Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Parkinson's disease (PD) is a multifaceted neurodegenerative condition marked by the progressive loss of dopaminergic neurons, leading to impairments in movement and cognition. This study offers an in-depth examination of the pathophysiological pathways associated with PD, emphasising the roles of oxidative stress, mitochondrial dysfunction, and neuroinflammation. The study examines the interaction between genetic and environmental factors in the development of PD, highlighting the significance of oxidative stress, mitochondrial dysfunction, and excitotoxicity in the degeneration of dopaminergic neurons. It also looks into the impact of neuroinflammation and microglial activation on the causes of PD. Despite considerable progress in research, there remains a lack of effective treatments that can modify the course of the disease, highlighting the pressing need for new therapeutic approaches that address mitochondrial malfunction, oxidative stress, and neuroinflammation. This study assesses the neuroprotective efficacy of various substances, notably natural agents like resveratrol, curcumin, ginsenoside, and melatonin, for managing PD. Although these natural chemicals show promise, further robust clinical trials are needed to confirm their effectiveness and safety, as well as to investigate their potential incorporation into conventional PD treatment.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050368080250529075006
2025-07-28
2025-12-25
Loading full text...

Full text loading...

References

  1. LorraineV. Disease-modifying strategies for Parkinson's disease.Mov. Disord. 20153011144210.1002/mds.26354
    [Google Scholar]
  2. Cheng U.C. Ulane C.M. Burke R.E. Clinical progression in Parkinson disease and the neurobiology of axons.Ann. Neurol.201067671510.1002/ana.21995
    [Google Scholar]
  3. AnthonyH.V. Etiology and pathogenesis of Parkinson disease.Neurol Clin200927358310.1016/j.ncl.2009.04.004.5
    [Google Scholar]
  4. BraakH. TrediciK.D. RübU. de VosR.A.I. JansenS.E.N.H. BraakE. Staging of brain pathology related to sporadic Parkinson’s disease.Neurobiol. Aging200324219721110.1016/S0197‑4580(02)00065‑912498954
    [Google Scholar]
  5. ZengX.S. GengW.S. JiaJ.J. Neurotoxin-induced animal models of Parkinson disease: Pathogenic mechanism and assessment.ASN. Neuro.2018101175909141877743810.1177/175909141877743829809058
    [Google Scholar]
  6. CannonJ.R. GreenamyreJ.T. The role of environmental exposures in neurodegeneration and neurodegenerative diseases.Toxicol. Sci.2011124222525010.1093/toxsci/kfr23921914720
    [Google Scholar]
  7. MartinI. DawsonV.L. DawsonT.M. Recent advances in the genetics of Parkinson’s disease.Annu. Rev. Genomics Hum. Genet.201112130132510.1146/annurev‑genom‑082410‑10144021639795
    [Google Scholar]
  8. SchapiraA.H.V. Progress in neuroprotection in Parkinson’s disease.Eur. J. Neurol.200815s151310.1111/j.1468‑1331.2008.02055.x18353131
    [Google Scholar]
  9. AthaudaD. FoltynieT. The ongoing pursuit of neuroprotective therapies in Parkinson disease.Nat. Rev. Neurol.2015111254010.1038/nrneurol.2014.22625447485
    [Google Scholar]
  10. ReichmannH. Premotor diagnosis of Parkinson’s disease.Neurosci. Bull.201733552653410.1007/s12264‑017‑0159‑528776303
    [Google Scholar]
  11. StocchiF. OlanowC.W. Neuroprotection in Parkinson’s disease: Clinical trials.Ann. Neurol.200353S3S87S9910.1002/ana.1048812666101
    [Google Scholar]
  12. OlanowC.W. HauserR.A. JankovicJ. LangstonW. LangA. PoeweW. TolosaE. StocchiF. MelamedE. EyalE. RascolO. A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): Rationale, design, and baseline characteristics.Mov. Disord.200823152194220110.1002/mds.2221818932271
    [Google Scholar]
  13. GermanD.C. ManayeK.F. SonsallaP.K. BrooksB.A. Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: Sparing of calbindin-D28k-containing cells.Ann. N. Y. Acad. Sci.19926481426210.1111/j.1749‑6632.1992.tb24523.x1353337
    [Google Scholar]
  14. AlexanderG.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder.Dialogues Clin. Neurosci.20046325928010.31887/DCNS.2004.6.3/galexander22033559
    [Google Scholar]
  15. MaitiP. MannaJ. DunbarG.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments.Transl. Neurodegener.2017612810.1186/s40035‑017‑0099‑z29090092
    [Google Scholar]
  16. GuptaY.K. GuptaM. KohliK. Neuroprotective role of melatonin in oxidative stress vulnerable brain.Indian J. Physiol. Pharmacol.200347437338615266948
    [Google Scholar]
  17. GuetensG. BoeckG.D. HighleyM. van OosteromA.T. de BruijnE.A. Oxidative DNA damage: Biological significance and methods of analysis.Crit. Rev. Clin. Lab. Sci.2002394-533145710.1080/1040836029079554712385502
    [Google Scholar]
  18. SkaperS.D. FloreaniM. CecconM. FacciL. GiustiP. Excitotoxicity, oxidative stress, and the neuroprotective potential of melatonin.Ann. N. Y. Acad. Sci.1999890110711810.1111/j.1749‑6632.1999.tb07985.x10668417
    [Google Scholar]
  19. Kim-HanJ.S. Antenor-DorseyJ.A. O’MalleyK.L. The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons.J. Neurosci.201131197212722110.1523/JNEUROSCI.0711‑11.201121562285
