Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Circadian rhythms are crucial for essential physiological functions such as metabolism, sleep-wake cycles, hormone balance, and cognitive abilities, which are regulated by the central Suprachiasmatic Nucleus (SCN) and peripheral clocks. Disruptions to circadian rhythms, which may be caused by aging, lifestyle factors, and environmental influences, are linked to metabolic disorders and Neurodegenerative Diseases (NDs). This review examines the reciprocal relationship between circadian control and metabolism, highlighting the molecular processes that maintain circadian rhythms and how these processes change with age. Aging diminishes SCN efficiency and disrupts peripheral clock alignment, leading to impaired physiological functions, increased oxidative stress, and neuroinflammation, all of which contribute to the progression of NDs such as Alzheimer’s (AD), Parkinson's disease (PD), Huntington's disease (HD), Emerging therapeutic strategies aim to restore circadian function through interventions, including bright light therapy, melatonin supplementation, and pharmacological agents targeting clock gene regulators and neuropeptides. Furthermore, lifestyle modifications, such as Structured Physical Activity (SPA) and Time-Restricted Feeding (TRF), can enhance circadian health by synchronizing metabolic and hormonal rhythms. Future directions include chrono-pharmacology, gene editing, and Artificial Intelligence (AI)-driven personalized medicine, all of which emphasize the development of tailored circadian therapies. Advancing circadian research holds the potential to facilitate better health outcomes and improve quality of life, while also addressing the growing concerns of the aging population and NDs.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050381989250626071304
2025-07-16
2025-12-22
Loading full text...

Full text loading...

References

  1. WalkerW.H.II WaltonJ.C. DeVriesA.C. NelsonR.J. Circadian rhythm disruption and mental health.Transl. Psychiatry20201012810.1038/s41398‑020‑0694‑032066704
    [Google Scholar]
  2. de AssisL.V.M. OsterH. The circadian clock and metabolic homeostasis: Entangled networks.Cell. Mol. Life Sci.202178104563458710.1007/s00018‑021‑03800‑233683376
    [Google Scholar]
  3. PilorzV. Helfrich-FörsterC. OsterH. The role of the circadian clock system in physiology.Pflugers Arch.2018470222723910.1007/s00424‑017‑2103‑y29302752
    [Google Scholar]
  4. LengY. MusiekE.S. HuK. CappuccioF.P. YaffeK. Association between circadian rhythms and neurodegenerative diseases.Lancet Neurol.201918330731810.1016/S1474‑4422(18)30461‑730784558
    [Google Scholar]
  5. ZielinskiM.R. GibbonsA.J. Neuroinflammation, sleep, and circadian rhythms.Front. Cell. Infect. Microbiol.20221285309610.3389/fcimb.2022.85309635392608
    [Google Scholar]
  6. WilkingM. NdiayeM. MukhtarH. AhmadN. Circadian rhythm connections to oxidative stress: Implications for human health.Antioxid. Redox Signal.201319219220810.1089/ars.2012.488923198849
    [Google Scholar]
  7. FatimaN. RanaS. Metabolic implications of circadian disruption.Pflugers Arch.2020472551352610.1007/s00424‑020‑02381‑632363530
    [Google Scholar]
  8. BuijinkM.R. MichelS. A multi-level assessment of the bidirectional relationship between aging and the circadian clock.J. Neurochem.20211571739410.1111/jnc.1528633370457
    [Google Scholar]
  9. NassanM. VidenovicA. Circadian rhythms in neurodegenerative disorders.Nat. Rev. Neurol.202218172410.1038/s41582‑021‑00577‑734759373
    [Google Scholar]
  10. AbbottS.M. MalkaniR.G. ZeeP.C. Circadian disruption and human health: A bidirectional relationship.Eur. J. Neurosci.202051156758310.1111/ejn.1429830549337
    [Google Scholar]
  11. Ruiz-GayoM. OlmoN.D. Interaction between Circadian Rhythms, energy metabolism, and cognitive function.Curr. Pharm. Des.202026202416242510.2174/138161282666620031014500632156228
    [Google Scholar]
  12. TeleanuD.M. NiculescuA.G. LunguI.I. RaduC.I. VladâcencoO. RozaE. CostăchescuB. GrumezescuA.M. TeleanuR.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases.Int. J. Mol. Sci.20222311593810.3390/ijms2311593835682615
    [Google Scholar]
  13. GiannottaG. RuggieroM. TrabaccaA. Chronobiology in paediatric neurological and neuropsychiatric disorders: Harmonizing care with biological clocks.J. Clin. Med.20241324773710.3390/jcm1324773739768659
    [Google Scholar]
  14. SamantaS. BagchiD. An intricate relationship between circadian rhythm dysfunction and psychiatric diseases.Explorat. Neuroscience20243432135110.37349/en.2024.00053
    [Google Scholar]
  15. Van ErumJ. Van DamD. De DeynP.P. Sleep and Alzheimer’s disease: A pivotal role for the suprachiasmatic nucleus.Sleep Med. Rev.201840172710.1016/j.smrv.2017.07.00529102282
    [Google Scholar]
  16. KimE. YooS.H. ChenZ. Circadian stabilization loop: The regulatory hub and therapeutic target promoting circadian resilience and physiological health.F1000 Res.202211123610.12688/f1000research.126364.136415204
    [Google Scholar]
  17. RuanW. YuanX. EltzschigH.K. Circadian rhythm as a therapeutic target.Nat. Rev. Drug Discov.202120428730710.1038/s41573‑020‑00109‑w33589815
    [Google Scholar]
