Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Lecanemab, a therapeutic antibody designed to target amyloid-beta (Aβ) clearance, has recently been approved by the FDA and introduced in multiple countries, representing a significant milestone in advancing Alzheimer's disease (AD) treatment. However, its limited clinical efficacy underscores the need for further investigation of disease pathogenesis. Emerging evidence suggests that glucose and lipid metabolism dysfunction plays a critical role in AD, with metabolic changes emerging as one of the most significantly altered pathways in the early stage of pathology. These findings highlight the therapeutic potential of targeting metabolic regulation as a strategy to address AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050379410250421065857
2025-04-25
2025-10-24
Loading full text...

Full text loading...

References

  1. 2024 Alzheimer’s disease facts and figures.Alzheimers Dement.20242053708382110.1002/alz.1380938689398
    [Google Scholar]
  2. LiuY. WuY. ChenY. Lobanov-RostovskyS. LiuY. ZengM. BandoszP. Roman XuD. WangX. LiuY. HaoY. FrenchE. BrunnerE.J. LiaoJ. Projection for dementia burden in China to 2050: A macro-simulation study by scenarios of dementia incidence trends.Lancet Reg. Health West. Pac20245010115810.1016/j.lanwpc.2024.10115839185089
    [Google Scholar]
  3. ZengB.S. TsengP.T. LiangC.S. Lecanemab in early Alzheimer’s Disease.N. Engl. J. Med.2023388171630163210.1056/NEJMc230138037099351
    [Google Scholar]
  4. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑737386015
    [Google Scholar]
  5. AizensteinH.J. NebesR.D. SaxtonJ.A. PriceJ.C. MathisC.A. TsopelasN.D. ZiolkoS.K. JamesJ.A. SnitzB.E. HouckP.R. BiW. CohenA.D. LoprestiB.J. DeKoskyS.T. HalliganE.M. KlunkW.E. Frequent amyloid deposition without significant cognitive impairment among the elderly.Arch. Neurol.200865111509151710.1001/archneur.65.11.150919001171
    [Google Scholar]
  6. CunnaneS.C. TrushinaE. MorlandC. PrigioneA. CasadesusG. AndrewsZ.B. BealM.F. BergersenL.H. BrintonR.D. de la MonteS. EckertA. HarveyJ. JeggoR. JhamandasJ.H. KannO. la CourC.M. MartinW.F. MithieuxG. MoreiraP.I. MurphyM.P. NaveK.A. NurielT. OlietS.H.R. SaudouF. MattsonM.P. SwerdlowR.H. MillanM.J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing.Nat. Rev. Drug Discov.202019960963310.1038/s41573‑020‑0072‑x32709961
    [Google Scholar]
  7. ChengX.T. HuangN. ShengZ.H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration.Neuron2022110121899192310.1016/j.neuron.2022.03.01535429433
    [Google Scholar]
  8. MinoshimaS. CrossD. ThientunyakitT. FosterN.L. DrzezgaA. 18F-FDG PET imaging in neurodegenerative dementing disorders: Insights into subtype classification, emerging disease categories, and mixed dementia with copathologies.J. Nucl. Med.202263Suppl. 12S12S10.2967/jnumed.121.26319435649653
    [Google Scholar]
  9. SmailagicN. VacanteM. HydeC. MartinS. UkoumunneO. SachpekidisC. 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI).Cochrane Libr.201520152CD01063210.1002/14651858.CD010632.pub225629415
    [Google Scholar]
  10. KangS. LeeY. LeeJ.E. Metabolism-centric overview of the pathogenesis of Alzheimer’s Disease.Yonsei Med. J.201758347948810.3349/ymj.2017.58.3.47928332351
