gillette M.U. Development of circadian neurovascular function and its implications. Front. Neurosci. 2023 17 1196606 10.3389/fnins.2023.1196606 37732312
    [Google Scholar]
  66. Webb A.J.S. Klerman E.B. Mandeville E.T. Circadian and diurnal regulation of cerebral blood flow. Circ. Res. 2024 134 6 695 710 10.1161/CIRCRESAHA.123.323049 38484025
    [Google Scholar]
  67. Peek C.B. Affinati A.H. Ramsey K.M. Kuo H.-Y. Yu W. Sena L.A. Ilkayeva O. Marcheva B. Kobayashi Y. Omura C. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013 342 6158 1243417 10.1126/science.1243417
    [Google Scholar]
  68. Takahashi J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017 18 3 164 179 10.1038/nrg.2016.150 27990019
    [Google Scholar]
  69. Bass J. Lazar M.A. Circadian time signatures of fitness and disease. Science 2016 354 6315 994 999 10.1126/science.aah4965
    [Google Scholar]
  70. Reinke H. Asher G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 2019 20 4 227 241 10.1038/s41580‑018‑0096‑9 30635659
    [Google Scholar]
  71. Cantó C. Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 2009 20 2 98 105 10.1097/MOL.0b013e328328d0a4 19276888
    [Google Scholar]
  72. Sartor F. Ferrero-Bordera B. Haspel J. Sperandio M. Holloway P.M. Merrow M. Circadian Clock and Hypoxia. Circ. Res. 2024 134 6 618 634 10.1161/CIRCRESAHA.124.323518 38484033
    [Google Scholar]
  73. Adamovich Y. Ladeuix B. Sobel J. Manella G. Neufeld-Cohen A. Assadi M.H. Golik M. Kuperman Y. Tarasiuk A. Koeners M.P. Asher G. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metab. 2019 29 5 1092 1103.e3 10.1016/j.cmet.2019.01.007 30773466
    [Google Scholar]
  74. Peng S.L. Dumas J.A. Park D.C. Liu P. Filbey F.M. McAdams C.J. Pinkham A.E. Adinoff B. Zhang R. Lu H. Age-related increase of resting metabolic rate in the human brain. Neuroimage 2014 98 176 183 10.1016/j.neuroimage.2014.04.078 24814209
    [Google Scholar]
  75. Muccio M. Walton Masters L. Pilloni G. He P. Krupp L. Datta A. Bikson M. Charvet L. Ge Y. Cerebral metabolic rate of oxygen (CMRO2) changes measured with simultaneous tDCS-MRI in healthy adults. Brain Res. 2022 1796 148097 10.1016/j.brainres.2022.148097 36150457
    [Google Scholar]
  76. Valabrègue R. Aubert A. Burger J. Bittoun J. Costalat R. Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J. Cereb. Blood Flow Metab. 2003 23 5 536 545 10.1097/01.WCB.0000055178.31872.38 12771568
    [Google Scholar]
  77. Cho J. Lee J. An H. Goyal M.S. Su Y. Wang Y. Cerebral oxygen extraction fraction (OEF): Comparison of challenge-free gradient echo QSM+qBOLD (QQ) with 15 O PET in healthy adults. J. Cereb. Blood Flow Metab. 2021 41 7 1658 1668 10.1177/0271678X20973951 33243071
    [Google Scholar]
  78. Mintun M.A. Raichle M.E. Martin W.R.W. Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J. Nucl Med 1984 25 2 177 187
    [Google Scholar]
  79. Marcheva B. Ramsey K.M. Buhr E.D. Kobayashi Y. Su H. Ko C.H. Ivanova G. Omura C. Mo S. Vitaterna M.H. Lopez J.P. Philipson L.H. Bradfield C.A. Crosby S.D. JeBailey L. Wang X. Takahashi J.S. Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010 466 7306 627 631 10.1038/nature09253 20562852
    [Google Scholar]
  80. Kudo T. Tamagawa T. Kawashima M. Mito N. Shibata S. Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet. J. Biol. Rhythms 2007 22 4 312 323 10.1177/0748730407302625 17660448
    [Google Scholar]
  81. Schmutz I. Ripperger J.A. Baeriswyl-Aebischer S. Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010 24 4 345 357 10.1101/gad.564110 20159955