    [Google Scholar]
  20. ChesseletM-F, D Modelling of Parkinson's disease in mice. Lancet Neurol.20111012110810.1016/S1474‑4422(11)70227‑7
    [Google Scholar]
  21. WangX. MichaelisE.K. Selective neuronal vulnerability to oxidative stress in the brain.Front. Aging Neurosci.201021210.3389/fnagi.2010.0001220552050
    [Google Scholar]
  22. BriegerK. SchiavoneS. MillerJ.Jr KrauseK.H. Reactive oxygen species: From health to disease.Swiss Med. Wkly.20121423334w1365910.4414/smw.2012.1365922903797
    [Google Scholar]
  23. LeeD.H. GoldR. LinkerR.A. Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: Therapeutic modulation via fumaric acid esters.Int. J. Mol. Sci.2012139117831180310.3390/ijms13091178323109883
    [Google Scholar]
  24. WirdefeldtK. AdamiH.O. ColeP. TrichopoulosD. MandelJ. Epidemiology and etiology of Parkinson’s disease: A review of the evidence.Eur. J. Epidemiol.201126S115810.1007/s10654‑011‑9581‑621626386
    [Google Scholar]
  25. WakabayashiK. HayashiS. YoshimotoM. KudoH. TakahashiH. NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains.Acta Neuropathol.2000991142010.1007/PL0000740010651022
    [Google Scholar]
  26. KleinC. WestenbergerA. Genetics of Parkinson’s disease.Cold Spring Harb. Perspect. Med.201221a00888810.1101/cshperspect.a00888822315721
    [Google Scholar]
  27. MichelP.P. HirschE.C. HunotS. Understanding dopaminergic cell death pathways in Parkinson disease.Neuron201690467569110.1016/j.neuron.2016.03.03827196972
    [Google Scholar]
  28. GoldenbergM.M. Medical management of Parkinson’s disease.P&T2008331059060619750042
    [Google Scholar]
  29. SchapiraA.H.V. CooperJ.M. DexterD. ClarkJ.B. JennerP. MarsdenC.D. Mitochondrial complex I deficiency in Parkinson’s disease.J. Neurochem.199054382382710.1111/j.1471‑4159.1990.tb02325.x2154550
    [Google Scholar]
  30. GherardiG. CorbioliG. RuzzaF. RizzutoR. CoQ10 and resveratrol effects to ameliorate aged-related mitochondrial dysfunctions.Nutrients20221420432610.3390/nu1420432636297010
    [Google Scholar]
  31. WhittonP.S. Inflammation as a causative factor in the aetiology of Parkinson’s disease.Br. J. Pharmacol.2007150896397610.1038/sj.bjp.070716717339843
    [Google Scholar]
  32. SiracusaR. ScutoM. FuscoR. TrovatoA. OntarioM.L. CreaR. Di PaolaR. CuzzocreaS. CalabreseV. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice.Antioxidants20209982410.3390/antiox909082432899274
    [Google Scholar]
  33. LinL.F.H. DohertyD.H. LileJ.D. BekteshS. CollinsF. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.Science199326051111130113210.1126/science.84935578493557
    [Google Scholar]
  34. PenttinenA.M. ParkkinenI. VoutilainenM.H. KoskelaM. BäckS. TheirA. RichieC.T. DomanskyiA. HarveyB.K. TuominenR.K. NevalaitaL. SaarmaM. AiravaaraM. Pre-α-pro-GDNF and pre-β-pro-GDNF isoforms are neuroprotective in the 6-hydroxydopamine rat model of Parkinson’s disease.Front. Neurol.2018945710.3389/fneur.2018.0045729973907
    [Google Scholar]
  35. StefanisL. Alpha-synuclein in Parkinson’s disease: A neuropathological review.Brain Pathol.2012226747763
    [Google Scholar]
  36. HuS. TanJ. QinL. LvL. YanW. ZhangH. TangB. WangC. Molecular chaperones and Parkinson’s disease.Neurobiol. Dis.202116010552710.1016/j.nbd.2021.10552734626793
    [Google Scholar]
  37. SurmeierD.J. GuzmanJ.N. Sanchez-PadillaJ. GoldbergJ.A. The origins of oxidant stress in Parkinson’s disease and therapeutic strategies.Antioxid. Redox Signal.20111471289130110.1089/ars.2010.352120712409
    [Google Scholar]
  38. LissB. StriessnigJ. The potential of L-type calcium channels as a drug target for neuroprotective therapy in Parkinson’s disease.Annu. Rev. Pharmacol. Toxicol.201959126328910.1146/annurev‑pharmtox‑010818‑02121430625283
    [Google Scholar]
  39. JohnsonS.L. ParkH.Y. DaSilvaN.A. VattemD.A. MaH. SeeramN.P. Levodopa-reduced Mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster.Nutrients2018109113910.3390/nu1009113930131460
    [Google Scholar]
  40. CerriS. BlandiniF. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson’s disease.Expert Opin. Pharmacother.202021182279229110.1080/14656566.2020.180543232804544
    [Google Scholar]
  41. SarkarS. RaymickJ. ImamS. Neuroprotective and therapeutic strategies against Parkinson’s disease: Recent perspectives.Int. J. Mol. Sci.201617690410.3390/ijms1706090427338353
    [Google Scholar]
  42. PaudelP. SeongS.H. WuS. ParkS. JungH.A. ChoiJ.S. Eckol as a potential therapeutic against neurodegenerative diseases targeting dopamine D3/D4 receptors.Mar. Drugs201917210810.3390/md1702010830744179
    [Google Scholar]
  43. SeidlS.E. PotashkinJ.A. The promise of neuroprotective agents in Parkinson’s disease.Front. Neurol.201126810.3389/fneur.2011.0006822125548
    [Google Scholar]
  44. PeplowP.V. MartinezB. Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease.Neural Regen. Res.20181391493150610.4103/1673‑5374.23710830127102
    [Google Scholar]
  45. TanY.Y. JennerP. ChenS.D. Monoamine Oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future.J. Parkinsons Dis.202212247749310.3233/JPD‑21297634957948