  18. HoodS. AmirS. The aging clock: Circadian rhythms and later life.J. Clin. Invest.2017127243744610.1172/JCI9032828145903
    [Google Scholar]
  19. Pandi-PerumalS.R. CardinaliD.P. ZakiN.F.W. KarthikeyanR. SpenceD.W. ReiterR.J. BrownG.M. Timing is everything: Circadian rhythms and their role in the control of sleep.Front. Neuroendocrinol.20226610097810.1016/j.yfrne.2022.10097835033557
    [Google Scholar]
  20. Van DrunenR. Eckel-MahanK. Circadian rhythms of the hypothalamus: From function to physiology.Clocks Sleep20213118922610.3390/clockssleep301001233668705
    [Google Scholar]
  21. AstizM. HeydeI. OsterH. Mechanisms of communication in the mammalian circadian timing system.Int. J. Mol. Sci.201920234310.3390/ijms2002034330650649
    [Google Scholar]
  22. KimP. OsterH. LehnertH. SchmidS.M. SalamatN. BarclayJ.L. MarondeE. InderW. RawashdehO. Coupling the circadian clock to homeostasis: The role of period in timing physiology.Endocr. Rev.2019401669510.1210/er.2018‑0004930169559
    [Google Scholar]
  23. KesselL. SiganosG. JørgensenT. LarsenM. Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing.Sleep20113491215121910.5665/SLEEP.124221886359
    [Google Scholar]
  24. FosterR.G. Fundamentals of circadian entrainment by light.Light. Res. Technol.202153537739310.1177/14771535211014792
    [Google Scholar]
  25. KoG.Y.P. Circadian regulation in the retina: From molecules to network.Eur. J. Neurosci.202051119421610.1111/ejn.1418530270466
    [Google Scholar]
  26. OspriL.L. PruskyG. HattarS. Mood, the circadian system, and melanopsin retinal ganglion cells.Annu. Rev. Neurosci.201740153955610.1146/annurev‑neuro‑072116‑03132428525301
    [Google Scholar]
  27. ReghunandananV. Vasopressin in circadian function of SCN.J. Biosci.202045114010.1007/s12038‑020‑00109‑333361631
    [Google Scholar]
  28. ReghunandananV. Functional interactions between neurotransmitters and neuropeptides in regulating suprachiasmatic nucleus function and circadian rhythms.Explor. Neurosci.2024343447710.37349/en.2024.00059
    [Google Scholar]
  29. GerholdL.M. RosewellK.L. WiseP.M. Suppression of vasoactive intestinal polypeptide in the suprachiasmatic nucleus leads to aging-like alterations in cAMP rhythms and activation of gonadotropin-releasing hormone neurons.J. Neurosci.2005251626710.1523/JNEUROSCI.3598‑04.200515634767
    [Google Scholar]
  30. KimK. ChoeH.K. Role of hypothalamus in aging and its underlying cellular mechanisms.Mech. Ageing Dev.2019177747910.1016/j.mad.2018.04.00829729230
    [Google Scholar]
  31. OnoD. HonmaK. HonmaS. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm.J. Neurochem.20211571314110.1111/jnc.1501232198942
    [Google Scholar]
  32. AlbersH.E. WaltonJ.C. GambleK.L. McNeillJ.K.IV HummerD.L. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.Front. Neuroendocrinol.201744358210.1016/j.yfrne.2016.11.00327894927
    [Google Scholar]
  33. AtonS.J. ColwellC.S. HarmarA.J. WaschekJ. HerzogE.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.Nat. Neurosci.20058447648310.1038/nn141915750589
    [Google Scholar]
  34. VasalouC. HerzogE.D. HensonM.A. Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus.J. Biol. Rhythms200924324325410.1177/074873040933322019465701
    [Google Scholar]
  35. ChoiH.J. LeeC.J. SchroederA. KimY.S. JungS.H. KimJ.S. KimD.Y. SonE.J. HanH.C. HongS.K. ColwellC.S. KimY.I. Excitatory actions of GABA in the suprachiasmatic nucleus.J. Neurosci.200828215450545910.1523/JNEUROSCI.5750‑07.200818495878
    [Google Scholar]
  36. GolombekD.A. CasiraghiL.P. AgostinoP.V. PaladinoN. DuhartJ.M. PlanoS.A. ChiesaJ.J. The times they’re a-changing: Effects of circadian desynchronization on physiology and disease.J. Physiol. Paris2013107431032210.1016/j.jphysparis.2013.03.00723545147
    [Google Scholar]
  37. LiuJ.A. WaltonJ.C. DeVriesA.C. NelsonR.J. Disruptions of circadian rhythms and thrombolytic therapy during ischemic stroke intervention.Front. Neurosci.20211567573210.3389/fnins.2021.67573234177452
    [Google Scholar]
  38. PotterG.D.M. SkeneD.J. ArendtJ. CadeJ.E. GrantP.J. HardieL.J. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures.Endocr. Rev.201637658460810.1210/er.2016‑108327763782
    [Google Scholar]
  39. BrownS.A. AzziA. Peripheral circadian oscillators in mammals BT - Circadian clocks.Handb. Exp. Pharmacol.20132013456610.1007/978‑3‑642‑25950‑0_3
    [Google Scholar]
  40. CsépK. Transcription factors of the core feedback loop in the molecular circadian clock machinery: Internal timekeeping and beyond.Acta Marisiensis - Ser. Medica (Stuttg)20216731110.2478/amma‑2021‑0007
    [Google Scholar]
  41. Pacheco-BernalI. Becerril-PérezF. Aguilar-ArnalL. Circadian rhythms in the three-dimensional genome: Implications of chromatin interactions for cyclic transcription.Clin. Epigenetics20191117910.1186/s13148‑019‑0677‑231092281
    [Google Scholar]
  42. KimY.H. LazarM.A. Transcriptional control of circadian rhythms and metabolism: A matter of time and space.Endocr. Rev.202041570773210.1210/endrev/bnaa01432392281
    [Google Scholar]
  43. BuijsR. SalgadoR. SabathE. EscobarC. Peripheral circadian oscillators: Time and food.Chronobiology: Biological Timing in Health and DiseaseAcademic Press201311983-103
    [Google Scholar]
