Skip to content
2000
image of A DTI-Radiomics and Clinical Integration Model for Predicting MCI-to- AD Progression Using Corpus Callosum Features

Abstract

Introduction

This study aimed to explore the value of diffusion tensor imaging (DTI)-based radiomics in the early diagnosis of Alzheimer's disease (AD) and predicting the progression of mild cognitive impairment (MCI) to AD.

Methods

A cohort of 186 patients with MCI was obtained from the publicly accessible Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and 49 of these individuals developed AD over a 5-year observation period. The subjects were divided into a training set and a test set in a ratio of 7 to 3. Radiomic features were extracted from the corpus callosum within the DTI post-processed images. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm was employed to develop radiomic signatures. The performance of the radiomic signature was assessed using receiver operating characteristic (ROC) analysis and decision curve analysis (DCA).

Results

In the training set, 35 patients were converted, and in the test set, 14 patients were converted. Among all the patients, notable differences were observed in age, CDR-SB, ADAS, MMSE, FAQ, and MOCA between the stable group and the transformed group ( 0.05). In the test set, the AUCs of the radiomics signatures constructed based on fractional anisotropy, axial diffusivity, mean diffusivity, and radial diffusivity were 0.824, 0.852, 0.833, and 0.862, respectively. The AUC of the clinical model was 0.868, and that of the combined model was 0.936. DCA demonstrated that the combined model had the best performance.

Discussion

The study highlights the corpus callosum as a critical region for detecting early AD-related microstructural changes. Radiomic features, particularly those derived from RD, outperformed traditional DTI parameters in predicting MCI progression. Combining radiomics with clinical data improved prediction accuracy, addressing limitations of single-biomarker approaches. However, the study’s retrospective design, limited sample size, and short follow-up period may affect generalizability.

Conclusion

The combined radiomics and clinical model, utilizing DTI data, can relatively accurately forecast which patients with MCI are likely to progress to AD. This approach offers potential for early AD prevention in MCI patients.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050390986250801005607
2025-08-13
2025-11-05
Loading full text...

Full text loading...