    [Google Scholar]
  46. KohR.Y. ChewZ.X. LimC.L. NgK.Y. ChyeS.M. LingA.P.K. The role of monoamine oxidase b inhibitors in the treatment of Parkinson’s disease - An update.CNS Neurol. Disord. Drug Targets202322332935210.2174/187152732166621123110025534970960
    [Google Scholar]
  47. AlborghettiM. BianchiniE. De CarolisL. GalliS. PontieriF.E. RinaldiD. Type-B monoamine oxidase inhibitors in neurological diseases.Neural Regen. Res.2024191162110.4103/1673‑5374.37529937488838
    [Google Scholar]
  48. NagatsuT. NakashimaA. Monoamine oxidase inhibitor (MAO-I)-mediated neuroprotection for treating Parkinson’s disease.NeuroPsychopharmacotherapy. Springer202012110.1007/978‑3‑319‑56015‑1_238‑2
    [Google Scholar]
  49. LiY. LiuL. BargerS.W. MrakR.E. GriffinW.S.T. Vitamin E suppression of microglial activation is neuroprotective.J. Neurosci. Res.200166216317010.1002/jnr.120811592111
    [Google Scholar]
  50. RoghaniM. BehzadiG. Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: Behavioral and histochemical evidence11Published on the World Wide Web 3 January 2001.Brain Res.2001892121121710.1016/S0006‑8993(00)03296‑011172767
    [Google Scholar]
  51. GrünewaldR.A. Ascorbic acid in the brain.Brain Res. Rev.199318112313310.1016/0165‑0173(93)90010‑W8467348
    [Google Scholar]
  52. Seidl, S.E.; Potashkin, J.A. The promise of neuroprotective agents in Parkinson’s disease. Front. Neurol., 2011, 2, 68. https://dx.doi.org/10.3389/fneur.2011.00068
  53. EylesD.W. SmithS. KinobeR. HewisonM. McGrathJ.J. Distribution of the Vitamin D receptor and 1α-hydroxylase in human brain.J. Chem. Neuroanat.2005291213010.1016/j.jchemneu.2004.08.00615589699
    [Google Scholar]
  54. WojdaU. SalinskaE. KuznickiJ. Calcium ions in neuronal degeneration.IUBMB Life200860957559010.1002/iub.9118478527
    [Google Scholar]
  55. GillS.S. PatelN.K. HottonG.R. O’SullivanK. McCarterR. BunnageM. BrooksD.J. SvendsenC.N. HeywoodP. Direct brain infusion of glial cell line–derived neurotrophic factor in Parkinson disease.Nat. Med.20039558959510.1038/nm85012669033
    [Google Scholar]
  56. OrmeR.P. BhangalM.S. FrickerR.A. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression.PLoS. One201384e6204010.1371/journal.pone.006204023626767
    [Google Scholar]
  57. ScherzerC.R. EklundA.C. MorseL.J. LiaoZ. LocascioJ.J. FeferD. SchwarzschildM.A. SchlossmacherM.G. HauserM.A. VanceJ.M. SudarskyL.R. Molecular markers of early Parkinson’s disease based on gene expression in blood.Proc. Nat. Acad. Sci.200710439556010.1073/pnas.0610204104
    [Google Scholar]
  58. ManjariS.K.V. MaityS. PoornimaR. YauS.Y. VaishaliK. StellwagenD. KomalP. Restorative action of vitamin D3 on motor dysfunction through enhancement of neurotrophins and antioxidant expression in the striatum.Neuroscience2022492678110.1016/j.neuroscience.2022.03.03935413386
    [Google Scholar]
  59. AndersonC. CheckowayH. FranklinG.M. BeresfordS. Smith-WellerT. SwansonP.D. Dietary factors in Parkinson’s disease: The role of food groups and specific foods.Mov. Disord.1999141212710.1002/1531‑8257(199901)14:1<21::AID‑MDS1006>3.0.CO;2‑Y9918340
    [Google Scholar]
  60. DewanjeeS Zia-Ul-HaqM RiazM SarkhelS ChakrabortyP AhmedS Carotenoids as antiparkinson agents.Carotenoids: Structure and Function in the Human Body.Springer2021533555410.1007/978‑3‑030‑46459‑2_15
    [Google Scholar]
  61. CoimbraC.G. JunqueiraV.B.C. High doses of riboflavin and the elimination of dietary red meat promote the recovery of some motor functions in Parkinson’s disease patients.Braz. J. Med. Biol. Res.200336101409141710.1590/S0100‑879X200300100001914502375
    [Google Scholar]
  62. MurakamiK. MiyakeY. SasakiS. TanakaK. FukushimaW. KiyoharaC. TsuboiY. YamadaT. OedaT. MikiT. KawamuraN. SakaeN. FukuyamaH. HirotaY. NagaiM. Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: a case–control study in Japan.Br. J. Nutr.2010104575776410.1017/S000711451000100520338075
    [Google Scholar]
  63. AlhebshiA.H. OdawaraA. GotohM. SuzukiI. Thymoquinone protects cultured hippocampal and human induced pluripotent stem cells-derived neurons against α-synuclein-induced synapse damage.Neurosci. Lett.201457012613110.1016/j.neulet.2013.09.04924080376
    [Google Scholar]
  64. AlladiP.A. MahadevanA. YashaT.C. RajuT.R. ShankarS.K. MuthaneU. Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: Relevance to lower incidence of Parkinson’s disease.Neuroscience2009159123624510.1016/j.neuroscience.2008.11.05119135503
    [Google Scholar]
  65. MythriR.B. VeenaJ. HarishG. RaoS.B.S. SrinivasB.M.M. Chronic dietary supplementation with turmeric protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-mediated neurotoxicity in vivo : Implications for Parkinson’s disease.Br. J. Nutr.20111061637210.1017/S000711451000581721473798
    [Google Scholar]
  66. AdamsB.K. CaiJ. ArmstrongJ. HeroldM. LuY.J. SunA. SnyderJ.P. LiottaD.C. JonesD.P. ShojiM. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism.Anticancer Drugs200516326327510.1097/00001813‑200503000‑0000515711178
    [Google Scholar]