    [Google Scholar]
  82. Ramzan I. Khan M.H. Sharma S. Nuhmani S. Effects of circadian rhythm on anaerobic performance and blood lactate level: A systematic review. Sleep Breath. 2023 27 3 799 816 10.1007/s11325‑022‑02662‑7 35904663
    [Google Scholar]
  83. Wallace N.K. Pollard F. Savenkova M. Karatsoreos I.N. Effect of Aging on daily rhythms of lactate metabolism in the Medial Prefrontal Cortex of Male Mice. Neuroscience 2020 448 300 310 10.1016/j.neuroscience.2020.07.032 32717298
    [Google Scholar]
  84. Vallée A. Lecarpentier Y. Guillevin R. Vallée J.N. The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl. Psychiatry 2020 10 1 400 10.1038/s41398‑020‑01086‑9 33199680
    [Google Scholar]
  85. Peek C.B. Levine D.C. Cedernaes J. Taguchi A. Kobayashi Y. Tsai S.J. Bonar N.A. McNulty M.R. Ramsey K.M. Bass J. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017 25 1 86 92 10.1016/j.cmet.2016.09.010 27773696
    [Google Scholar]
  86. de Goede P. Wefers J. Brombacher E.C. Schrauwen P. Kalsbeek A. Circadian rhythms in mitochondrial respiration. J. Mol. Endocrinol. 2018 60 3 R115 R130 10.1530/JME‑17‑0196 29378772
    [Google Scholar]
  87. Jin Z. Ji Y. Su W. Zhou L. Wu X. Gao L. Guo J. Liu Y. Zhang Y. Wen X. Xia Z.Y. Xia Z. Lei S. The role of circadian clock-controlled mitochondrial dynamics in diabetic cardiomyopathy. Front. Immunol. 2023 14 1142512 10.3389/fimmu.2023.1142512 37215098
    [Google Scholar]
  88. Metcalfe N.B. Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol. Ecol. 2022 31 23 6040 6052 10.1111/mec.16150 34435398
    [Google Scholar]
  89. Putker M. O’Neill J.S. Reciprocal control of the circadian clock and cellular redox statel: A critical appraisal. Mol. Cells 2016 39 1 6 19 10.14348/molcells.2016.2323 26810072
    [Google Scholar]
  90. Rabinovich-Nikitin I. Rasouli M. Reitz C.J. Posen I. Margulets V. Dhingra R. Khatua T.N. Thliveris J.A. Martino T.A. Kirshenbaum L.A. Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy 2021 17 11 3794 3812 10.1080/15548627.2021.1938913 34085589
    [Google Scholar]
  91. Kim J. Sun W. Circadian coordination: Understanding interplay between circadian clock and mitochondria. Anim. Cells Syst. 2024 28 1 228 236 10.1080/19768354.2024.2347503 38721230
    [Google Scholar]
  92. Canever J.B. Queiroz L.Y. Soares E.S. de Avelar N.C.P. Cimarosti H.I. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J. Neurochem. 2024 168 8 1475 1489 10.1111/jnc.15883 37358003
    [Google Scholar]
  93. Wulff K. Gatti S. Wettstein J.G. Foster R.G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 2010 11 8 589 599 10.1038/nrn2868 20631712
    [Google Scholar]
  94. Videnovic A. Lazar A.S. Barker R.A. Overeem S. ‘The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 2014 10 12 683 693 10.1038/nrneurol.2014.206 25385339
    [Google Scholar]
  95. Easton A. Meerlo P. Bergmann B. Turek F.W. The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 2004 27 7 1307 1318 10.1093/sleep/27.7.1307 15586783
    [Google Scholar]
  96. Patke A. Young M.W. Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 2020 21 2 67 84 10.1038/s41580‑019‑0179‑2 31768006
    [Google Scholar]
  97. Wang X.L. Li L. Circadian clock regulates inflammation and the development of neurodegeneration. Front. Cell. Infect. Microbiol. 2021 11 696554 10.3389/fcimb.2021.696554 34595127
    [Google Scholar]
  98. Musiek E.S. Holtzman D.M. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 2016 354 6315 1004 10.1126/science.aah4968
    [Google Scholar]
