Full text loading...
Parkinson's disease (PD) is a multifaceted neurodegenerative condition marked by the progressive loss of dopaminergic neurons, leading to impairments in movement and cognition. This research offers an in-depth examination of the pathophysiological pathways associated with PD, emphasising the roles of oxidative stress, mitochondrial dysfunction, and neuroinflammation. The study examines the interaction between genetic and environmental factors in the development of PD, highlighting the significance of oxidative stress, mitochondrial dysfunction, and excitotoxicity in the degeneration of dopaminergic neurons. It also looks into the impact of neuroinflammation and microglial activation on the causes of PD. Despite considerable progress in research, there remains a lack of effective treatments that can modify the course of the disease, highlighting the pressing need for new therapeutic approaches that address mitochondrial malfunction, oxidative stress, and neuroinflammation. This study assesses the neuroprotective efficacy of various substances, notably natural agents like resveratrol, curcumin, ginsenoside, and melatonin, for managing PD. Although these natural chemicals show promise, further robust clinical trials are needed to confirm their effectiveness and safety, as well as to investigate their potential incorporation into conventional PD treatment.
Article metrics loading...
Full text loading...
References
Data & Media loading...