  67. PanM.H. HuangT.M. LinJ.K. Biotransformation of curcumin through reduction and glucuronidation in mice.Drug Metab. Dispos.199927448649410.1016/S0090‑9556(24)15211‑710101144
    [Google Scholar]
  68. MursaleenL. NobleB. ChanS.H.Y. SomavarapuS. ZariwalaM.G. N-Acetylcysteine nanocarriers protect against oxidative stress in a cellular model of Parkinson’s disease.Antioxidants20209760010.3390/antiox907060032660079
    [Google Scholar]
  69. EstevesA.R. SilvaD.F. Mitochondrial therapeutic approaches in Parkinson’s disease.Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease.Springer201618320510.1007/978‑3‑319‑42139‑1_9
    [Google Scholar]
  70. BrasilF.B. de AlmeidaF.J.S. LuckachakiM.D. Dall’OglioE.L. de OliveiraM.R. The isothiocyanate sulforaphane prevents mitochondrial impairment and neuroinflammation in the human dopaminergic SH-SY5Y and in the mouse microglial BV2 cells: Role for heme oxygenase-1.Metab. Brain Dis.202338241943510.1007/s11011‑022‑00990‑x35469083
    [Google Scholar]
  71. LinK.J. WangT.J. ChenS.D. LinK.L. LiouC.W. LanM.Y. ChuangY.C. ChuangJ.H. WangP.W. LeeJ.J. WangF.S. LinH.Y. LinT.K. Two birds one stone: The neuroprotective effect of antidiabetic agents on parkinson disease—focus on sodium-glucose cotransporter 2 (sglt2) inhibitors.Antioxidants20211012193510.3390/antiox1012193534943038
    [Google Scholar]
  72. CeredaE. BarichellaM. PedrolliC. KlersyC. CassaniE. CaccialanzaR. PezzoliG. Diabetes and risk of Parkinson’s disease: A systematic review and meta-analysis.Diabetes Care201134122614262310.2337/dc11‑158422110170
    [Google Scholar]
  73. IbrahimM.N. RamliR. KuttyK.S. ShahS.A. Earlier onset of motor complications in Parkinson’s patients with comorbid diabetes mellitus.Mov. Disord.201833121967196810.1002/mds.2752630427552
    [Google Scholar]
  74. BrakedalB. FlønesI. ReiterS.F. TorkildsenØ. DölleC. AssmusJ. HaugarvollK. TzoulisC. Glitazone use associated with reduced risk of Parkinson’s disease.Mov. Disord.201732111594159910.1002/mds.2712828861893
    [Google Scholar]
  75. CaoL. LiD. FengP. LiL. XueG.F. LiG. HölscherC. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson’s disease by reducing chronic inflammation in the brain.Neuroreport201627638439110.1097/WNR.000000000000054826918675
    [Google Scholar]
  76. ValenciaW.M. PalacioA. TamarizL. FlorezH. Metformin and ageing: Improving ageing outcomes beyond glycaemic control.Diabetologia20176091630163810.1007/s00125‑017‑4349‑528770328
    [Google Scholar]
  77. LinY. WangK. MaC. WangX. GongZ. ZhangR. ZangD. ChengY. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism.Front. Aging Neurosci.20181022710.3389/fnagi.2018.0022730100873
    [Google Scholar]
  78. RotermundC. MachetanzG. FitzgeraldJ.C. The therapeutic potential of metformin in neurodegenerative diseases.Front. Endocrinol.2018940010.3389/fendo.2018.0040030072954
    [Google Scholar]
  79. LuM. SuC. QiaoC. BianY. DingJ. HuG. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance.Int. J. Neuropsychopharmacol.2016199pyw04710.1093/ijnp/pyw04727207919
    [Google Scholar]
  80. AlroujiM. Al-KuraishyH.M. Al-GareebA.I. SaadH.M. BatihaG.E.S. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson’s disease: Beneficial or detrimental effects.Inflammopharmacology202331267368810.1007/s10787‑023‑01192‑236961665
    [Google Scholar]
  81. JunrongH.E. ZaiL.I. XipeiC.H. Neuroprotective effect of ibuprofen on ischemic stroke rats and its effect on Nrf2/SLC7A1I/GPX4 signal pathway.J. Practical Med.202339510.3969/j.issn.1006‑5725.2023.15.006
    [Google Scholar]
  82. FinstererJ. AlmeidaA.C.G. Chaddad-NetoF. ScorzaF.A. Statin therapy in Parkinson’s disease cuts mortality.Parkinsonism Relat. Disord.202412610604310.1016/j.parkreldis.2024.10604338461038
    [Google Scholar]
  83. BhardwajR. DeshmukhR. Neurotrophic factors and Parkinson’s disease.Clin. Investig.2018745362
    [Google Scholar]
  84. Carrillo-MoraP. Silva-AdayaD. Villaseñor-AguayoK. Glutamate in Parkinson’s disease: Role of antiglutamatergic drugs.Basal Ganglia20133314715710.1016/j.baga.2013.09.001
    [Google Scholar]
  85. LinJ. PangD. LiC. OuR. YuY. CuiY. HuangJ. ShangH. Calcium channel blockers and Parkinson’s disease: A systematic review and meta-analysis.Ther. Adv. Neurol. Disord.2024171756286424125271310.1177/1756286424125271338770432
    [Google Scholar]
  86. WangQ.M. XuY.Y. LiuS. MaZ.G. Isradipine attenuates MPTP-induced dopamine neuron degeneration by inhibiting up-regulation of L-type calcium channels and iron accumulation in the substantia nigra of mice.Oncotarget2017829472844729510.18632/oncotarget.1761828521299
    [Google Scholar]
  87. ZengX. AnH. YuF. WangK. ZhengL. ZhouW. BaoY. YangJ. ShenN. HuangD. Benefits of iron chelators in the treatment of Parkinson’s disease.Neurochem. Res.20214651239125110.1007/s11064‑021‑03262‑933646533
    [Google Scholar]
  88. YangL. CalingasanN.Y. WilleE.J. CormierK. SmithK. FerranteR.J. FlintB.M. Combination therapy with Coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases.J. Neurochem.200910951427143910.1111/j.1471‑4159.2009.06074.x19476553
    [Google Scholar]