  99. Gao Z. Guan J. Yin S. Liu F. The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner. Sleep Med. 2024 119 147 154 10.1016/j.sleep.2024.04.031 38678758
    [Google Scholar]
  100. Huang Z.L. Zhang Z. Qu W.M. Roles of adenosine and its receptors in sleep–wake regulation. Adenosine Receptors in Neurology and Psychiatry Academic Press 2014 349 371
    [Google Scholar]
  101. Chang C.P. Wu K.C. Lin C.Y. Chern Y. Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J. Biomed. Sci. 2021 28 1 70 10.1186/s12929‑021‑00766‑y 34635103
    [Google Scholar]
  102. Halász P. The role of micro-arousals in the regulation of sleep. Ideggyogy. Sz. 2006 59 7-8 252 260 17076303
    [Google Scholar]
  103. Huang L. Zhu W. Li N. Zhang B. Dai W. Li S. Xu H. Functions and mechanisms of adenosine and its receptors in sleep regulation. Sleep Med. 2024 115 210 217 10.1016/j.sleep.2024.02.012 38373361
    [Google Scholar]
  104. Jelska A. Polecka A. Zahorodnii A. Olszewska E. The role of oxidative stress and the potential therapeutic benefits of Aronia melanocarpa supplementation in obstructive sleep apnea syndrome: A comprehensive literature review. Antioxidants 2024 13 11 1300 10.3390/antiox13111300 39594442
    [Google Scholar]
  105. Ramachandran R. Manan A. Kim J. Choi S. NLRP3 inflammasome: A key player in the pathogenesis of life-style disorders. Exp. Mol. Med. 2024 56 7 1488 1500 10.1038/s12276‑024‑01261‑8 38945951
    [Google Scholar]
  106. Atrooz F. Salim S. Sleep deprivation, oxidative stress and inflammation. Inflammatory Disorders Academic Press 2020 309 336
    [Google Scholar]
  107. Li J. Wu X. Yan S. Shen J. Tong T. Aslam M.S. Zeng J. Chen Y. Chen W. Li M. You Z. Understanding the Antidepressant mechanisms of acupuncture: Targeting hippocampal neuroinflammation, oxidative stress, neuroplasticity, and apoptosis in CUMS Rats. Mol. Neurobiol. 2024 1-6 10.1007/s12035‑024‑04550‑5 39422855
    [Google Scholar]
  108. Nagayach A. Bhaskar R. Patro I. Microglia activation and inflammation in hippocampus attenuates memory and mood functions during experimentally induced diabetes in rat. J. Chem. Neuroanat. 2022 125 102160 10.1016/j.jchemneu.2022.102160 36089179
    [Google Scholar]
  109. Nagayach A. Bhaskar R. Ghosh S. Singh K.K. Han S.S. Sinha J.K. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives. Ageing Res. Rev. 2024 100 102450 10.1016/j.arr.2024.102450 39134179
    [Google Scholar]
  110. Ghosh S. Sinha J.K. Ghosh S. Sharma H. Bhaskar R. Narayanan K.B. A comprehensive review of emerging trends and innovative therapies in epilepsy management. Brain Sci. 2023 13 9 1305 10.3390/brainsci13091305 37759906
    [Google Scholar]
  111. Cheng W.Y. Chan P.L. Ong H.Y. Wong K.H. Chang R.C.C. Systemic inflammation disrupts circadian rhythms and diurnal neuroimmune dynamics. Int. J. Mol. Sci. 2024 25 13 7458 10.3390/ijms25137458 39000563
    [Google Scholar]
  112. Griffin P. Dimitry J.M. Sheehan P.W. Lananna B.V. Guo C. Robinette M.L. Hayes M.E. Cedeño M.R. Nadarajah C.J. Ezerskiy L.A. Colonna M. Zhang J. Bauer A.Q. Burris T.P. Musiek E.S. Circadian clock protein Rev-erbα regulates neuroinflammation. Proc. Natl. Acad. Sci. USA 2019 116 11 5102 5107 10.1073/pnas.1812405116 30792350
    [Google Scholar]
  113. Wang H.B. Whittaker D.S. Truong D. Mulji A.K. Ghiani C.A. Loh D.H. Colwell C.S. Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington’s disease. Neurobiol. Sleep Circadian Rhythms 2017 2 39 52 10.1016/j.nbscr.2016.12.002 31236494
    [Google Scholar]
