Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

The manuscript describes how the framework of the integrative hypothesis of Alzheimer’s disease (AD) can be deciphered using existing experimental and clinical data. First, the analysis of amyloid biomarkers and stable-isotope label kinetics (SILK) studies indicate a correlation between AD diagnosis and heightened cellular uptake of beta-amyloid. Since beta-amyloid must be taken up by cells to become toxic, its uptake rate correlates with neurodegeneration. Also, aggregation seeds cannot form extracellularly due to low beta-amyloid levels in interstitial fluid but can develop inside lysosomes. Consequently, the density of extracellular aggregates correlates positively with cellular amyloid uptake rate. The model, which ties both beta-amyloid cytotoxicity and aggregation to cellular uptake, accurately predicts AD diagnosis patterns in the population. Second, beta-amyloid enters cells through endocytosis. Endocytosed beta-amyloid induces lysosomal permeabilization that occurs without plasma membrane damage and explains intracellular ion disturbances (including calcium overload) after exposure to extracellular beta-amyloid. The permeabilization is caused by channels formed in lysosomal membranes by some amyloid fragments produced by proteolysis of full-length beta-amyloid. Some membrane channels are large enough to leak cathepsins to the cytoplasm, causing necrosis or apoptosis. Also, local spikes of calcium cytosolic concentration due to calcium leakage from lysosomes can activate calpains, contributing to cell death. In surviving cells, accumulation of damaged lysosomes results in autophagy failure and slow mitochondrial recycling, promoting the production of reactive oxygen species and further cell damage. In this framework, AD's etiology is the membrane channel formation by amyloid fragments produced in lysosomes. The pathogenesis includes lysosomal permeabilization and the appearance of activated proteases in the cytoplasm. The correlation between AD diagnosis and the density of amyloid aggregates occurs because both amyloid cytotoxicity and extracellular aggregate formation stem from cellular amyloid uptake. To reflect key processes, we call this framework the Amyloid Degradation Toxicity Hypothesis of Alzheimer’s Disease. It explains various phenomena and paradoxes associated with AD pathobiology across molecular, cellular, and biomarker levels. The hypothesis also highlights the limitations of current AD biomarkers and suggests new diagnostic and prognostic tools based on disease pathogenesis. Additionally, the framework identifies potential pharmacological targets for preventing disease progression.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050381553250425062803
2025-05-08
2025-10-24
Loading full text...

Full text loading...

References

  1. AlzheimerA. über eigenartige Krankheitsfälle des späteren Alters.Z. Gesamte Neurol. Psychiatr.19114135638510.1007/BF02866241
    [Google Scholar]
  2. GraeberM.B. MehraeinP. Reanalysis of the first case of Alzheimer’s disease.Eur. Arch. Psychiatry Clin. Neurosci.1999249S3S10S1310.1007/PL00014167 10654094
    [Google Scholar]
  3. GlennerG.G. Amyloid beta protein and the basis for Alzheimer’s disease.Prog. Clin. Biol. Res.1989317857868 2690126
    [Google Scholar]
  4. GlennerG.G. WongC.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.1984120388589010.1016/S0006‑291X(84)80190‑4 6375662
    [Google Scholar]
  5. DemuroA. MinaE. KayedR. MiltonS.C. ParkerI. GlabeC.G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers.J. Biol. Chem.200528017172941730010.1074/jbc.M500997200 15722360
    [Google Scholar]