  89. SääksjärviK. KnektP. RissanenH. LaaksonenM.A. ReunanenA. MännistöS. Prospective study of coffee consumption and risk of Parkinson’s disease.Eur. J. Clin. Nutr.200862790891510.1038/sj.ejcn.160278817522612
    [Google Scholar]
  90. KachrooA. IrizarryM.C. SchwarzschildM.A. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration.Exp. Neurol.2010223265766110.1016/j.expneurol.2010.02.00720188092
    [Google Scholar]
  91. JoghataieM.T. RoghaniM. NegahdarF. HashemiL. Protective effect of caffeine against neurodegeneration in a model of Parkinson’s disease in rat: Behavioral and histochemical evidence.Parkinsonism Relat. Disord.200410846546810.1016/j.parkreldis.2004.06.00415542005
    [Google Scholar]
  92. AguiarL.M.V. NobreH.V.Jr MacêdoD.S. OliveiraA.A. FreitasR.M. VasconcelosS.M. CunhaG.M.A. SousaF.C.F. VianaG.S.B. Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats.Pharmacol. Biochem. Behav.200684341541910.1016/j.pbb.2006.05.02716844208
    [Google Scholar]
  93. XuK. XuY.H. ChenJ.F. SchwarzschildM.A. Neuroprotection by caffeine: Time course and role of its metabolites in the MPTP model of Parkinson’s disease.Neuroscience2010167247548110.1016/j.neuroscience.2010.02.02020167258
    [Google Scholar]
  94. XuK. XuY.H. ChenJ.F. SchwarzschildM.A. Caffeine’s neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice.Neurosci. Lett.20023221131610.1016/S0304‑3940(02)00069‑111958832
    [Google Scholar]
  95. RussoM. SpagnuoloC. TedescoI. BilottoS. RussoG.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies.Biochem. Pharmacol.201283161510.1016/j.bcp.2011.08.01021856292
    [Google Scholar]
  96. RussoM. SpagnuoloC. TedescoI. BilottoS. RussoG.L. Protective effects of red onion (Allium cepa) ethanolic extract on learning and memory impairments in animal models of diabetes.Biochem. Pharmacol.201763e90910.22086/gmj.v0i0.909
    [Google Scholar]
  97. HegazyE.M. SabryA. KhalilW.K.B. Neuroprotective effects of onion and garlic root extracts against Alzheimer’s disease in rats: Antimicrobial, histopathological, and molecular studies.BioTechnologia2022103215316710.5114/bta.2022.11621036606073
    [Google Scholar]
  98. HwangI.K. LeeC.H. YooK.Y. ChoiJ.H. ParkO.K. LimS.S. KangI.J. KwonD.Y. ParkJ. YiJ.S. BaeY.S. WonM.H. Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus.J. Med. Food200912599099510.1089/jmf.2008.140019857061
    [Google Scholar]
  99. AshfaqF. AliQ. HaiderM.A. HafeezM.M. MalikA. Therapeutic activities of garlic constituent phytochemicals.Biol. Clin. Sci. Res. J20212021110.54112/bcsrj.v2021i1.53
    [Google Scholar]
  100. BighamM. MohammadipourA. HosseiniM. MalvandiA.M. Ebrahimzadeh-BideskanA. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson’s disease: Motor and non-motor outcomes.Metab. Brain Dis.202136592793710.1007/s11011‑021‑00705‑833656625
    [Google Scholar]
  101. MedalchoT.H. AbegazK. DessalegnE. MateJ. Aflatoxin B1 detoxification potentials of garlic, ginger, cardamom, black cumin, and sautéing in ground spice mix red pepper products.Toxins202315530710.3390/toxins1505030737235342
    [Google Scholar]
  102. Abdel-WahhabM.A. AlyS.E. Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet.J. Agric. Food Chem.20035182409241410.1021/jf020918512670189
    [Google Scholar]
  103. IftikharA. NausheenR. MuzaffarH. NaeemM.A. FarooqM. KhurshidM. AlmatroudiA. AlrumaihiF. AllemailemK.S. AnwarH. Potential therapeutic benefits of honey in neurological disorders: The role of polyphenols.Molecules20222710329710.3390/molecules2710329735630774
    [Google Scholar]
  104. TopalN. BuldukI. MutZ. BozodluH. TosunY.K. Flowers, pollen and honey for use in the treatment of Parkinson’s disease.Revista de Chimie202071930831910.37358/RC.20.9.8341
    [Google Scholar]
  105. AraG. AfzalM. JyotiS. NazF. Rahul SiddiqueY.H. Effect of Myricetin on the loss of dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease.Curr. Drug Ther.2019141586410.2174/1574885513666180529114546
    [Google Scholar]
  106. HuangB. LiuJ. MaD. ChenG. WangW. FuS. Myricetin prevents dopaminergic neurons from undergoing neuroinflammation-mediated degeneration in a lipopolysaccharide-induced Parkinson’s disease model.J. Funct. Foods20184545246110.1016/j.jff.2018.04.018
    [Google Scholar]
  107. GuoB. ZhengC. CaiW. ChengJ. WangH. LiH. SunY. CuiW. WangY. HanY. LeeS.M.Y. ZhangZ. Multifunction of chrysin in Parkinson’s model: Anti-neuronal apoptosis, neuroprotection via activation of MEF2D, and inhibition of monoamine oxidase-B.J. Agric. Food Chem.201664265324533310.1021/acs.jafc.6b0170727245668
    [Google Scholar]
  108. AscherioA. LeWittP.A. XuK. EberlyS. WattsA. MatsonW.R. MarrasC. KieburtzK. RudolphA. BogdanovM.B. SchwidS.R. TennisM. TannerC.M. BealM.F. LangA.E. OakesD. FahnS. ShoulsonI. SchwarzschildM.A. Urate as a predictor of the rate of clinical decline in Parkinson disease.Arch. Neurol.200966121460146810.1001/archneurol.2009.24719822770
    [Google Scholar]
  109. YuZ.F. Bruce-KellerA.J. GoodmanY. MattsonM.P. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo.J. Neurosci. Res.199853561362510.1002/(SICI)1097‑4547(19980901)53:5<613::AID‑JNR11>3.0.CO;2‑19726432
    [Google Scholar]