  114. van Wamelen D.J. Roos R.A.C. Aziz N.A. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener. Dis. Manag. 2015 5 6 549 559 10.2217/nmt.15.45 26621387
    [Google Scholar]
  115. Faragó A. Zsindely N. Bodai L. Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila. Sci. Rep. 2019 9 1 7174 10.1038/s41598‑019‑43612‑w 31073199
    [Google Scholar]
  116. de Souza F.R.O. Ribeiro F.M. Lima P.M.A. Implications of VIP and PACAP in Parkinson’s Disease: What do we know so far? Curr. Med. Chem. 2021 28 9 1703 1715 10.2174/0929867327666200320162436 32196442
    [Google Scholar]
  117. Morell M. Souza-Moreira L. González-Rey E. VIP in neurological diseases: More than a neuropeptide. Endocr. Metab. Immune Disord. Drug Targets 2012 12 4 323 332 10.2174/187153012803832549 23094829
    [Google Scholar]
  118. Patton A.P. Edwards M.D. Smyllie N.J. Hamnett R. Chesham J.E. Brancaccio M. Maywood E.S. Hastings M.H. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat. Commun. 2020 11 1 3394 10.1038/s41467‑020‑17110‑x 32636383
    [Google Scholar]
  119. Fahrenkrug J. Popovic N. Georg B. Brundin P. Hannibal J. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J. Mol. Neurosci. 2007 31 2 139 148 10.1385/JMN/31:02:139 17478887
    [Google Scholar]
  120. Sinha J.K. Jorwal K. Singh K.K. Han S.S. Bhaskar R. Ghosh S. The potential of mitochondrial therapeutics in the treatment of oxidative stress and inflammation in aging. Mol. Neurobiol. 2024 1-6 10.1007/s12035‑024‑04474‑0 39230868
    [Google Scholar]
  121. Sinha J.K. Ghosh S. Ghosh S. Bhaskar R. Han S.S. Improving therapeutic approaches to insomnia: The need for objective sleep data. Lancet Healthy Longev. 2023 4 9 e459 10.1016/S2666‑7568(23)00158‑7 37659428
    [Google Scholar]
  122. Sethi P. Bhaskar R. Singh K.K. Gupta S. Han S.S. Avinash D. Abomughaid M.M. Koul A. Rani B. Ghosh S. Jha N.K. Sinha J.K. Exploring advancements in early detection of Alzheimer’s disease with molecular assays and animal models. Ageing Res. Rev. 2024 100 102411 10.1016/j.arr.2024.102411 38986845
    [Google Scholar]
  123. Li H. Kilgallen A.B. Münzel T. Wolf E. Lecour S. Schulz R. Daiber A. Van Laake L.W. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br. J. Pharmacol. 2020 177 23 5393 5412 10.1111/bph.14949 31833063
    [Google Scholar]
  124. Fanjul-Moles M.L. López-Riquelme G.O. Relationship between oxidative stress, circadian rhythms, and AMD. Oxid. Med. Cell. Longev. 2016 2016 1 7420637 10.1155/2016/7420637 26885250
    [Google Scholar]
  125. Sato T. Greco C.M. Expanding the link between circadian rhythms and redox metabolism of epigenetic control. Free Radic. Biol. Med. 2021 170 50 58 10.1016/j.freeradbiomed.2021.01.009 33450380
    [Google Scholar]
  126. Blasiak J. Petrovski G. Veréb Z. Facskó A. Kaarniranta K. Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. BioMed Res. Int. 2014 2014 1 7 10.1155/2014/768026 24707498
    [Google Scholar]
  127. Ayyar V.S. Sukumaran S. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions. J. Pharmacokinet. Pharmacodyn. 2021 48 3 321 338 10.1007/s10928‑021‑09751‑2 33797011
    [Google Scholar]
  128. Han H. Dou J. Hou Q. Wang H. Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease. J. Cardiovasc. Pharmacol. 2022 79 3 254 263 10.1097/FJC.0000000000001178 34840256
    [Google Scholar]
  129. Weldemichael D.A. Grossberg G.T. Circadian rhythm disturbances in patients with Alzheimer’s disease: A review. Int. J. Alzheimers Dis. 2010 2010 1 9 10.4061/2010/716453 20862344
    [Google Scholar]
  130. Duncan M.J. Interacting influences of aging and Alzheimer’s disease on circadian rhythms. Eur. J. Neurosci. 2020 51 1 310 325 10.1111/ejn.14358 30689226