  44. BarclayJ.L. TsangA.H. OsterH. Interaction of central and peripheral clocks in physiological regulation.The Neurobiology of Circadian Timing; Kalsbeek.Elsevier2012163181
    [Google Scholar]
  45. KwapisJ.L. AlaghbandY. KramárE.A. LópezA.J. Vogel CierniaA. WhiteA.O. ShuG. RheeD. MichaelC.M. MontellierE. LiuY. MagnanC.N. ChenS. Sassone-CorsiP. BaldiP. MatheosD.P. WoodM.A. Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory.Nat. Commun.201891332310.1038/s41467‑018‑05868‑030127461
    [Google Scholar]
  46. WyseC.A. CooganA.N. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain.Brain Res.20101337213110.1016/j.brainres.2010.03.11320382135
    [Google Scholar]
  47. ChenC.Y. LoganR.W. MaT. LewisD.A. TsengG.C. SibilleE. McClungC.A. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex.Proc. Natl. Acad. Sci. USA2016113120621110.1073/pnas.150824911226699485
    [Google Scholar]
  48. KalfalahF. JankeL. SchiaviA. TiggesJ. IxA. VenturaN. BoegeF. ReinkeH. Crosstalk of clock gene expression and autophagy in aging.Aging (Albany NY)2016891876189510.18632/aging.10101827574892
    [Google Scholar]
  49. JiangH.J. UnderwoodT.C. BellJ.G. RanjanS. SasselovD. WhitesidesG.M. Mimicking lighting-induced electrochemistry on the early earth.Proc. Natl. Acad. Sci. USA2017120201710.1073/pnas
    [Google Scholar]
  50. AsaiM. YoshinobuY. KanekoS. MoriA. NikaidoT. MoriyaT. AkiyamaM. ShibataS. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats.J. Neurosci. Res.20016661133113910.1002/jnr.1001011746446
    [Google Scholar]
  51. BassJ. Circadian topology of metabolism.Nature2012491742434835610.1038/nature1170423151577
    [Google Scholar]
  52. PandaS. Circadian physiology of metabolism. Science20163541008101510.1126/science.aah4967
    [Google Scholar]
  53. PaschosG.K. FitzGeraldG.A. Circadian clocks and vascular function.Circ. Res.2010106583384110.1161/CIRCRESAHA.109.21170620299673
    [Google Scholar]
  54. SancarG. BrunnerM. Circadian clocks and energy metabolism.Cell. Mol. Life Sci.201471142667268010.1007/s00018‑014‑1574‑724515123
    [Google Scholar]
  55. AsherG. Sassone-CorsiP. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock.Cell20151611849210.1016/j.cell.2015.03.01525815987
    [Google Scholar]
  56. Eckel-MahanK. Sassone-CorsiP. Metabolism and the circadian clock converge.Physiol. Rev.201393110713510.1152/physrev.00016.201223303907
    [Google Scholar]
  57. MauryE. RamseyK.M. BassJ. Circadian rhythms and metabolic syndrome: From experimental genetics to human disease.Circ. Res.2010106344746210.1161/CIRCRESAHA.109.20835520167942
    [Google Scholar]
  58. ScheerF.A.J.L. HiltonM.F. MantzorosC.S. SheaS.A. Adverse metabolic and cardiovascular consequences of circadian misalignment.Proc. Natl. Acad. Sci. USA2009106114453445810.1073/pnas.080818010619255424
    [Google Scholar]
  59. HodkinsonD.J. O’DalyO. ZunszainP.A. ParianteC.M. LazurenkoV. ZelayaF.O. HowardM.A. WilliamsS.C.R. Circadian and homeostatic modulation of functional connectivity and regional cerebral blood flow in humans under normal entrained conditions.J. Cereb. Blood Flow Metab.20143491493149910.1038/jcbfm.2014.10924938404
    [Google Scholar]
  60. DoumaL.G. BarralD. GumzM.L. Interplay of the circadian clock and endothelin system.Physiology (Bethesda)2021361354310.1152/physiol.00021.202033325818
    [Google Scholar]
  61. CrnkoS. CourM. Van LaakeL.W. LecourS. Vasculature on the clock: Circadian rhythm and vascular dysfunction.Vascul. Pharmacol.20181081710.1016/j.vph.2018.05.00329778521
    [Google Scholar]
  62. AneaC.B. ChengB. SharmaS. KumarS. CaldwellR.W. YaoL. AliM.I. MerloiuA.M. SteppD.W. BlackS.M. FultonD.J.R. RudicR.D. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice.Circ. Res.201211191157116510.1161/CIRCRESAHA.111.26175022912383
    [Google Scholar]
  63. AneaC.B. ZhangM. SteppD.W. SimkinsG.B. ReedG. FultonD.J. RudicR.D. Vascular disease in mice with a dysfunctional circadian clock.Circulation2009119111510151710.1161/CIRCULATIONAHA.108.82747719273720
    [Google Scholar]
  64. ConroyD.A. SpielmanA.J. ScottR.Q. Daily rhythm of cerebral blood flow velocity.J. Circadian Rhythms200530310.1186/1740‑3391‑3‑315760472
    [Google Scholar]
  65. MitchellJ.W. GilletteM.U. Development of circadian neurovascular function and its implications.Front. Neurosci.202317119660610.3389/fnins.2023.119660637732312
    [Google Scholar]
  66. WebbA.J.S. KlermanE.B. MandevilleE.T. Circadian and diurnal regulation of cerebral blood flow.Circ. Res.2024134669571010.1161/CIRCRESAHA.123.32304938484025
    [Google Scholar]
  67. PeekC.B. AffinatiA.H. RamseyK.M. KuoH.-Y. YuW. SenaL.A. IlkayevaO. MarchevaB. KobayashiY. OmuraC. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice.Science20133426158124341710.1126/science.1243417
    [Google Scholar]
  68. TakahashiJ.S. Transcriptional architecture of the mammalian circadian clock.Nat. Rev. Genet.201718316417910.1038/nrg.2016.15027990019
    [Google Scholar]
  69. BassJ. LazarM.A. Circadian time signatures of fitness and disease.Science2016354631599499910.1126/science.aah4965
    [Google Scholar]
  70. ReinkeH. AsherG. Crosstalk between metabolism and circadian clocks.Nat. Rev. Mol. Cell Biol.201920422724110.1038/s41580‑018‑0096‑930635659
    [Google Scholar]
  71. CantóC. AuwerxJ. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure.Curr. Opin. Lipidol.20092029810510.1097/MOL.0b013e328328d0a419276888