  110. XieY. ZengH. HuangZ. XuH. FanQ. ZhangY. ZhengB. Effect of maternal administration of edible bird’s nest on the learning and memory abilities of suckling offspring in mice.Neural Plast.2018201811310.1155/2018/769726129765403
    [Google Scholar]
  111. TaiS.K. KohR.Y. NgK.Y. ChyeS.M. A mini review on medicinal effects of edible bird’s nest.Lett. Health Biol. Sci.2017216567
    [Google Scholar]
  112. MirandaM. MoriciJ.F. ZanoniM.B. BekinschteinP. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain.Front. Cell. Neurosci.20191336310.3389/fncel.2019.0036331440144
    [Google Scholar]
  113. LohS.P. ChengS.H. MohamedW. Edible bird’s nest as a potential cognitive enhancer.Front. Neurol.20221386567110.3389/fneur.2022.86567135599726
    [Google Scholar]
  114. HouZ. HeP. ImamM.U. QiJ. TangS. SongC. IsmailM. Edible bird’s nest prevents menopause-related memory and cognitive decline in rats via increased hippocampal sirtuin-1 expression.Oxid. Med. Cell. Longev.201720171720508210.1155/2017/720508229104731
    [Google Scholar]
  115. QidwaiW. HamzaH.B. QureshiR. GilaniA. Effectiveness, safety, and tolerability of powdered Nigella sativa (kalonji) seed in capsules on serum lipid levels, blood sugar, blood pressure, and body weight in adults: Results of a randomized, double-blind controlled trial.J. Altern. Complement. Med.200915663964410.1089/acm.2008.036719500003
    [Google Scholar]
  116. TuoQ. ZouJ. LeiP. Rodent models of vascular cognitive impairment.J. Mol. Neurosci.202171511210.1007/s12031‑020‑01733‑233107013
    [Google Scholar]
  117. AhmadA. HusainA. MujeebM. KhanS.A. NajmiA.K. SiddiqueN.A. DamanhouriZ.A. AnwarF. A review on therapeutic potential of Nigella sativa: A miracle herb.Asian Pac. J. Trop. Biomed.20133533735210.1016/S2221‑1691(13)60075‑123646296
    [Google Scholar]
  118. HosseinianS. RadA.K. BideskanA.E. SoukhtanlooM. SadeghniaH. ShafeiM.N. MotejaddedF. MohebbatiR. ShahrakiS. BeheshtiF. Thymoquinone ameliorates renal damage in unilateral ureteral obstruction in rats.Pharmacol. Rep.201769464865710.1016/j.pharep.2017.03.00228521173
    [Google Scholar]
  119. EbrahimiS.S. OryanS. IzadpanahE. HassanzadehK. Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease.Toxicol. Lett.201727610811410.1016/j.toxlet.2017.05.01828526446
    [Google Scholar]
  120. GhoshS. BanerjeeS. SilP.C. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update.Food Chem. Toxicol.20158311112410.1016/j.fct.2015.05.02226066364
    [Google Scholar]
  121. NebrisiE.E. Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature.Int. J. Mol. Sci.202122201124810.3390/ijms22201124834681908
    [Google Scholar]
  122. RenaudJ. MartinoliM.G. Resveratrol as a protective molecule for neuroinflammation: A review of mechanisms.Curr. Pharm. Biotechnol.201415431832910.2174/138920101566614061710133224938890
    [Google Scholar]
  123. ChaoJ. LiH. ChengK.W. YuM.S. ChangR.C.C. WangM. Protective effects of pinostilbene, a resveratrol methylated derivative, against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells.J. Nutr. Biochem.201021648248910.1016/j.jnutbio.2009.02.00419443200
    [Google Scholar]
  124. JinF. WuQ. LuY.F. GongQ.H. ShiJ.S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats.Eur. J. Pharmacol.20086001-3788210.1016/j.ejphar.2008.10.00518940189
    [Google Scholar]
  125. OkawaraM. KatsukiH. KurimotoE. ShibataH. KumeT. AkaikeA. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults.Biochem. Pharmacol.200773455056010.1016/j.bcp.2006.11.00317147953
    [Google Scholar]
  126. LeeK.W. JungS.Y. ChoiS.M. YangE.J. Effects of ginsenoside Re on LPS-induced inflammatory mediators in BV2 microglial cells.BMC Complement. Altern. Med.201212119610.1186/1472‑6882‑12‑19623102375
    [Google Scholar]
  127. KimH.J. KimP. ShinC.Y. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system.J. Ginseng Res.201337182910.5142/jgr.2013.37.823717153
    [Google Scholar]
  128. XuB.B. LiuC.Q. GaoX. ZhangW.Q. WangS.W. CaoY.L. Possible mechanisms of the protection of ginsenoside Re against MPTP-induced apoptosis in substantia nigra neurons of Parkinson’s disease mouse model.J. Asian Nat. Prod. Res.20057321522410.1080/1028602041000169017215621629
    [Google Scholar]
  129. HardelandR. Investigational melatonin receptor agonists.Expert Opin. Investig. Drugs201019674776410.1517/13543784.2010.48292620408738
    [Google Scholar]
  130. TanD.X. ManchesterL.C. TerronM.P. FloresL.J. ReiterR.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species?J. Pineal Res.2007421284210.1111/j.1600‑079X.2006.00407.x17198536
    [Google Scholar]
  131. NatesanA.K. Thesis Molecular analysis of melatonin receptors in the chick central nervous system: Role for multiple receptor subtypes.Texas A&M University2001
    [Google Scholar]
  132. Carrillo-VicoA. LardoneP. Álvarez-SánchezN. Rodríguez-RodríguezA. GuerreroJ. Melatonin: Buffering the immune system.Int. J. Mol. Sci.20131448638868310.3390/ijms1404863823609496
    [Google Scholar]
  133. MengX. LiY. LiS. ZhouY. GanR.Y. XuD.P. LiH.B. Dietary sources and bioactivities of melatonin.Nutrients20179436710.3390/nu904036728387721
    [Google Scholar]