    [Google Scholar]
  131. Niu L. Zhang F. Xu X. Yang Y. Li S. Liu H. Le W. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology. Brain Pathol. 2022 32 3 e13028 10.1111/bpa.13028 34668266
    [Google Scholar]
  132. Kress G.J. Liao F. Dimitry J. Cedeno M.R. FitzGerald G.A. Holtzman D.M. Musiek E.S. Regulation of amyloid-β dynamics and pathology by the circadian clock. J. Exp. Med. 2018 215 4 1059 1068 10.1084/jem.20172347 29382695
    [Google Scholar]
  133. Sharma A. Sethi G. Tambuwala M.M. Aljabali A.A.A. Chellappan D.K. Dua K. Goyal R. Circadian rhythm disruption and Alzheimers disease: The dynamics of a vicious cycle. Curr. Neuropharmacol. 2021 19 2 248 264 10.2174/18756190MTA21MjAf3 32348224
    [Google Scholar]
  134. Wang X. Wang R. Li J. Influence of sleep disruption on protein accumulation in neurodegenerative diseases. Ageing Neur Dis 2022 2 4 10.20517/and.2021.10
    [Google Scholar]
  135. Albrecht U. Ripperger J.A. Circadian clocks and sleep: Impact of rhythmic metabolism and waste clearance on the brain. Trends Neurosci. 2018 41 10 677 688 10.1016/j.tins.2018.07.007 30274603
    [Google Scholar]
  136. Guo D.Z. Chen Y. Meng Y. Bian J.J. Wang Y. Wang J.F. Bidirectional interaction of sepsis and sleep disorders: The underlying mechanisms and clinical implications. Nat. Sci. Sleep 2024 16 1665 1678 10.2147/NSS.S485920 39444661
    [Google Scholar]
  137. Oldham M.A. Ciraulo D.A. Bright light therapy for depression: A review of its effects on chronobiology and the autonomic nervous system. Chronobiol. Int. 2014 31 3 305 319 10.3109/07420528.2013.833935 24397276
    [Google Scholar]
  138. Ono H. Taguchi T. Kido Y. Fujino Y. Doki Y. The usefulness of bright light therapy for patients after oesophagectomy. Intensive Crit. Care Nurs. 2011 27 3 158 166 10.1016/j.iccn.2011.03.003 21511473
    [Google Scholar]
  139. Al-Karawi D. Jubair L. Bright light therapy for nonseasonal depression: Meta-analysis of clinical trials. J. Affect. Disord. 2016 198 64 71 10.1016/j.jad.2016.03.016 27011361
    [Google Scholar]
  140. Liu X. Li H. Ma R. Tong X. Wu J. Huang X. So K.F. Tao Q. Huang L. Lin S. Ren C. Burst firing in Output‐defined parallel habenula circuit underlies the antidepressant effects of bright light treatment. Adv. Sci. (Weinh.) 2024 11 30 2401059 10.1002/advs.202401059 38863324
    [Google Scholar]
  141. Mei X. Zou C.J. Zheng C.Y. Hu J. Zhou D.S. Effect of bright-light therapy on depression and anxiety of a patient with Alzheimer’s disease combined with sleep disorder: A case report. World J. Psychiatry 2024 14 12 1982 1987 10.5498/wjp.v14.i12.1982 39704363
    [Google Scholar]
  142. Subhadeep D. Srikumar B.N. Rao S.B.S. Kutty B.M. Circadian rhythm manipulations: Implications on behavioral restoration in central nervous system insults bt - sleep and clocks in aging and longevity. Springer International Publishing. Jagota A. Cham 2023 349 361
    [Google Scholar]
  143. Xiong X. Hu T. Yin Z. Zhang Y. Chen F. Lei P. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease. Front. Aging Neurosci. 2022 14 944283 10.3389/fnagi.2022.944283 36062143
    [Google Scholar]
  144. Uddin M.S. Tewari D. Mamun A.A. Kabir M.T. Niaz K. Wahed M.I.I. Barreto G.E. Ashraf G.M. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res. Rev. 2020 60 101046 10.1016/j.arr.2020.101046 32171783
    [Google Scholar]
  145. Kosanovic Rajacic B. Sagud M. Pivac N. Begic D. Illuminating the way: The role of bright light therapy in the treatment of depression. Expert Rev. Neurother. 2023 23 12 1157 1171 10.1080/14737175.2023.2273396 37882458