  6. ClineE.N. BiccaM.A. ViolaK.L. KleinW.L. The Amyloid-β oligomer hypothesis: Beginning of the third decade.J. Alzheimers Dis.201864s1S567S61010.3233/JAD‑179941 29843241
    [Google Scholar]
  7. LambertM.P. BarlowA.K. ChromyB.A. Diffusible, nonfibrillar ligands derived from Aβ 1–42 are potent central nervous system neurotoxins.Proc. Natl. Acad. Sci. USA199895116448645310.1073/pnas.95.11.6448 9600986
    [Google Scholar]
  8. KnafoS. Alonso-NanclaresL. Gonzalez-SorianoJ. Widespread changes in dendritic spines in a model of Alzheimer’s disease.Cereb. Cortex200919358659210.1093/cercor/bhn111 18632740
    [Google Scholar]
  9. TsaiJ. GrutzendlerJ. DuffK. GanW.B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches.Nat. Neurosci.20047111181118310.1038/nn1335 15475950
    [Google Scholar]
  10. BittnerT. FuhrmannM. BurgoldS. Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice.PLoS One2010511e1547710.1371/journal.pone.0015477 21103384
    [Google Scholar]
  11. MattssonN. InselP.S. LandauS. Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer’s disease.Ann. Clin. Transl. Neurol.20141853454310.1002/acn3.81 25356425
    [Google Scholar]
  12. OngK.T. VillemagneV.L. Bahar-FuchsA. Aβ imaging with 18F-florbetaben in prodromal Alzheimer’s disease: A prospective outcome study.J. Neurol. Neurosurg. Psychiatry201586443143610.1136/jnnp‑2014‑308094 24970906
    [Google Scholar]
  13. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.201606210 27025652
    [Google Scholar]
  14. RicciarelliR. FedeleE. The amyloid cascade hypothesis in Alzheimer’s disease: It’s time to change our mind.Curr. Neuropharmacol.2017156926935 28093977
    [Google Scholar]
  15. van DyckC.H. SwansonC.J. AisenP. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa2212948 36449413
    [Google Scholar]
  16. CastellaniRJ JamshidiP Plascencia-VillaG PerryG The amyloid cascade hypothesis: A conclusion in search of support.. Am J Pathol2024S0002-944024004073 39532243
    [Google Scholar]
  17. BlennowK. HampelH. WeinerM. ZetterbergH. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease.Nat. Rev. Neurol.20106313114410.1038/nrneurol.2010.4 20157306
    [Google Scholar]
  18. MotterR. Vigo-PelfreyC. KholodenkoD. Reduction of β‐amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease.Ann. Neurol.199538464364810.1002/ana.410380413 7574461
    [Google Scholar]
  19. AndreasenN. HesseC. DavidssonP. Cerebrospinal fluid β-amyloid(1-42) in Alzheimer disease: Differences between early- and late-onset Alzheimer disease and stability during the course of disease.Arch. Neurol.199956667368010.1001/archneur.56.6.673 10369305
    [Google Scholar]
  20. RobertsB.R. LindM. WagenA.Z. Biochemically-defined pools of amyloid-β in sporadic Alzheimer’s disease: Correlation with amyloid PET.Brain201714051486149810.1093/brain/awx057 28383676
    [Google Scholar]
  21. WeigandS.D. VemuriP. WisteH.J. Transforming cerebrospinal fluid Aβ42 measures into calculated Pittsburgh compound B units of brain Aβ amyloid.Alzheimers Dement.20117213314110.1016/j.jalz.2010.08.230 21282074
    [Google Scholar]
  22. MattssonN. InselP.S. DonohueM. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer’s disease.Brain2015138377278310.1093/brain/awu367 25541191
    [Google Scholar]
  23. FaganA.M. MintunM.A. MachR.H. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans.Ann. Neurol.200659351251910.1002/ana.20730 16372280
    [Google Scholar]
  24. FaganA.M. What does it mean to be ‘amyloid-positive’?Brain2015138351451610.1093/brain/awu387 25713403
    [Google Scholar]
  25. Alzheimer’s disease neuroimaging initiative (ADNI) data sharing and publication policy2016Available from: https://adni.loni.usc. edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf
  26. SturchioA. DwivediA.K. YoungC.B. High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis.EClinicalMedicine20213810098810.1016/j.eclinm.2021.100988 34505023
    [Google Scholar]
  27. MolkovY.I. ZaretskaiaM.V. ZaretskyD.V. Towards the integrative theory of Alzheimer’s disease: Linking molecular mechanisms of neurotoxicity, beta-amyloid biomarkers, and the diagnosis.Curr. Alzheimer Res.202320644045210.2174/1567205020666230821141745 37605411
    [Google Scholar]
  28. ZaretskyD.V. ZaretskaiaM.V. MolkovY.I. Patients with Alzheimer’s disease have an increased removal rate of soluble beta-amyloid-42.PLoS One20221710e027693310.1371/journal.pone.0276933 36315527
    [Google Scholar]
  29. IliffJ.J. WangM. LiaoY. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.Sci. Transl. Med.20124147147ra11110.1126/scitranslmed.3003748 22896675
    [Google Scholar]
  30. BatemanR.J. MunsellL.Y. MorrisJ.C. SwarmR. YarasheskiK.E. HoltzmanD.M. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo.Nat. Med.200612785686110.1038/nm1438 16799555
    [Google Scholar]
  31. MawuenyegaK.G. SigurdsonW. OvodV. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease.Science201033060121774410.1126/science.1197623 21148344
    [Google Scholar]
  32. PotterR. PattersonB.W. ElbertD.L. Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers.Sci. Transl. Med.20135189189ra7710.1126/scitranslmed.3005615 23761040
    [Google Scholar]
  33. SilverbergG.D. HeitG. HuhnS. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type.Neurology200157101763176610.1212/WNL.57.10.1763 11723260
    [Google Scholar]
  34. FishmanR.A. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type.Neurology20025812186610.1212/WNL.58.12.1866 12084901
    [Google Scholar]
  35. ElbertD.L. PattersonB.W. BatemanR.J. Analysis of a compartmental model of amyloid beta production, irreversible loss and exchange in humans.Math. Biosci.2015261486110.1016/j.mbs.2014.11.004 25497960
    [Google Scholar]
  36. AbrahamC.R. Potential roles of protease inhibitors in Alzheimer’s disease.Neurobiol. Aging198910546346510.1016/0197‑4580(89)90097‑3 2682323
    [Google Scholar]
  37. NixonR.A. CataldoA.M. MathewsP.M. The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: A review.Neurochem. Res.2000259/101161117210.1023/A:1007675508413 11059790
    [Google Scholar]
  38. CataldoA.M. BarnettJ.L. PieroniC. NixonR.A. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: Neuropathologic evidence for a mechanism of increased beta-amyloidogenesis.J. Neurosci.199717166142615110.1523/JNEUROSCI.17‑16‑06142.1997 9236226
    [Google Scholar]
  39. CataldoA.M. PeterhoffC.M. TroncosoJ.C. Gomez-IslaT. HymanB.T. NixonR.A. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: Differential effects of APOE genotype and presenilin mutations.Am. J. Pathol.2000157127728610.1016/S0002‑9440(10)64538‑5 10880397
    [Google Scholar]
  40. CataldoA.M. BarnettJ.L. BermanS.A. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: Evidence for early up-regulation of the endosomal-lysosomal system.Neuron199514367168010.1016/0896‑6273(95)90324‑0 7695914
    [Google Scholar]
  41. SchubertD. ChevionM. The role of iron in beta amyloid toxicity.Biochem. Biophys. Res. Commun.1995216270270710.1006/bbrc.1995.2678 7488167
    [Google Scholar]
  42. EspayA.J. HerrupK. KeppK.P. DalyT. The proteinopenia hypothesis: Loss of Aβ42 and the onset of Alzheimer’s disease.Ageing Res. Rev.20239210211210.1016/j.arr.2023.102112 38270185
    [Google Scholar]
  43. EspayA.J. SturchioA. SchneiderL.S. EzzatK. Soluble Amyloid-β consumption in Alzheimer’s disease.J. Alzheimers Dis.20218241403141510.3233/JAD‑210415 34151810