    [Google Scholar]
  72. SartorF. Ferrero-BorderaB. HaspelJ. SperandioM. HollowayP.M. MerrowM. Circadian Clock and Hypoxia.Circ. Res.2024134661863410.1161/CIRCRESAHA.124.32351838484033
    [Google Scholar]
  73. AdamovichY. LadeuixB. SobelJ. ManellaG. Neufeld-CohenA. AssadiM.H. GolikM. KupermanY. TarasiukA. KoenersM.P. AsherG. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals.Cell Metab.201929510921103.e310.1016/j.cmet.2019.01.00730773466
    [Google Scholar]
  74. PengS.L. DumasJ.A. ParkD.C. LiuP. FilbeyF.M. McAdamsC.J. PinkhamA.E. AdinoffB. ZhangR. LuH. Age-related increase of resting metabolic rate in the human brain.Neuroimage20149817618310.1016/j.neuroimage.2014.04.07824814209
    [Google Scholar]
  75. MuccioM. Walton MastersL. PilloniG. HeP. KruppL. DattaA. BiksonM. CharvetL. GeY. Cerebral metabolic rate of oxygen (CMRO2) changes measured with simultaneous tDCS-MRI in healthy adults.Brain Res.2022179614809710.1016/j.brainres.2022.14809736150457
    [Google Scholar]
  76. ValabrègueR. AubertA. BurgerJ. BittounJ. CostalatR. Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange.J. Cereb. Blood Flow Metab.200323553654510.1097/01.WCB.0000055178.31872.3812771568
    [Google Scholar]
  77. ChoJ. LeeJ. AnH. GoyalM.S. SuY. WangY. Cerebral oxygen extraction fraction (OEF): Comparison of challenge-free gradient echo QSM+qBOLD (QQ) with 15O PET in healthy adults.J. Cereb. Blood Flow Metab.20214171658166810.1177/0271678X2097395133243071
    [Google Scholar]
  78. MintunM.A. RaichleM.E. MartinW.R.W. HerscovitchP. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography.J. Nucl. Med.1984252177187
    [Google Scholar]
  79. MarchevaB. RamseyK.M. BuhrE.D. KobayashiY. SuH. KoC.H. IvanovaG. OmuraC. MoS. VitaternaM.H. LopezJ.P. PhilipsonL.H. BradfieldC.A. CrosbyS.D. JeBaileyL. WangX. TakahashiJ.S. BassJ. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes.Nature2010466730662763110.1038/nature0925320562852
    [Google Scholar]
  80. KudoT. TamagawaT. KawashimaM. MitoN. ShibataS. Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet.J. Biol. Rhythms200722431232310.1177/074873040730262517660448
    [Google Scholar]
  81. SchmutzI. RippergerJ.A. Baeriswyl-AebischerS. AlbrechtU. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors.Genes Dev.201024434535710.1101/gad.56411020159955
    [Google Scholar]
  82. RamzanI. KhanM.H. SharmaS. NuhmaniS. Effects of circadian rhythm on anaerobic performance and blood lactate level: A systematic review.Sleep Breath.202327379981610.1007/s11325‑022‑02662‑735904663
    [Google Scholar]
  83. WallaceN.K. PollardF. SavenkovaM. KaratsoreosI.N. Effect of Aging on daily rhythms of lactate metabolism in the medial prefrontal cortex of male mice.Neuroscience202044830031010.1016/j.neuroscience.2020.07.03232717298
    [Google Scholar]
  84. ValléeA. LecarpentierY. GuillevinR. ValléeJ.N. The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder.Transl. Psychiatry202010140010.1038/s41398‑020‑01086‑933199680
    [Google Scholar]
  85. PeekC.B. LevineD.C. CedernaesJ. TaguchiA. KobayashiY. TsaiS.J. BonarN.A. McNultyM.R. RamseyK.M. BassJ. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle.Cell Metab.2017251869210.1016/j.cmet.2016.09.01027773696
    [Google Scholar]
  86. de GoedeP. WefersJ. BrombacherE.C. SchrauwenP. KalsbeekA. Circadian rhythms in mitochondrial respiration.J. Mol. Endocrinol.2018603R115R13010.1530/JME‑17‑019629378772
    [Google Scholar]
  87. JinZ. JiY. SuW. ZhouL. WuX. GaoL. GuoJ. LiuY. ZhangY. WenX. XiaZ.Y. XiaZ. LeiS. The role of circadian clock-controlled mitochondrial dynamics in diabetic cardiomyopathy.Front. Immunol.202314114251210.3389/fimmu.2023.114251237215098
    [Google Scholar]
  88. MetcalfeN.B. OlssonM. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage.Mol. Ecol.202231236040605210.1111/mec.1615034435398
    [Google Scholar]
  89. PutkerM. O’NeillJ.S. Reciprocal control of the circadian clock and cellular redox statel: A critical appraisal.Mol. Cells201639161910.14348/molcells.2016.232326810072
    [Google Scholar]
  90. Rabinovich-NikitinI. RasouliM. ReitzC.J. PosenI. MarguletsV. DhingraR. KhatuaT.N. ThliverisJ.A. MartinoT.A. KirshenbaumL.A. Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress.Autophagy202117113794381210.1080/15548627.2021.193891334085589
    [Google Scholar]
  91. KimJ. SunW. Circadian coordination: Understanding interplay between circadian clock and mitochondria.Anim. Cells Syst.202428122823610.1080/19768354.2024.234750338721230
    [Google Scholar]
  92. CaneverJ.B. QueirozL.Y. SoaresE.S. de AvelarN.C.P. CimarostiH.I. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases.J. Neurochem.202416881475148910.1111/jnc.1588337358003
    [Google Scholar]
  93. WulffK. GattiS. WettsteinJ.G. FosterR.G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease.Nat. Rev. Neurosci.201011858959910.1038/nrn286820631712
    [Google Scholar]
  94. VidenovicA. LazarA.S. BarkerR.A. OvereemS. ‘The clocks that time us’—circadian rhythms in neurodegenerative disorders.Nat. Rev. Neurol.2014101268369310.1038/nrneurol.2014.20625385339
    [Google Scholar]
  95. EastonA. MeerloP. BergmannB. TurekF.W. The suprachiasmatic nucleus regulates sleep timing and amount in mice.Sleep20042771307131810.1093/sleep/27.7.130715586783