    [Google Scholar]
  146. Costa C.I. Carvalho N.H. Fernandes L. Aging, circadian rhythms and depressive disorders: A review. Am. J. Neurodegener. Dis. 2013 2 4 228 246 24319642
    [Google Scholar]
  147. Videnovic A. Noble C. Reid K.J. Peng J. Turek F.W. Marconi A. Rademaker A.W. Simuni T. Zadikoff C. Zee P.C. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 2014 71 4 463 469 10.1001/jamaneurol.2013.6239 24566763
    [Google Scholar]
  148. Dowling G.A. Mastick J. Colling E. Carter J.H. Singer C.M. Aminoff M.J. Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med. 2005 6 5 459 466 10.1016/j.sleep.2005.04.004 16084125
    [Google Scholar]
  149. Zang L. Liu X. Li Y. Liu J. Lu Q. Zhang Y. Meng Q. The effect of light therapy on sleep disorders and psychobehavioral symptoms in patients with Alzheimer’s disease: A meta-analysis. PLoS One 2023 18 12 e0293977 10.1371/journal.pone.0293977 38055651
    [Google Scholar]
  150. Tang R. Gong S. Li J. Hu W. Liu J. Liao C. Efficacy of non-pharmacological interventions for sleep quality in Parkinson’s disease: A systematic review and network meta-analysis. Front. Neurosci. 2024 18 1337616 10.3389/fnins.2024.1337616 38449730
    [Google Scholar]
  151. Mogulkoc R. Baltaci A.K. Aydin L. Role of melatonin receptors in hyperthermia-induced acute seizure model of rats. J. Mol. Neurosci. 2019 69 4 636 642 10.1007/s12031‑019‑01392‑y 31418115
    [Google Scholar]
  152. Mogulkoc R. Baltaci A.K. Oztekin E. Aydin L. Sivrikaya A. Melatonin prevents oxidant damage in various tissues of rats with hyperthyroidism. Life Sci. 2006 79 3 311 315 10.1016/j.lfs.2006.01.009 16464477
    [Google Scholar]
  153. Besag F.M.C. Vasey M.J. Lao K.S.J. Wong I.C.K. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: A systematic review. CNS Drugs 2019 33 12 1167 1186 10.1007/s40263‑019‑00680‑w 31722088
    [Google Scholar]
  154. Vural E.M.S. van Munster B.C. de Rooij S.E. Optimal dosages for melatonin supplementation therapy in older adults: A systematic review of current literature. Drugs Aging 2014 31 6 441 451 10.1007/s40266‑014‑0178‑0 24802882
    [Google Scholar]
  155. Foley H.M. Steel A.E. Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence. Complement. Ther. Med. 2019 42 65 81 10.1016/j.ctim.2018.11.003 30670284
    [Google Scholar]
  156. Dijk D.J. Duffy J.F. Novel approaches for assessing Circadian Rhythmicity in humans: A review. J. Biol. Rhythms 2020 35 5 421 438 10.1177/0748730420940483 32700634
    [Google Scholar]
  157. Huang W. Zong J. Zhang Y. Zhou Y. Zhang L. Wang Y. Shan Z. Xie Q. Li M. Pan S. Xiao Z. The role of Circadian Rhythm in neurological diseases: A translational perspective. Aging Dis. 2023 15 4 1565 1587 10.14336/AD.2023.0921 37815902
    [Google Scholar]
  158. Zaki N.F.W. Yousif M. BaHammam A.S. Spence D.W. Bharti V.K. Subramanian P. Pandi-Perumal S.R. Chronotherapeutics: Recognizing the importance of timing factors in the treatment of disease and sleep disorders. Clin. Neuropharmacol. 2019 42 3 80 87 10.1097/WNF.0000000000000341 31082833
    [Google Scholar]
  159. Scammell T.E. Winrow C.J. Orexin receptors: Pharmacology and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2011 51 1 243 266 10.1146/annurev‑pharmtox‑010510‑100528 21034217
    [Google Scholar]
  160. Chen Q. de Lecea L. Hu Z. Gao D. The hypocretin/orexin system: An increasingly important role in neuropsychiatry. Med. Res. Rev. 2015 35 1 152 197 10.1002/med.21326 25044006