    [Google Scholar]
  44. EspayA.J. LafontantD.E. PostonK.L. Low soluble amyloid-β 42 is associated with smaller brain volume in Parkinson’s disease.Parkinsonism Relat. Disord.202192152110.1016/j.parkreldis.2021.10.010 34656902
    [Google Scholar]
  45. TerakawaM.S. YagiH. AdachiM. LeeY.H. GotoY. Small liposomes accelerate the fibrillation of amyloid β (1-40).J. Biol. Chem.2015290281582610.1074/jbc.M114.592527 25406316
    [Google Scholar]
  46. CohenS.I.A. LinseS. LuheshiL.M. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism.Proc. Natl. Acad. Sci. USA2013110249758976310.1073/pnas.1218402110 23703910
    [Google Scholar]
  47. HuX. CrickS.L. BuG. FriedenC. PappuR.V. LeeJ.M. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide.Proc. Natl. Acad. Sci. USA200910648203242032910.1073/pnas.0911281106 19910533
    [Google Scholar]
  48. WesénE. JeffriesG.D.M. Matson DzeboM. EsbjörnerE.K. Endocytic uptake of monomeric amyloid-β peptides is clathrin- and dynamin-independent and results in selective accumulation of Aβ(1–42) compared to Aβ(1–40).Sci. Rep.2017712021110.1038/s41598‑017‑02227‑9 28515429
    [Google Scholar]
  49. KnauerM.F. SoreghanB. BurdickD. KosmoskiJ. GlabeC.G. Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein.Proc. Natl. Acad. Sci. USA199289167437744110.1073/pnas.89.16.7437 1502155
    [Google Scholar]
  50. BurdickD. KosmoskiJ. KnauerM.F. GlabeC.G. Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer’s amyloid peptide, Aβ1–42, in differentiated PC12 cells.Brain Res.19977461-227528410.1016/S0006‑8993(96)01262‑0 9037507
    [Google Scholar]
  51. CataldoA.M. ThayerC.Y. BirdE.D. WheelockT.R. NixonR.A. Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer’s disease: Evidence for a neuronal origin.Brain Res.1990513218119210.1016/0006‑8993(90)90456‑L 2350688
    [Google Scholar]
  52. FuH. Senile plaques in Alzheimer’s disease arise from Aβ- and Cathepsin D-enriched mixtures leaking out during intravascular haemolysis and microaneurysm rupture.FEBS Lett.202359771007104010.1002/1873‑3468.14549 36448495
    [Google Scholar]
  53. RoosT.T. GarciaM.G. MartinssonI. Neuronal spreading and plaque induction of intracellular Aβ and its disruption of Aβ homeostasis.Acta Neuropathol.2021142466968710.1007/s00401‑021‑02345‑9 34272583
    [Google Scholar]
  54. ZaretskyD.V. ZaretskaiaM.V. MolkovY.I. Membrane channel hypothesis of lysosomal permeabilization by beta-amyloid.Neurosci. Lett.202277013633810.1016/j.neulet.2021.136338 34767924
    [Google Scholar]
  55. YangA.J. ChandswangbhuvanaD. MargolL. GlabeC.G. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Aβ1-42 pathogenesis.J. Neurosci. Res.199852669169810.1002/(SICI)1097‑4547(19980615)52:6<691:AID‑JNR8>3.0.CO;2‑3 9669318
    [Google Scholar]
  56. JiZ.S. MirandaR.D. NewhouseY.M. WeisgraberK.H. HuangY. MahleyR.W. Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells.J. Biol. Chem.200227724218212182810.1074/jbc.M112109200 11912196
    [Google Scholar]
  57. UddinM.S. MamunA.A. LabuZ.K. Hidalgo-LanussaO. BarretoG.E. AshrafG.M. Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis.J. Cell. Physiol.201923468094811210.1002/jcp.27588 30362531
    [Google Scholar]
  58. PericA. AnnaertW. Early etiology of Alzheimer’s disease: Tipping the balance toward autophagy or endosomal dysfunction?Acta Neuropathol.2015129336338110.1007/s00401‑014‑1379‑7 25556159
    [Google Scholar]
  59. WolfeD.M. LeeJ. KumarA. LeeS. OrensteinS.J. NixonR.A. Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification.Eur. J. Neurosci.201337121949196110.1111/ejn.12169 23773064
    [Google Scholar]