  134. ArendtJ. AulinasA. Physiology of the Pineal Gland and Melatonin, 2022, MDText.com, Inc., 2000.
    [Google Scholar]
  135. KohP.O. Melatonin regulates the calcium-buffering proteins, parvalbumin and hippocalcin, in ischemic brain injury.J. Pineal Res.201253435836510.1111/j.1600‑079X.2012.01005.x22639951
    [Google Scholar]
  136. LiH. GuoY. LanZ. ZhangZ. AhammedG.J. ChangJ. ZhangY. WeiC. ZhangX. Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation.Plant Sci.202130311076110.1016/j.plantsci.2020.11076133487347
    [Google Scholar]
  137. PatiñoP. ParadaE. Farré-AlinsV. MolzS. CacabelosR. Marco-ContellesJ. LópezM.G. TascaC.I. RamosE. RomeroA. EgeaJ. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.Neurotoxicology201657616810.1016/j.neuro.2016.09.00227620136
    [Google Scholar]
  138. LeeM.Y. KuanY.H. ChenH.Y. ChenT.Y. ChenS.T. HuangC.C. YangI.P. HsuY.S. WuT.S. LeeE.J. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats.J. Pineal Res.200742329730910.1111/j.1600‑079X.2007.00420.x17349029
    [Google Scholar]
  139. Jiménez-DelgadoA. OrtizG.G. Delgado-LaraD.L. González-UsigliH.A. González-OrtizL.J. Cid-HernándezM. Cruz-SerranoJ.A. Pacheco-MoisésF.P. Effect of melatonin administration on mitochondrial activity and oxidative stress markers in patients with Parkinson’s disease.Oxid. Med. Cell. Longev.202120211557754110.1155/2021/557754134707777
    [Google Scholar]
  140. AllaithA.A.A. Antioxidant activity of Bahraini date palm ( Phoenix dactylifera L.) fruit of various cultivars.Int. J. Food Sci. Technol.20084361033104010.1111/j.1365‑2621.2007.01558.x
    [Google Scholar]
  141. BiglariF. AlKarkhiA.F.M. EasaA.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran.Food Chem.200810741636164110.1016/j.foodchem.2007.10.033
    [Google Scholar]
  142. RahmaniA.H. AlyS.M. AliH. BabikerA.Y. SrikarS. KhanA.A. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity.Int. J. Clin. Exp. Med.20147348349124753740
    [Google Scholar]
  143. EssaM.M. BraidyN. Awlad-ThaniK. VaishnavR. Al-AsmiA. GuilleminG.J. Al-AdawiS. SubashS. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer′s disease.J. Ayurveda Integr. Med.20156211112010.4103/0975‑9476.15907326167001
    [Google Scholar]
  144. YusufA.O. BuraimohA.A. AgbonA.N. RajiK.B. AkpuluP.S. Preliminary histological studies on the effect of aqueous fruit extract of Phoenix dactylifera L.(date palm) on lead acetate-induced cerebellar damages in Wistar rats.Afr. J. Cell. Pathol.2017811810.5897/AJCPATH17.001
    [Google Scholar]
  145. SubashS. EssaM.M. Al-AsmiA. Al-AdawiS. VaishnavR. GuilleminG.J. Effect of dietary supplementation of dates in Alzheimer’s disease APPsw/2576 transgenic mice on oxidative stress and antioxidant status.Nutr. Neurosci.201518628128810.1179/1476830514Y.000000013424954036
    [Google Scholar]
  146. RaiS.N. SinghP. VarshneyR. Natural L-DOPA from Mucuna pruriens: A sustainable therapy for Parkinson’s disease.Neurol. Sci.202344262163410.1007/s10072‑022‑06493‑y36301361
    [Google Scholar]
  147. ThakurA.K. RaiG. Mucuna pruriens in Parkinson’s disease: Translational opportunities.CNS Neurol. Disord. Drug Targets202120541642910.2174/1871527320666210118105418
    [Google Scholar]
  148. PatelV.K. YadavS.K. SinghS. Mucuna pruriens enhances striatal dopamine release and motor coordination in MPTP-lesioned mice.J. Ethnopharmacol.202228411478810.1016/j.jep.2021.114788
    [Google Scholar]
  149. WangY. LiS. ChenL. Ursolic acid attenuates neuroinflammation in MPTP mice by regulating microglial polarization via the PPARγ/NF-κB pathway.Brain Res. Bull.202319411010.1016/j.brainresbull.2023.01.008
    [Google Scholar]
  150. JavedH. VaibhavK. KhanM.M. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinson’s disease mouse model.Chem. Biol. Interact.20212779110010.1016/j.cbi.2021.03.026
    [Google Scholar]
  151. KimS.R. JeongH.Y. YangS. Ursolic acid suppresses neuroinflammation in MPTP-induced Parkinson’s disease mice via Nrf2/HO-1 signaling.Int. J. Mol. Sci.20222315817910.3390/ijms2315817935897755
    [Google Scholar]
  152. HwangC.J. KimY.E. SonD.J. Chlorogenic acid rescues mitochondrial dysfunction in Parkinson’s disease models via PGC-1α upregulation.Antioxidants202312351210.3390/antiox12030512
    [Google Scholar]
  153. LeeJ.E. SongH.S. ParkJ.H. Chlorogenic acid ameliorates MPTP-induced neurotoxicity and motor deficits in mice by suppressing oxidative stress.Biomol. Ther.202129330231010.4062/biomolther.2020.15433619237
    [Google Scholar]
  154. BollimpelliV.S. KumarP. KondapiA.K. Neuroprotective effect of chlorogenic acid in MPTP-induced Parkinson’s disease mice.Neurochem. Int.202215810538510.1016/j.neuint.2022.105385
    [Google Scholar]
  155. SinghM. MurthyV. RamassamyC. Standardized Withania somnifera extract inhibits apoptosis in Maneb-Paraquat-induced Parkinson’s disease models.Neurotox. Res.202240371472710.1007/s12640‑022‑00503‑935486353
    [Google Scholar]
  156. KuboyamaT. TohdaC. KomatsuK. Withanoside IV and its active metabolite, sominone, attenuate Aβ(25-35)-induced neurodegeneration.Eur. J. Neurosci.202027364765810.1111/j.1460‑9568.2008.06024.x16553605
    [Google Scholar]
  157. SharmaA. KumarA. TaliyanR. Synergistic neuroprotection by Withania somnifera and coenzyme Q10 in a Parkinson’s disease model: Role of mitochondrial biogenesis.Phytomedicine202311215470910.1016/j.phymed.2023.154709
    [Google Scholar]