References

  1. Ramaroson H. Helmer C. Barberger-Gateau P. Letenneur L. Dartigues J.F. Prevalence of dementia and Alzheimer’s disease among subjects aged 75 years or over: Updated results of the PAQUID cohort. Rev. Neurol. 2003 159 4 405 411 12773869
    [Google Scholar]
  2. Bailly L. David R. Chevrier R. Grebet J. Moncada M. Fuch A. Sciortino V. Robert P. Pradier C. Alzheimer’s disease: Estimating its prevalence rate in a French geographical unit using the National Alzheimer Data Bank and national health insurance information systems. PLoS One 2019 14 5 e0216221 10.1371/journal.pone.0216221 31059547
    [Google Scholar]
  3. Mattsson N. Andreasson U. Zetterberg H. Blennow K. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017 74 5 557 566 10.1001/jamaneurol.2016.6117 28346578
    [Google Scholar]
  4. Yankner B.A. Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 1996 16 5 921 932 10.1016/S0896‑6273(00)80115‑4 8630250
    [Google Scholar]
  5. Lopez O.L. Becker J.T. Chang Y.F. Sweet R.A. DeKosky S.T. Gach M.H. Carmichael O.T. McDade E. Kuller L.H. Incidence of mild cognitive impairment in the Pittsburgh Cardiovascular Health Study–Cognition Study. Neurology 2012 79 15 1599 1606 10.1212/WNL.0b013e31826e25f0 23019262
    [Google Scholar]
  6. Petersen R.C. Doody R. Kurz A. Mohs R.C. Morris J.C. Rabins P.V. Ritchie K. Rossor M. Thal L. Winblad B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001 58 12 1985 1992 10.1001/archneur.58.12.1985 11735772
    [Google Scholar]
  7. Petersen R.C. Morris J.C. Mild cognitive impairment as a clinical entity and treatment target. Arch. Neurol. 2005 62 7 1160 1163 10.1001/archneur.62.7.1160 16009779
    [Google Scholar]
  8. Mitchell A.J. Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia – Meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 2009 119 4 252 265 10.1111/j.1600‑0447.2008.01326.x 19236314
    [Google Scholar]
  9. Da X. Toledo J.B. Zee J. Wolk D.A. Xie S.X. Ou Y. Shacklett A. Parmpi P. Shaw L. Trojanowski J.Q. Davatzikos C. Integration and relative value of biomarkers for prediction of MCI to AD progression: Spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers. Neuroimage Clin. 2014 4 164 173 10.1016/j.nicl.2013.11.010 24371799
    [Google Scholar]
  10. Dickerson B. Wolk D.A. Biomarker-based prediction of progression in MCI: Comparison of AD signature and hippocampal volume with spinal fluid amyloid-β and tau. Front. Aging Neurosci. 2013 5 55 10.3389/fnagi.2013.00055 24130528
    [Google Scholar]
  11. Salvatore C. Cerasa A. Castiglioni I. MRI characterizes the progressive course of AD and predicts conversion to Alzheimer’s dementia 24 months before probable diagnosis. Front. Aging Neurosci. 2018 10 135 10.3389/fnagi.2018.00135 29881340
    [Google Scholar]
  12. Geuze E. Vermetten E. Bremner J.D. MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol. Psychiatry 2005 10 2 160 184 10.1038/sj.mp.4001579 15356639
    [Google Scholar]
  13. Sperling R.A. Aisen P.S. Beckett L.A. Bennett D.A. Craft S. Fagan A.M. Iwatsubo T. Jack C.R. Jr Kaye J. Montine T.J. Park D.C. Reiman E.M. Rowe C.C. Siemers E. Stern Y. Yaffe K. Carrillo M.C. Thies B. Morrison-Bogorad M. Wagster M.V. Phelps C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 280 292 10.1016/j.jalz.2011.03.003 21514248
    [Google Scholar]
  14. Salvatore C. Battista P. Castiglioni I. Frontiers for the early diagnosis of AD by means of MRI brain imaging and support vector machines. Curr. Alzheimer Res. 2016 13 5 509 533 10.2174/1567205013666151116141705 26567735
    [Google Scholar]
  15. Christiansen K. Aggleton J.P. Parker G.D. O’Sullivan M.J. Vann S.D. Metzler-Baddeley C. The status of the precommissural and postcommissural fornix in normal ageing and mild cognitive impairment: An MRI tractography study. Neuroimage 2016 130 35 47 10.1016/j.neuroimage.2015.12.055 26778129
    [Google Scholar]
  16. Yip S.S.F. Aerts H.J.W.L. Applications and limitations of radiomics. Phys. Med. Biol. 2016 61 13 R150 R166 10.1088/0031‑9155/61/13/R150 27269645
    [Google Scholar]
  17. Lambin P. Leijenaar R.T.H. Deist T.M. Peerlings J. de Jong E.E.C. van Timmeren J. Sanduleanu S. Larue R.T.H.M. Even A.J.G. Jochems A. van Wijk Y. Woodruff H. van Soest J. Lustberg T. Roelofs E. van Elmpt W. Dekker A. Mottaghy F.M. Wildberger J.E. Walsh S. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017 14 12 749 762 10.1038/nrclinonc.2017.141 28975929
    [Google Scholar]
  18. Feng Q. Ding Z. MRI radiomics classification and prediction in alzheimer’s disease and mild cognitive impairment: A review. Curr. Alzheimer Res. 2020 17 3 297 309 10.2174/1567205017666200303105016 32124697
    [Google Scholar]
  19. van Griethuysen J.J.M. Fedorov A. Parmar C. Hosny A. Aucoin N. Narayan V. Beets-Tan R.G.H. Fillion-Robin J.C. Pieper S. Aerts H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017 77 21 e104 e107 10.1158/0008‑5472.CAN‑17‑0339 29092951
    [Google Scholar]
  20. Cheng X. Li D. Peng J. Shu Z. Xing X. Prediction of mild cognitive impairment progression to Alzheimer’s disease based on diffusion tensor imaging-derived diffusion parameters: construction and validation of a nomogram. Eur. Neurol. 2023 86 6 408 417 10.1159/000534767 37926082
    [Google Scholar]
  21. Muksimova S. Umirzakova S. Baltayev J. Cho Y.I. Multi-modal fusion and longitudinal analysis for Alzheimer’s disease classification using deep learning. Diagnostics 2025 15 6 717 10.3390/diagnostics15060717 40150060