    [Google Scholar]
  96. PatkeA. YoungM.W. AxelrodS. Molecular mechanisms and physiological importance of circadian rhythms.Nat. Rev. Mol. Cell Biol.2020212678410.1038/s41580‑019‑0179‑231768006
    [Google Scholar]
  97. WangX.L. LiL. Circadian clock regulates inflammation and the development of neurodegeneration.Front. Cell. Infect. Microbiol.20211169655410.3389/fcimb.2021.69655434595127
    [Google Scholar]
  98. MusiekE.S. HoltzmanD.M. Mechanisms linking circadian clocks, sleep, and neurodegeneration.Science20163546315100410.1126/science.aah4968
    [Google Scholar]
  99. GaoZ. GuanJ. YinS. LiuF. The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner.Sleep Med.202411914715410.1016/j.sleep.2024.04.03138678758
    [Google Scholar]
  100. HuangZ.L. ZhangZ. QuW.M. Roles of adenosine and its receptors in sleep–wake regulation. Adenosine Receptors in Neurology and PsychiatryAcademic Press2014349371
    [Google Scholar]
  101. ChangC.P. WuK.C. LinC.Y. ChernY. Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases.J. Biomed. Sci.20212817010.1186/s12929‑021‑00766‑y34635103
    [Google Scholar]
  102. HalászP. The role of micro-arousals in the regulation of sleep.Ideggyogy. Sz.2006597-825226017076303
    [Google Scholar]
  103. HuangL. ZhuW. LiN. ZhangB. DaiW. LiS. XuH. Functions and mechanisms of adenosine and its receptors in sleep regulation.Sleep Med.202411521021710.1016/j.sleep.2024.02.01238373361
    [Google Scholar]
  104. JelskaA. PoleckaA. ZahorodniiA. OlszewskaE. The role of oxidative stress and the potential therapeutic benefits of Aronia melanocarpa supplementation in obstructive sleep apnea syndrome: A comprehensive literature review.Antioxidants20241311130010.3390/antiox1311130039594442
    [Google Scholar]
  105. RamachandranR. MananA. KimJ. ChoiS. NLRP3 inflammasome: A key player in the pathogenesis of life-style disorders.Exp. Mol. Med.20245671488150010.1038/s12276‑024‑01261‑838945951
    [Google Scholar]
  106. AtroozF. SalimS. Sleep deprivation, oxidative stress and inflammation.Inflammatory DisordersAcademic Press2020309336
    [Google Scholar]
  107. LiJ. WuX. YanS. ShenJ. TongT. AslamM.S. ZengJ. ChenY. ChenW. LiM. YouZ. Understanding the Antidepressant mechanisms of acupuncture: Targeting hippocampal neuroinflammation, oxidative stress, neuroplasticity, and apoptosis in CUMS Rats.Mol. Neurobiol.20241-610.1007/s12035‑024‑04550‑539422855
    [Google Scholar]
  108. NagayachA. BhaskarR. PatroI. Microglia activation and inflammation in hippocampus attenuates memory and mood functions during experimentally induced diabetes in rat.J. Chem. Neuroanat.202212510216010.1016/j.jchemneu.2022.10216036089179
    [Google Scholar]
  109. NagayachA. BhaskarR. GhoshS. SinghK.K. HanS.S. SinhaJ.K. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives.Ageing Res. Rev.202410010245010.1016/j.arr.2024.10245039134179
    [Google Scholar]
  110. GhoshS. SinhaJ.K. GhoshS. SharmaH. BhaskarR. NarayananK.B. A comprehensive review of emerging trends and innovative therapies in epilepsy management.Brain Sci.2023139130510.3390/brainsci1309130537759906
    [Google Scholar]
  111. ChengW.Y. ChanP.L. OngH.Y. WongK.H. ChangR.C.C. Systemic inflammation disrupts circadian rhythms and diurnal neuroimmune dynamics.Int. J. Mol. Sci.20242513745810.3390/ijms2513745839000563
    [Google Scholar]
  112. GriffinP. DimitryJ.M. SheehanP.W. LanannaB.V. GuoC. RobinetteM.L. HayesM.E. CedeñoM.R. NadarajahC.J. EzerskiyL.A. ColonnaM. ZhangJ. BauerA.Q. BurrisT.P. MusiekE.S. Circadian clock protein Rev-erbα regulates neuroinflammation.Proc. Natl. Acad. Sci. USA2019116115102510710.1073/pnas.181240511630792350
    [Google Scholar]
  113. WangH.B. WhittakerD.S. TruongD. MuljiA.K. GhianiC.A. LohD.H. ColwellC.S. Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington’s disease.Neurobiol. Sleep Circadian Rhythms20172395210.1016/j.nbscr.2016.12.00231236494
    [Google Scholar]
  114. van WamelenD.J. RoosR.A.C. AzizN.A. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease.Neurodegener. Dis. Manag.20155654955910.2217/nmt.15.4526621387
    [Google Scholar]
  115. FaragóA. ZsindelyN. BodaiL. Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila.Sci. Rep.201991717410.1038/s41598‑019‑43612‑w31073199
    [Google Scholar]
  116. de SouzaF.R.O. RibeiroF.M. LimaP.M.A. Implications of VIP and PACAP in Parkinson’s Disease: What do we know so far?Curr. Med. Chem.20212891703171510.2174/092986732766620032016243632196442
    [Google Scholar]
  117. MorellM. Souza-MoreiraL. González-ReyE. VIP in neurological diseases: More than a neuropeptide.Endocr. Metab. Immune Disord. Drug Targets201212432333210.2174/18715301280383254923094829
    [Google Scholar]
  118. PattonA.P. EdwardsM.D. SmyllieN.J. HamnettR. CheshamJ.E. BrancaccioM. MaywoodE.S. HastingsM.H. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit.Nat. Commun.2020111339410.1038/s41467‑020‑17110‑x32636383
    [Google Scholar]
  119. FahrenkrugJ. PopovicN. GeorgB. BrundinP. HannibalJ. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse.J. Mol. Neurosci.200731213914810.1385/JMN/31:02:13917478887
    [Google Scholar]