  158. BealM.F. OakesD. ShoulsonI. HenchcliffeC. GalpernW.R. HaasR. JuncosJ.L. NuttJ.G. VossT.S. RavinaB. ShultsC.M. HellesK. SnivelyV. LewM.F. GriebnerB. WattsA. GaoS. PourcherE. BondL. KompolitiK. AgarwalP. SiaC. JogM. ColeL. SultanaM. KurlanR. RichardI. DeeleyC. WatersC.H. FigueroaA. ArkunA. BrodskyM. OndoW.G. HunterC.B. Jimenez-ShahedJ. PalaoA. MiyasakiJ.M. SoJ. TetrudJ. ReysL. SmithK. SingerC. BlenkeA. RussellD.S. CottoC. FriedmanJ.H. LannonM. ZhangL. DrasbyE. KumarR. SubramanianT. FordD.S. GrimesD.A. CoteD. ConwayJ. SiderowfA.D. EvattM.L. SommerfeldB. LiebermanA.N. OkunM.S. RodriguezR.L. MerrittS. SwartzC.L. MartinW.R.W. KingP. StoverN. GuthrieS. WattsR.L. AhmedA. FernandezH.H. WintersA. MariZ. DawsonT.M. DunlopB. FeiginA.S. ShannonB. NirenbergM.J. OggM. ElliasS.A. ThomasC.A. FreiK. Bodis-WollnerI. GlazmanS. MayerT. HauserR.A. PahwaR. LanghammerA. RanawayaR. DerwentL. SethiK.D. FarrowB. PrakashR. LitvanI. RobinsonA. SahayA. GartnerM. HinsonV.K. MarkindS. PelikanM. PerlmutterJ.S. HartleinJ. MolhoE. EvansS. AdlerC.H. DuffyA. LindM. ElmerL. DavisK. SpearsJ. WilsonS. LeeheyM.A. HermanowiczN. NiswongerS. ShillH.A. ObradovS. RajputA. CowperM. LessigS. SongD. FontaineD. ZadikoffC. WilliamsK. BlindauerK.A. BergholteJ. PropsomC.S. StacyM.A. FieldJ. MihailaD. ChiltonM. UcE.Y. SierenJ. SimonD.K. KraicsL. SilverA. BoydJ.T. HamillR.W. IngvoldstadC. YoungJ. ThomasK. KostykS.K. WojcieszekJ. PfeifferR.F. PanissetM. BelandM. ReichS.G. CinesM. ZappalaN. RivestJ. ZweigR. LuminaL.P. HilliardC.L. GrillS. KellermannM. TuiteP. RolandelliS. KangU.J. YoungJ. RaoJ. CookM.M. SevertL. BoyarK. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: No evidence of benefit.JAMA Neurol.201471554355210.1001/jamaneurol.2014.13124664227
    [Google Scholar]
  159. KieburtzK. TilleyB.C. ElmJ.J. BabcockD. HauserR. RossG.W. AugustineA.H. AugustineE.U. AminoffM.J. Bodis-WollnerI.G. BoydJ. CambiF. ChouK. ChristineC.W. CinesM. DahodwalaN. DerwentL. DeweyR.B.Jr HawthorneK. HoughtonD.J. KampC. LeeheyM. LewM.F. LiangG.S.L. LuoS.T. MariZ. MorganJ.C. ParashosS. PérezA. PetrovitchH. RajanS. ReichweinS. RothJ.T. SchneiderJ.S. ShannonK.M. SimonD.K. SimuniT. SingerC. SudarskyL. TannerC.M. UmehC.C. WilliamsK. WillsA.M. Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: A randomized clinical trial.JAMA2015313658459310.1001/jama.2015.12025668262
    [Google Scholar]
  160. MullinS. SmithL. LeeK. D’SouzaG. WoodgateP. ElfleinJ. HällqvistJ. ToffoliM. StreeterA. HoskingJ. HeywoodW.E. KhengarR. CampbellP. HehirJ. CableS. MillsK. ZetterbergH. LimousinP. LibriV. FoltynieT. SchapiraA.H.V. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: A nonrandomized, noncontrolled trial.JAMA Neurol.202077442743410.1001/jamaneurol.2019.461131930374
    [Google Scholar]
  161. DawsonT.M. KoH.S. DawsonV.L. Genetic animal models of Parkinson’s disease.Neuron201066564666110.1016/j.neuron.2010.04.03420547124
    [Google Scholar]
  162. OlanowC.W. SchapiraA.H.V. Therapeutic prospects for Parkinson disease.Ann. Neurol.201374333734710.1002/ana.2401124038341
    [Google Scholar]
  163. PuschmannA. BrighinaL. MarkopoulouK. AaslyJ. ChungS.J. FrigerioR. HadjigeorgiouG. KõksS. KrügerR. SiudaJ. WiderC. ZesiewiczT.A. MaraganoreD.M. Clinically meaningful parameters of progression and long-term outcome of Parkinson disease: An international consensus statement.Parkinsonism Relat. Disord.201521767568210.1016/j.parkreldis.2015.04.02925952959
    [Google Scholar]
  164. PardridgeW.M. The blood-brain barrier: Bottleneck in brain drug development.NeuroRx20052131410.1602/neurorx.2.1.315717053
    [Google Scholar]
  165. AyubA. WettigS. An overview of nanotechnologies for drug delivery to the brain.Pharmaceutics202214222410.3390/pharmaceutics1402022435213957
    [Google Scholar]
  166. NguyenT.T. Dung NguyenT.T. VoT.K. TranN.M.A. NguyenM.K. Van VoT. Van VoG. Nanotechnology-based drug delivery for central nervous system disorders.Biomed. Pharmacother.202114311211710.1016/j.biopha.2021.11211734479020
    [Google Scholar]
  167. DawsonD.A. WadsworthG. PalmerA.M. A comparative assessment of the efficacy and side-effect liability of neuroprotective compounds in experimental stroke.Brain Res.2001892234435010.1016/S0006‑8993(00)03269‑811172782
    [Google Scholar]
  168. KalyanaramanB. Teaching the basics of repurposing mitochondria-targeted drugs: From Parkinson’s disease to cancer and back to Parkinson’s disease.Redox Biol.20203610166510.1016/j.redox.2020.10166532795938
    [Google Scholar]
  169. PredigerR.D.S. Effects of caffeine in Parkinson’s disease: From neuroprotection to the management of motor and non-motor symptoms.J. Alzheimers Dis.201020s1S205S22010.3233/JAD‑2010‑091459
    [Google Scholar]
  170. Griñán-FerréC. Bellver-SanchisA. GuerreroA. PallàsM. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy.Pharmacol. Res.202420510724710.1016/j.phrs.2024.10724738834164
    [Google Scholar]
  171. PandeyS. JiráskoM. LochmanJ. ChvátalA. ChottovaD.M. KučeraR. iPSCs in neurodegenerative disorders: A unique platform for clinical research and personalized medicine.J. Pers. Med.2022129148510.3390/jpm1209148536143270
    [Google Scholar]
  172. StrianeseO. RizzoF. CiccarelliM. GalassoG. D’AgostinoY. SalvatiA. Del GiudiceC. TesorioP. RuscianoM.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease.Genes202011774710.3390/genes1107074732640513
    [Google Scholar]
  173. GoudaN.A. ElkamhawyA. ChoJ. Emerging therapeutic strategies for Parkinson’s disease and future prospects: A 2021 update.Biomedicines202210237110.3390/biomedicines1002037135203580
    [Google Scholar]
  174. Valera E. Masliah E. Combination therapies: The next logical Step for the treatment of synucleinopathies?Mov. Disord.201631222510.1002/mds.26428
    [Google Scholar]
  175. MatsunagaS. KishiT. IwataN. Combination therapy with Zonisamide and Antiparkinson drugs for Parkinson’s disease: A meta-analysis. J. Alzheimers Dis.2017564122910.3233/JAD‑161068
    [Google Scholar]
/content/journals/car/10.2174/0115672050368080250529075006
Loading
/content/journals/car/10.2174/0115672050368080250529075006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test