  60. NixonR.A. YangD.S. Autophagy failure in Alzheimer’s disease—locating the primary defect.Neurobiol. Dis.2011431384510.1016/j.nbd.2011.01.021 21296668
    [Google Scholar]
  61. NixonR.A. CataldoA.M. Lysosomal system pathways: Genes to neurodegeneration in Alzheimer’s disease.J. Alzheimers Dis.20069s327728910.3233/JAD‑2006‑9S331 16914867
    [Google Scholar]
  62. NixonR.A. WegielJ. KumarA. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study.J. Neuropathol. Exp. Neurol.200564211312210.1093/jnen/64.2.113 15751225
    [Google Scholar]
  63. KavčičN. PeganK. TurkB. Lysosomes in programmed cell death pathways: From initiators to amplifiers.Biol. Chem.2017398328930110.1515/hsz‑2016‑0252 28002019
    [Google Scholar]
  64. YamashimaT. SaidoT.C. TakitaM. Transient brain ischaemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys.Eur. J. Neurosci.1996891932194410.1111/j.1460‑9568.1996.tb01337.x 8921284
    [Google Scholar]
  65. YamashimaT. Can ‘calpain-cathepsin hypothesis’ explain Alzheimer neuronal death?Ageing Res. Rev.20163216917910.1016/j.arr.2016.05.008 27306474
    [Google Scholar]
  66. YamashimaT. Reconsider Alzheimer’s disease by the ‘calpain–cathepsin hypothesis’—A perspective review.Prog. Neurobiol.201310512310.1016/j.pneurobio.2013.02.004 23499711
    [Google Scholar]
  67. NixonR.A. A “protease activation cascade” in the pathogenesis of Alzheimer’s disease.Ann. N. Y. Acad. Sci.2000924111713110.1111/j.1749‑6632.2000.tb05570.x 11193788
    [Google Scholar]
  68. McMahonS.M. JacksonM.B. An inconvenient truth: Calcium sensors are calcium buffers.Trends Neurosci.2018411288088410.1016/j.tins.2018.09.005 30287084
    [Google Scholar]
  69. AbramovA.Y. CanevariL. DuchenM.R. Calcium signals induced by amyloid β peptide and their consequences in neurons and astrocytes in culture.Biochim. Biophys. Acta Mol. Cell Res.200417421-3818710.1016/j.bbamcr.2004.09.006 15590058
    [Google Scholar]
  70. AbramovA.Y. CanevariL. DuchenM.R. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity.J. Neurosci.200323125088509510.1523/JNEUROSCI.23‑12‑05088.2003 12832532
    [Google Scholar]
  71. LinM.A. KaganB.L. Electrophysiologic properties of channels induced by Aβ25–35 in planar lipid bilayers.Peptides20022371215122810.1016/S0196‑9781(02)00057‑8 12128079
    [Google Scholar]
  72. MirzabekovT. LinM.C. YuanW.L. Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide.Biochem. Biophys. Res. Commun.199420221142114810.1006/bbrc.1994.2047 7519420
    [Google Scholar]
  73. QuistA. DoudevskiI. LinH. Amyloid ion channels: A common structural link for protein-misfolding disease.Proc. Natl. Acad. Sci. USA200510230104271043210.1073/pnas.0502066102 16020533
    [Google Scholar]
  74. KourieJ.I. CulversonA.L. FarrellyP.V. HenryC.L. LaohachaiK.N. Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: Implications for therapeutic strategies against amyloidosis.Cell Biochem. Biophys.2002362-319120710.1385/CBB:36:2‑3:191 12139405
    [Google Scholar]
  75. KaganB.L. HirakuraY. AzimovR. AzimovaR. LinM.C. The channel hypothesis of Alzheimer’s disease: Current status.Peptides20022371311131510.1016/S0196‑9781(02)00067‑0 12128087
    [Google Scholar]
  76. BhatiaR. LinH. LalR. Fresh and globular amyloid β protein (1–42) induces rapid cellular degeneration: Evidence for AβP channel‐mediated cellular toxicity.FASEB J.20001491233124310.1096/fasebj.14.9.1233 10834945
    [Google Scholar]
  77. LinH. ZhuY.J. LalR. Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles.Biochemistry19993834111891119610.1021/bi982997c 10460176
    [Google Scholar]
  78. PollardH.B. ArispeN. RojasE. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity.Cell. Mol. Neurobiol.199515551352610.1007/BF02071314 8719038
    [Google Scholar]