  120. SinhaJ.K. JorwalK. SinghK.K. HanS.S. BhaskarR. GhoshS. The potential of mitochondrial therapeutics in the treatment of oxidative stress and inflammation in aging.Mol. Neurobiol.20241-610.1007/s12035‑024‑04474‑039230868
    [Google Scholar]
  121. SinhaJ.K. GhoshS. GhoshS. BhaskarR. HanS.S. Improving therapeutic approaches to insomnia: The need for objective sleep data.Lancet Healthy Longev.202349e45910.1016/S2666‑7568(23)00158‑737659428
    [Google Scholar]
  122. SethiP. BhaskarR. SinghK.K. GuptaS. HanS.S. AvinashD. AbomughaidM.M. KoulA. RaniB. GhoshS. JhaN.K. SinhaJ.K. Exploring advancements in early detection of Alzheimer’s disease with molecular assays and animal models.Ageing Res. Rev.202410010241110.1016/j.arr.2024.10241138986845
    [Google Scholar]
  123. LiH. KilgallenA.B. MünzelT. WolfE. LecourS. SchulzR. DaiberA. Van LaakeL.W. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection.Br. J. Pharmacol.2020177235393541210.1111/bph.1494931833063
    [Google Scholar]
  124. Fanjul-MolesM.L. López-RiquelmeG.O. Relationship between oxidative stress, circadian rhythms, and AMD.Oxid. Med. Cell. Longev.201620161742063710.1155/2016/742063726885250
    [Google Scholar]
  125. SatoT. GrecoC.M. Expanding the link between circadian rhythms and redox metabolism of epigenetic control.Free Radic. Biol. Med.2021170505810.1016/j.freeradbiomed.2021.01.00933450380
    [Google Scholar]
  126. BlasiakJ. PetrovskiG. VerébZ. FacskóA. KaarnirantaK. Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration.BioMed. Res. Int.201420141710.1155/2014/76802624707498
    [Google Scholar]
  127. AyyarV.S. SukumaranS. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions.J. Pharmacokinet. Pharmacodyn.202148332133810.1007/s10928‑021‑09751‑233797011
    [Google Scholar]
  128. HanH. DouJ. HouQ. WangH. Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease.J. Cardiovasc. Pharmacol.202279325426310.1097/FJC.000000000000117834840256
    [Google Scholar]
  129. WeldemichaelD.A. GrossbergG.T. Circadian rhythm disturbances in patients with Alzheimer’s disease: A review.Int. J. Alzheimers Dis.201020101910.4061/2010/71645320862344
    [Google Scholar]
  130. DuncanM.J. Interacting influences of aging and Alzheimer’s disease on circadian rhythms.Eur. J. Neurosci.202051131032510.1111/ejn.1435830689226
    [Google Scholar]
  131. NiuL. ZhangF. XuX. YangY. LiS. LiuH. LeW. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology.Brain Pathol.2022323e1302810.1111/bpa.1302834668266
    [Google Scholar]
  132. KressG.J. LiaoF. DimitryJ. CedenoM.R. FitzGeraldG.A. HoltzmanD.M. MusiekE.S. Regulation of amyloid-β dynamics and pathology by the circadian clock.J. Exp. Med.201821541059106810.1084/jem.2017234729382695
    [Google Scholar]
  133. SharmaA. SethiG. TambuwalaM.M. AljabaliA.A.A. ChellappanD.K. DuaK. GoyalR. Circadian rhythm disruption and Alzheimers disease: The dynamics of a vicious cycle.Curr. Neuropharmacol.202119224826410.2174/18756190MTA21MjAf332348224
    [Google Scholar]
  134. WangX. WangR. LiJ. Influence of sleep disruption on protein accumulation in neurodegenerative diseases.Ageing Neur. Dis. 20222410.20517/and.2021.10
    [Google Scholar]
  135. AlbrechtU. RippergerJ.A. Circadian clocks and sleep: Impact of rhythmic metabolism and waste clearance on the brain.Trends Neurosci.2018411067768810.1016/j.tins.2018.07.00730274603
    [Google Scholar]
  136. GuoD.Z. ChenY. MengY. BianJ.J. WangY. WangJ.F. Bidirectional interaction of sepsis and sleep disorders: The underlying mechanisms and clinical implications.Nat. Sci. Sleep2024161665167810.2147/NSS.S48592039444661
    [Google Scholar]
  137. OldhamM.A. CirauloD.A. Bright light therapy for depression: A review of its effects on chronobiology and the autonomic nervous system.Chronobiol. Int.201431330531910.3109/07420528.2013.83393524397276
    [Google Scholar]
  138. OnoH. TaguchiT. KidoY. FujinoY. DokiY. The usefulness of bright light therapy for patients after oesophagectomy.Intensive Crit. Care Nurs.201127315816610.1016/j.iccn.2011.03.00321511473
    [Google Scholar]
  139. Al-KarawiD. JubairL. Bright light therapy for nonseasonal depression: Meta-analysis of clinical trials.J. Affect. Disord.2016198647110.1016/j.jad.2016.03.01627011361
    [Google Scholar]
  140. LiuX. LiH. MaR. TongX. WuJ. HuangX. SoK.F. TaoQ. HuangL. LinS. RenC. Burst firing in Output-defined parallel habenula circuit underlies the antidepressant effects of bright light treatment.Adv. Sci. (Weinh.)20241130240105910.1002/advs.20240105938863324
    [Google Scholar]
  141. MeiX. ZouC.J. ZhengC.Y. HuJ. ZhouD.S. Effect of bright-light therapy on depression and anxiety of a patient with Alzheimer’s disease combined with sleep disorder: A case report.World J. Psychiatry202414121982198710.5498/wjp.v14.i12.198239704363
    [Google Scholar]
  142. SubhadeepD. SrikumarB.N. RaoS.B.S. KuttyB.M. Circadian rhythm manipulations: Implications on behavioral restoration in central nervous system insults bt - sleep and clocks in aging and longevity.Springer International Publishing. JagotaA. Cham2023349361
    [Google Scholar]
  143. XiongX. HuT. YinZ. ZhangY. ChenF. LeiP. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease.Front. Aging Neurosci.20221494428310.3389/fnagi.2022.94428336062143
    [Google Scholar]