    [Google Scholar]
  161. Krystal A.D. Benca R.M. Kilduff T.S. Understanding the sleep-wake cycle: Sleep, insomnia, and the orexin system. J. Clin. Psychiatry 2013 74 Suppl. 1 3 20 10.4088/JCP.13011su1c 24107804
    [Google Scholar]
  162. Jacobson L.H. Hoyer D. de Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J. Intern. Med. 2022 291 5 533 556 10.1111/joim.13406 35043499
    [Google Scholar]
  163. Sakurai T. The role of orexin in motivated behaviours. Nat. Rev. Neurosci. 2014 15 11 719 731 10.1038/nrn3837 25301357
    [Google Scholar]
  164. Wang S. Li F. Lin Y. Wu B. Targeting REV-ERBα for therapeutic purposes: Promises and challenges. Theranostics 2020 10 9 4168 4182 10.7150/thno.43834 32226546
    [Google Scholar]
  165. Huang S. Jiao X. Lu D. Pei X. Qi D. Li Z. Recent advances in modulators of circadian rhythms: An update and perspective. J. Enzyme Inhib. Med. Chem. 2020 35 1 1267 1286 10.1080/14756366.2020.1772249 32506972
    [Google Scholar]
  166. Kojetin D.J. Burris T.P. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 2014 13 3 197 216 10.1038/nrd4100 24577401
    [Google Scholar]
  167. Duez H. Staels B. Rev-erb-α: An integrator of circadian rhythms and metabolism. J. Appl. Physiol. 2009 107 6 1972 1980 10.1152/japplphysiol.00570.2009 19696364
    [Google Scholar]
  168. Zhang T. Guo L. Yu F. Chen M. Wu B. The nuclear receptor Rev-erbα participates in circadian regulation of Ugt2b enzymes in mice. Biochem. Pharmacol. 2019 161 89 97 10.1016/j.bcp.2019.01.010 30639455
    [Google Scholar]
  169. Cuenoud B. Huang Z. Hartweg M. Widmaier M. Lim S. Wenz D. Xin L. Effect of circadian rhythm on NAD and other metabolites in human brain. Front. Physiol. 2023 14 1285776 10.3389/fphys.2023.1285776 38028810
    [Google Scholar]
  170. Poljšak B. Kovač V. Milisav I. Current uncertainties and future challenges regarding NAD+ boosting strategies. Antioxidants 2022 11 9 1637 10.3390/antiox11091637 36139711
    [Google Scholar]
  171. Escalante-Covarrubias Q. Mendoza-Viveros L. González-Suárez M. Sitten-Olea R. Velázquez-Villegas L.A. Becerril-Pérez F. Pacheco-Bernal I. Carreño-Vázquez E. Mass-Sánchez P. Bustamante-Zepeda M. Orozco-Solís R. Aguilar-Arnal L. Time-of-day defines NAD+ efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat. Commun. 2023 14 1 1685 10.1038/s41467‑023‑37286‑2 36973248
    [Google Scholar]
  172. Alegre G.F.S. Pastore G.M. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential dietary contribution to health. Curr. Nutr. Rep. 2023 12 3 445 464 10.1007/s13668‑023‑00475‑y 37273100
    [Google Scholar]
  173. Bhatnagar A. Murray G. Ray S. Circadian biology to advance therapeutics for mood disorders. Trends Pharmacol. Sci. 2023 44 10 689 704 10.1016/j.tips.2023.07.008 37648611
    [Google Scholar]
  174. Crowther M.E. Ferguson S.A. Vincent G.E. Reynolds A.C. Non-pharmacological interventions to improve chronic disease risk factors and sleep in shift workers: A systematic review and meta-analysis. Clocks Sleep 2021 3 1 132 178 10.3390/clockssleep3010009 33525534
    [Google Scholar]
  175. Cajochen C. 34th Annual Meeting of the Society for light treatment and biological rhythms (SLTBR), 30 May–1 June, Lausanne, Switzerland. Clocks Sleep 2023 5 3 414 482 10.3390/clockssleep5030031 37754349
    [Google Scholar]
  176. Fisk A.S. Tam S.K.E. Brown L.A. Vyazovskiy V.V. Bannerman D.M. Peirson S.N. Light and cognition: Roles for Circadian rhythms, sleep, and arousal. Front. Neurol. 2018 9 56 10.3389/fneur.2018.00056 29479335
    [Google Scholar]