  79. PollardH.B. RojasE. ArispeN. A new hypothesis for the mechanism of amyloid toxicity, based on the calcium channel activity of amyloid beta protein (A beta P) in phospholipid bilayer membranes.Ann. N. Y. Acad. Sci.1993695116516810.1111/j.1749‑6632.1993.tb23046.x 8239277
    [Google Scholar]
  80. ArispeN. RojasE. PollardH.B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: Blockade by tromethamine and aluminum.Proc. Natl. Acad. Sci. USA199390256757110.1073/pnas.90.2.567 8380642
    [Google Scholar]
  81. ArispeN. PollardH.B. RojasE. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes.Proc. Natl. Acad. Sci. USA19939022105731057710.1073/pnas.90.22.10573 7504270
    [Google Scholar]
  82. ZaretskyD.V. ZaretskaiaM.V. Intracellular ion changes induced by the exposure to beta-amyloid can be explained by the formation of channels in the lysosomal membranes.Biochim. Biophys. Acta Mol. Cell Res.20221869111914510.1016/j.bbamcr.2021.119145 34606794
    [Google Scholar]
  83. ZaretskyD.V. ZaretskaiaM.V. Flow cytometry method to quantify the formation of beta-amyloid membrane ion channels.Biochim. Biophys. Acta Biomembr.20211863218350610.1016/j.bbamem.2020.183506 33171157
    [Google Scholar]
  84. ZaretskyD.V. ZaretskaiaM. Degradation products of amyloid protein: Are they the culprits?Curr. Alzheimer Res.2021171086988010.2174/1567205017666201203142103 33272185
    [Google Scholar]
  85. SokolovY. KozakJ.A. KayedR. ChanturiyaA. GlabeC. HallJ.E. Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure.J. Gen. Physiol.2006128663764710.1085/jgp.200609533 17101816
    [Google Scholar]
  86. AlarcónJ.M. BritoJ.A. HermosillaT. AtwaterI. MearsD. RojasE. Ion channel formation by Alzheimer’s disease amyloid β-peptide (Aβ40) in unilamellar liposomes is determined by anionic phospholipids.Peptides20062719510410.1016/j.peptides.2005.07.004 16139931
    [Google Scholar]
  87. DasA. NagS. MasonA.B. BarrosoM.M. Endosome–mitochondria interactions are modulated by iron release from transferrin.J. Cell Biol.2016214783184510.1083/jcb.201602069 27646275
    [Google Scholar]
  88. HamdiA. RoshanT.M. KahawitaT.M. MasonA.B. SheftelA.D. PonkaP. Erythroid cell mitochondria receive endosomal iron by a “kiss-and-run” mechanism.Biochim. Biophys. Acta Mol. Cell Res.20161863122859286710.1016/j.bbamcr.2016.09.008 27627839
    [Google Scholar]
  89. RepnikU. StokaV. TurkV. TurkB. Lysosomes and lysosomal cathepsins in cell death.Biochim. Biophys. Acta. Proteins Proteomics201218241223310.1016/j.bbapap.2011.08.016
    [Google Scholar]
  90. TurkB. StokaV. Rozman-PungercarJ. Apoptotic pathways: Involvement of lysosomal proteases.Biol. Chem.20023837-81035104410.1515/BC.2002.112 12437086
    [Google Scholar]
  91. GoelP. ChakrabartiS. GoelK. BhutaniK. ChopraT. BaliS. Neuronal cell death mechanisms in Alzheimer’s disease: An insight.Front. Mol. Neurosci.20221593713310.3389/fnmol.2022.937133 36090249
    [Google Scholar]
  92. YamashimaT. Implication of vegetable oil-derived hydroxynonenal in the lysosomal cell death for lifestyle-related diseases.Nutrients202315360910.3390/nu15030609 36771317
    [Google Scholar]
  93. PlutaR. A look at the etiology of Alzheimer’s disease based on the brain ischemia model.Curr. Alzheimer Res.202421316618210.2174/0115672050320921240627050736 38963100
    [Google Scholar]
  94. ChristensenK.A. MyersJ.T. SwansonJ.A. pH-dependent regulation of lysosomal calcium in macrophages.J. Cell Sci.2002115359960710.1242/jcs.115.3.599 11861766
    [Google Scholar]
/content/journals/car/10.2174/0115672050381553250425062803
Loading
/content/journals/car/10.2174/0115672050381553250425062803
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test