  144. UddinM.S. TewariD. MamunA.A. KabirM.T. NiazK. WahedM.I.I. BarretoG.E. AshrafG.M. Circadian and sleep dysfunction in Alzheimer’s disease.Ageing Res. Rev.20206010104610.1016/j.arr.2020.10104632171783
    [Google Scholar]
  145. Kosanovic RajacicB. SagudM. PivacN. BegicD. Illuminating the way: The role of bright light therapy in the treatment of depression.Expert Rev. Neurother.202323121157117110.1080/14737175.2023.227339637882458
    [Google Scholar]
  146. CostaC.I. CarvalhoN.H. FernandesL. Aging, circadian rhythms and depressive disorders: A review.Am. J. Neurodegener. Dis.20132422824624319642
    [Google Scholar]
  147. VidenovicA. NobleC. ReidK.J. PengJ. TurekF.W. MarconiA. RademakerA.W. SimuniT. ZadikoffC. ZeeP.C. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.JAMA Neurol.201471446346910.1001/jamaneurol.2013.623924566763
    [Google Scholar]
  148. DowlingG.A. MastickJ. CollingE. CarterJ.H. SingerC.M. AminoffM.J. Melatonin for sleep disturbances in Parkinson’s disease.Sleep Med.20056545946610.1016/j.sleep.2005.04.00416084125
    [Google Scholar]
  149. ZangL. LiuX. LiY. LiuJ. LuQ. ZhangY. MengQ. The effect of light therapy on sleep disorders and psychobehavioral symptoms in patients with Alzheimer’s disease: A meta-analysis.PLoS One20231812e029397710.1371/journal.pone.029397738055651
    [Google Scholar]
  150. TangR. GongS. LiJ. HuW. LiuJ. LiaoC. Efficacy of non-pharmacological interventions for sleep quality in Parkinson’s disease: A systematic review and network meta-analysis.Front. Neurosci.202418133761610.3389/fnins.2024.133761638449730
    [Google Scholar]
  151. MogulkocR. BaltaciA.K. AydinL. Role of melatonin receptors in hyperthermia-induced acute seizure model of rats.J. Mol. Neurosci.201969463664210.1007/s12031‑019‑01392‑y31418115
    [Google Scholar]
  152. MogulkocR. BaltaciA.K. OztekinE. AydinL. SivrikayaA. Melatonin prevents oxidant damage in various tissues of rats with hyperthyroidism.Life Sci.200679331131510.1016/j.lfs.2006.01.00916464477
    [Google Scholar]
  153. BesagF.M.C. VaseyM.J. LaoK.S.J. WongI.C.K. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: A systematic review.CNS Drugs201933121167118610.1007/s40263‑019‑00680‑w31722088
    [Google Scholar]
  154. VuralE.M.S. van MunsterB.C. de RooijS.E. Optimal dosages for melatonin supplementation therapy in older adults: A systematic review of current literature.Drugs Aging201431644145110.1007/s40266‑014‑0178‑024802882
    [Google Scholar]
  155. FoleyH.M. SteelA.E. Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence.Complement. Ther. Med.201942658110.1016/j.ctim.2018.11.00330670284
    [Google Scholar]
  156. DijkD.J. DuffyJ.F. Novel approaches for assessing Circadian Rhythmicity in humans: A review.J. Biol. Rhythms202035542143810.1177/074873042094048332700634
    [Google Scholar]
  157. HuangW. ZongJ. ZhangY. ZhouY. ZhangL. WangY. ShanZ. XieQ. LiM. PanS. XiaoZ. The role of Circadian Rhythm in neurological diseases: A translational perspective.Aging Dis.20231541565158710.14336/AD.2023.092137815902
    [Google Scholar]
  158. ZakiN.F.W. YousifM. BaHammamA.S. SpenceD.W. BhartiV.K. SubramanianP. Pandi-PerumalS.R. Chronotherapeutics: Recognizing the importance of timing factors in the treatment of disease and sleep disorders.Clin. Neuropharmacol.2019423808710.1097/WNF.000000000000034131082833
    [Google Scholar]
  159. ScammellT.E. WinrowC.J. Orexin receptors: Pharmacology and therapeutic opportunities.Annu. Rev. Pharmacol. Toxicol.201151124326610.1146/annurev‑pharmtox‑010510‑10052821034217
    [Google Scholar]
  160. ChenQ. de LeceaL. HuZ. GaoD. The hypocretin/orexin system: An increasingly important role in neuropsychiatry.Med. Res. Rev.201535115219710.1002/med.2132625044006
    [Google Scholar]
  161. KrystalA.D. BencaR.M. KilduffT.S. Understanding the sleep-wake cycle: Sleep, insomnia, and the orexin system.J. Clin. Psychiatry201374Suppl. 132010.4088/JCP.13011su1c24107804
    [Google Scholar]
  162. JacobsonL.H. HoyerD. de LeceaL. Hypocretins (orexins): The ultimate translational neuropeptides.J. Intern. Med.2022291553355610.1111/joim.1340635043499
    [Google Scholar]
  163. SakuraiT. The role of orexin in motivated behaviours.Nat. Rev. Neurosci.2014151171973110.1038/nrn383725301357
    [Google Scholar]
  164. WangS. LiF. LinY. WuB. Targeting REV-ERBα for therapeutic purposes: Promises and challenges.Theranostics20201094168418210.7150/thno.4383432226546
    [Google Scholar]
  165. HuangS. JiaoX. LuD. PeiX. QiD. LiZ. Recent advances in modulators of circadian rhythms: An update and perspective.J. Enzyme Inhib. Med. Chem.20203511267128610.1080/14756366.2020.177224932506972
    [Google Scholar]
  166. KojetinD.J. BurrisT.P. REV-ERB and ROR nuclear receptors as drug targets.Nat. Rev. Drug Discov.201413319721610.1038/nrd410024577401
    [Google Scholar]
  167. DuezH. StaelsB. Rev-erb-α: An integrator of circadian rhythms and metabolism.J. Appl. Physiol.200910761972198010.1152/japplphysiol.00570.200919696364
    [Google Scholar]
  168. ZhangT. GuoL. YuF. ChenM. WuB. The nuclear receptor Rev-erbα participates in circadian regulation of Ugt2b enzymes in mice.Biochem. Pharmacol.2019161899710.1016/j.bcp.2019.01.01030639455
    [Google Scholar]
  169. CuenoudB. HuangZ. HartwegM. WidmaierM. LimS. WenzD. XinL. Effect of circadian rhythm on NAD and other metabolites in human brain.Front. Physiol.202314128577610.3389/fphys.2023.128577638028810