    [Google Scholar]
  22. Nowrangi M.A. Lyketsos C.G. Leoutsakos J.M.S. Oishi K. Albert M. Mori S. Mielke M.M. Longitudinal, region-specific course of diffusion tensor imaging measures in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 2013 9 5 519 528 10.1016/j.jalz.2012.05.2186 23245561
    [Google Scholar]
  23. Lee CU Kang DW Lim HK [P3–369]: Diagnostic validity of an automated probabilistic tractography in amnestic mild cognitive impairment. Alzheimers Dement. 2017 13 7S_Part_22 P1099 10.1016/j.jalz.2017.06.1585
    [Google Scholar]
  24. Mascalchi M. Salvadori E. Toschi N. Giannelli M. Orsolini S. Ciulli S. Ginestroni A. Poggesi A. Giorgio A. Lorenzini F. Pasi M. De Stefano N. Pantoni L. Inzitari D. Diciotti S. DTI-derived indexes of brain WM correlate with cognitive performance in vascular MCI and small-vessel disease. A TBSS study. Brain Imaging Behav. 2019 13 3 594 602 10.1007/s11682‑018‑9873‑5 29744799
    [Google Scholar]
  25. Menon R.N. Sheelakumari R. Sarma S.P. Kesavadas C. Thomas B. Sasi D. Sarath L.V. Justus S. Mathew M. Multimodality neuroimaging in mild cognitive impairment: A cross-sectional comparison study. Ann. Indian Acad. Neurol. 2018 21 2 133 139 10.4103/aian.AIAN_379_17 30122839
    [Google Scholar]
  26. Lo Buono V. Palmeri R. Corallo F. Allone C. Pria D. Bramanti P. Marino S. Diffusion tensor imaging of white matter degeneration in early stage of Alzheimer’s disease: A review. Int. J. Neurosci. 2020 130 3 243 250 10.1080/00207454.2019.1667798 31549530
    [Google Scholar]
  27. Bigham B. Zamanpour S.A. Zemorshidi F. Boroumand F. Zare H. Identification of superficial white matter abnormalities in alzheimer’s disease and mild cognitive impairment using diffusion tensor imaging. J. Alzheimers Dis. Rep. 2020 4 1 49 59 10.3233/ADR‑190149 32206757
    [Google Scholar]
  28. Roldan-Valadez E. Becerra-Laparra I. Cortez-Conradis D. Garcia-Lazaro H.G. Martinez-Lopez M. Radial diffusivity is the best global biomarker able to discriminate healthy elders, mild cognitive impairment, and Alzheimer’s disease: A diagnostic study of DTI-derived data. Neurol. India 2020 68 2 427 434 10.4103/0028‑3886.284376 32415019
    [Google Scholar]
  29. Qi Y. Wang W. Rao B. Yang X. Yu W. Li J. Sun Z. Zhou F. Li Y. Guo Y. Wang Y. Li H. Value of radiomic analysis combined with diffusion tensor imaging in early diagnosis of HIV-associated neurocognitive disorders. J. Magn. Reson. Imaging 2023 58 6 1882 1891 10.1002/jmri.28741 37118972
    [Google Scholar]
  30. Park C.J. Choi Y.S. Park Y.W. Ahn S.S. Kang S.G. Chang J.H. Kim S.H. Lee S.K. Diffusion tensor imaging radiomics in lower-grade glioma: Improving subtyping of isocitrate dehydrogenase mutation status. Neuroradiology 2020 62 3 319 326 10.1007/s00234‑019‑02312‑y 31820065
    [Google Scholar]
  31. Li J. Liu X. Wang X. Liu H. Lin Z. Xiong N. Diffusion tensor imaging radiomics for diagnosis of parkinson’s disease. Brain Sci. 2022 12 7 851 10.3390/brainsci12070851 35884658
    [Google Scholar]
  32. Blennow K. Zetterberg H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 2018 284 6 643 663 10.1111/joim.12816 30051512
    [Google Scholar]
  33. Kumar V. Gu Y. Basu S. Berglund A. Eschrich S.A. Schabath M.B. Forster K. Aerts H.J.W.L. Dekker A. Fenstermacher D. Goldgof D.B. Hall L.O. Lambin P. Balagurunathan Y. Gatenby R.A. Gillies R.J. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012 30 9 1234 1248 10.1016/j.mri.2012.06.010 22898692
    [Google Scholar]
  34. Thawani R. McLane M. Beig N. Ghose S. Prasanna P. Velcheti V. Madabhushi A. Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung Cancer 2018 115 34 41 10.1016/j.lungcan.2017.10.015 29290259
    [Google Scholar]
  35. Safieh M. Korczyn A.D. Michaelson D.M. ApoE4: An emerging therapeutic target for Alzheimer’s disease. BMC Med. 2019 17 1 64 10.1186/s12916‑019‑1299‑4 30890171
    [Google Scholar]
  36. Goerlich K.S. Votinov M. Dicks E. Ellendt S. Csukly G. Habel U. Neuroanatomical and neuropsychological markers of amnestic MCI: A three-year longitudinal study in individuals unaware of cognitive decline. Front. Aging Neurosci. 2017 9 34 10.3389/fnagi.2017.00034 28275349
    [Google Scholar]
  37. Genin E. Hannequin D. Wallon D. Sleegers K. Hiltunen M. Combarros O. Bullido M.J. Engelborghs S. De Deyn P. Berr C. Pasquier F. Dubois B. Tognoni G. Fiévet N. Brouwers N. Bettens K. Arosio B. Coto E. Del Zompo M. Mateo I. Epelbaum J. Frank-Garcia A. Helisalmi S. Porcellini E. Pilotto A. Forti P. Ferri R. Scarpini E. Siciliano G. Solfrizzi V. Sorbi S. Spalletta G. Valdivieso F. Vepsäläinen S. Alvarez V. Bosco P. Mancuso M. Panza F. Nacmias B. Bossù P. Hanon O. Piccardi P. Annoni G. Seripa D. Galimberti D. Licastro F. Soininen H. Dartigues J-F. Kamboh M.I. Van Broeckhoven C. Lambert J.C. Amouyel P. Campion D. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Mol. Psychiatry 2011 16 9 903 907 10.1038/mp.2011.52 21556001
    [Google Scholar]
  38. Koutsodendris N. Nelson M.R. Rao A. Huang Y. Apolipoprotein E and Alzheimer’s disease: Findings, hypotheses, and potential mechanisms. Annu. Rev. Pathol. 2022 17 1 73 99 10.1146/annurev‑pathmechdis‑030421‑112756 34460318
    [Google Scholar]
/content/journals/car/10.2174/0115672050390986250801005607
Loading
/content/journals/car/10.2174/0115672050390986250801005607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test