  177. Keihani A. Mayeli A. Ferrarelli F. Circadian Rhythm changes in healthy aging and mild cognitive impairment. Adv. Biol. 2023 7 11 2200237 10.1002/adbi.202200237 36403250
    [Google Scholar]
  178. Scott J.P.R. McNaughton L.R. Polman R.C.J. Effects of sleep deprivation and exercise on cognitive, motor performance and mood. Physiol. Behav. 2006 87 2 396 408 10.1016/j.physbeh.2005.11.009 16403541
    [Google Scholar]
  179. Yalçin M. Mundorf A. Thiel F. Amatriain-Fernández S. Kalthoff I.S. Beucke J.C. Budde H. Garthus-Niegel S. Peterburs J. Relógio A. It’s about time: The Circadian network as time-keeper for cognitive functioning, locomotor activity and mental health. Front. Physiol. 2022 13 873237 10.3389/fphys.2022.873237 35547585
    [Google Scholar]
  180. Manoogian E.N.C. Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 2017 39 59 67 10.1016/j.arr.2016.12.006 28017879
    [Google Scholar]
  181. Roth J.R. Varshney S. de Moraes R.C.M. Melkani G.C. Circadian‐mediated regulation of cardiometabolic disorders and aging with time‐restricted feeding. Obesity (Silver Spring) 2023 31 S1 Suppl. 1 40 49 10.1002/oby.23664 36623845
    [Google Scholar]
  182. Longo V.D. Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016 23 6 1048 1059 10.1016/j.cmet.2016.06.001 27304506
    [Google Scholar]
  183. Chaix A. Manoogian E.N.C. Melkani G.C. Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 2019 39 1 291 315 10.1146/annurev‑nutr‑082018‑124320 31180809
    [Google Scholar]
  184. Henry C.J. Kaur B. Quek R.Y.C. Chrononutrition in the management of diabetes. Nutr. Diabetes 2020 10 1 6 10.1038/s41387‑020‑0109‑6 32075959
    [Google Scholar]
  185. Weinert D. Gubin D. The impact of physical activity on the circadian system: Benefits for health, performance and wellbeing. Appl. Sci. 2022 12 18 9220 10.3390/app12189220
    [Google Scholar]
  186. Davis L.K. Bumgarner J.R. Nelson R.J. Fonken L.K. Health effects of disrupted circadian rhythms by artificial light at night. Policy Insights Behav. Brain Sci. 2023 10 2 229 236 10.1177/23727322231193967
    [Google Scholar]
  187. Rudic R.D. McNamara P. Curtis A.M. Boston R.C. Panda S. Hogenesch J.B. FitzGerald G.A. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004 2 11 e377 10.1371/journal.pbio.0020377 15523558
    [Google Scholar]
  188. Foster R.G. Sleep, circadian rhythms and health. Interface Focus 2020 10 3 20190098 10.1098/rsfs.2019.0098 32382406
    [Google Scholar]
  189. Mohr A.E. Ortega-Santos C.P. Whisner C.M. Klein-Seetharaman J. Jasbi P. Navigating Challenges and opportunities in multi-omics integration for personalized healthcare. Biomedicines 2024 12 7 1496 10.3390/biomedicines12071496 39062068
    [Google Scholar]
  190. Infante Sanchez D. Circadiansense: A prototype wearable day and night patient monitoring system. Thesis University of Birmingham 2019
    [Google Scholar]
  191. de Zambotti M. Goldstein C. Cook J. Menghini L. Altini M. Cheng P. Robillard R. State of the science and recommendations for using wearable technology in sleep and circadian research. Sleep 2024 47 4 zsad325 10.1093/sleep/zsad325 38149978
    [Google Scholar]
  192. Gubin D. Weinert D. Stefani O. Otsuka K. Borisenkov M. Cornelissen G. Wearables in chronomedicine and interpretation of circadian health. Diagnostics 2025 15 3 327 10.3390/diagnostics15030327 39941257
    [Google Scholar]
/content/journals/car/10.2174/0115672050381989250626071304
Loading
/content/journals/car/10.2174/0115672050381989250626071304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test