    [Google Scholar]
  170. PoljšakB. KovačV. MilisavI. Current uncertainties and future challenges regarding NAD+ boosting strategies.Antioxidants2022119163710.3390/antiox1109163736139711
    [Google Scholar]
  171. Escalante-CovarrubiasQ. Mendoza-ViverosL. González-SuárezM. Sitten-OleaR. Velázquez-VillegasL.A. Becerril-PérezF. Pacheco-BernalI. Carreño-VázquezE. Mass-SánchezP. Bustamante-ZepedaM. Orozco-SolísR. Aguilar-ArnalL. Time-of-day defines NAD+ efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice.Nat. Commun.2023141168510.1038/s41467‑023‑37286‑236973248
    [Google Scholar]
  172. AlegreG.F.S. PastoreG.M. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential dietary contribution to health.Curr. Nutr. Rep.202312344546410.1007/s13668‑023‑00475‑y37273100
    [Google Scholar]
  173. BhatnagarA. MurrayG. RayS. Circadian biology to advance therapeutics for mood disorders.Trends Pharmacol. Sci.2023441068970410.1016/j.tips.2023.07.00837648611
    [Google Scholar]
  174. CrowtherM.E. FergusonS.A. VincentG.E. ReynoldsA.C. Non-pharmacological interventions to improve chronic disease risk factors and sleep in shift workers: A systematic review and meta-analysis.Clocks Sleep20213113217810.3390/clockssleep301000933525534
    [Google Scholar]
  175. CajochenC. 34th Annual Meeting of the Society for light treatment and biological rhythms (SLTBR), 30 May–1 June, Lausanne, Switzerland.Clocks Sleep20235341448210.3390/clockssleep503003137754349
    [Google Scholar]
  176. FiskA.S. TamS.K.E. BrownL.A. VyazovskiyV.V. BannermanD.M. PeirsonS.N. Light and cognition: Roles for Circadian rhythms, sleep, and arousal.Front. Neurol.201895610.3389/fneur.2018.0005629479335
    [Google Scholar]
  177. KeihaniA. MayeliA. FerrarelliF. Circadian Rhythm changes in healthy aging and mild cognitive impairment.Adv. Biol.2023711220023710.1002/adbi.20220023736403250
    [Google Scholar]
  178. ScottJ.P.R. McNaughtonL.R. PolmanR.C.J. Effects of sleep deprivation and exercise on cognitive, motor performance and mood.Physiol. Behav.200687239640810.1016/j.physbeh.2005.11.00916403541
    [Google Scholar]
  179. YalçinM. MundorfA. ThielF. Amatriain-FernándezS. KalthoffI.S. BeuckeJ.C. BuddeH. Garthus-NiegelS. PeterbursJ. RelógioA. It’s about time: The Circadian network as time-keeper for cognitive functioning, locomotor activity and mental health.Front. Physiol.20221387323710.3389/fphys.2022.87323735547585
    [Google Scholar]
  180. ManoogianE.N.C. PandaS. Circadian rhythms, time-restricted feeding, and healthy aging.Ageing Res. Rev.201739596710.1016/j.arr.2016.12.00628017879
    [Google Scholar]
  181. RothJ.R. VarshneyS. de MoraesR.C.M. MelkaniG.C. Circadian-mediated regulation of cardiometabolic disorders and aging with time-restricted feeding.Obesity (Silver Spring)202331S1404910.1002/oby.2366436623845
    [Google Scholar]
  182. LongoV.D. PandaS. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan.Cell Metab.20162361048105910.1016/j.cmet.2016.06.00127304506
    [Google Scholar]
  183. ChaixA. ManoogianE.N.C. MelkaniG.C. PandaS. Time-restricted eating to prevent and manage chronic metabolic diseases.Annu. Rev. Nutr.201939129131510.1146/annurev‑nutr‑082018‑12432031180809
    [Google Scholar]
  184. HenryC.J. KaurB. QuekR.Y.C. Chrononutrition in the management of diabetes.Nutr. Diabetes2020101610.1038/s41387‑020‑0109‑632075959
    [Google Scholar]
  185. WeinertD. GubinD. The impact of physical activity on the circadian system: Benefits for health, performance and wellbeing.Appl. Sci.20221218922010.3390/app12189220
    [Google Scholar]
  186. DavisL.K. BumgarnerJ.R. NelsonR.J. FonkenL.K. Health effects of disrupted circadian rhythms by artificial light at night.Policy Insights Behav. Brain Sci.202310222923610.1177/23727322231193967
    [Google Scholar]
  187. RudicR.D. McNamaraP. CurtisA.M. BostonR.C. PandaS. HogeneschJ.B. FitzGeraldG.A. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis.PLoS Biol.2004211e37710.1371/journal.pbio.002037715523558
    [Google Scholar]
  188. FosterR.G. Sleep, circadian rhythms and health.Interface Focus20201032019009810.1098/rsfs.2019.009832382406
    [Google Scholar]
  189. MohrA.E. Ortega-SantosC.P. WhisnerC.M. Klein-SeetharamanJ. JasbiP. Navigating Challenges and opportunities in multi-omics integration for personalized healthcare.Biomedicines2024127149610.3390/biomedicines1207149639062068
    [Google Scholar]
  190. Infante SanchezD. Circadiansense: A prototype wearable day and night patient monitoring system. Thesis University of Birmingham 2019
    [Google Scholar]
  191. de ZambottiM. GoldsteinC. CookJ. MenghiniL. AltiniM. ChengP. RobillardR. State of the science and recommendations for using wearable technology in sleep and circadian research.Sleep2024474zsad32510.1093/sleep/zsad32538149978
    [Google Scholar]
  192. GubinD. WeinertD. StefaniO. OtsukaK. BorisenkovM. CornelissenG. Wearables in chronomedicine and interpretation of circadian health.Diagnostics 202515332710.3390/diagnostics1503032739941257
    [Google Scholar]
/content/journals/car/10.2174/0115672050381989250626071304
Loading
/content/journals/car/10.2174/0115672050381989250626071304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test