    [Google Scholar]
  11. XiaoY. YuT.J. XuY. DingR. WangY.P. JiangY.Z. ShaoZ.M. Emerging therapies in cancer metabolism.Cell Metab.20233581283130310.1016/j.cmet.2023.07.00637557070
    [Google Scholar]
  12. HouY. LautrupS. CordonnierS. WangY. CroteauD.L. ZavalaE. ZhangY. MoritohK. O’ConnellJ.F. BaptisteB.A. StevnsnerT.V. MattsonM.P. BohrV.A. NAD + supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency.Proc. Natl. Acad. Sci. USA20181158E1876E188510.1073/pnas.171881911529432159
    [Google Scholar]
  13. ArnoldS.E. ArvanitakisZ. Macauley-RambachS.L. KoenigA.M. WangH.Y. AhimaR.S. CraftS. GandyS. BuettnerC. StoeckelL.E. HoltzmanD.M. NathanD.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums.Nat. Rev. Neurol.201814316818110.1038/nrneurol.2017.18529377010
    [Google Scholar]
  14. ZhouY. DoughertyJ.H.Jr HubnerK.F. BaiB. CannonR.L. HutsonR.K. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive impairment.Alzheimers Dement.20084426527010.1016/j.jalz.2008.04.00618631977
    [Google Scholar]
  15. ZebhauserP.T. BertheleA. GoldhardtO. Diehl-SchmidJ. PrillerJ. OrtnerM. GrimmerT. Cerebrospinal fluid lactate levels along the Alzheimer’s disease continuum and associations with blood-brain barrier integrity, age, cognition, and biomarkers.Alzheimers Res. Ther.20221416110.1186/s13195‑022‑01004‑935473756
    [Google Scholar]
  16. ButterfieldD.A. HalliwellB. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease.Nat. Rev. Neurosci.201920314816010.1038/s41583‑019‑0132‑630737462
    [Google Scholar]
  17. de la MonteS.M. Type 3 diabetes is sporadic Alzheimer׳s disease: Mini-review.Eur. Neuropsychopharmacol.201424121954196010.1016/j.euroneuro.2014.06.00825088942
    [Google Scholar]
  18. DingX. YinL. ZhangL. ZhangY. ZhaT. ZhangW. GuiB. Alzheimer’s Disease Neuroimaging Initiative Diabetes accelerates Alzheimer’s disease progression in the first year post mild cognitive impairment diagnosis.Alzheimers Dement.20242074583459310.1002/alz.1388238865281
    [Google Scholar]
  19. KimH.K. BiesselsG.J. YuM.H. HongN. LeeY. LeeB.W. KangE.S. ChaB.S. LeeE.J. LeeM. SGLT2 inhibitor use and risk of dementia and parkinson disease among patients with type 2 diabetes.Neurology20241038e20980510.1212/WNL.000000000020980539292986
    [Google Scholar]
  20. WightmanD.P. JansenI.E. SavageJ.E. ShadrinA.A. BahramiS. HollandD. RongveA. BørteS. WinsvoldB.S. DrangeO.K. MartinsenA.E. SkogholtA.H. WillerC. BråthenG. BosnesI. NielsenJ.B. FritscheL.G. ThomasL.F. PedersenL.M. GabrielsenM.E. JohnsenM.B. MeisingsetT.W. ZhouW. ProitsiP. HodgesA. DobsonR. VelayudhanL. HeilbronK. AutonA. AgeeM. AslibekyanS. BabalolaE. BellR.K. BielenbergJ. BrycK. BullisE. CameronB. CokerD. PartidaG.C. DhamijaD. DasS. ElsonS.L. FilshteinT. Fletez-BrantK. FontanillasP. FreymanW. GandhiP.M. HicksB. HindsD.A. HuberK.E. JewettE.M. JiangY. KleinmanA. KukarK. LaneV. LinK-H. LoweM. LuffM.K. McCreightJ.C. McIntyreM.H. McManusK.F. MichelettiS.J. MorenoM.E. MountainJ.L. MozaffariS.V. NandakumarP. NoblinE.S. O’ConnellJ. PetrakovitzA.A. PoznikG.D. SchumacherM. ShastriA.J. SheltonJ.F. ShiJ. ShringarpureS. TianC. TranV. TungJ.Y. WangX. WangW. WeldonC.H. WiltonP. SealockJ.M. DavisL.K. PedersenN.L. ReynoldsC.A. KarlssonI.K. MagnussonS. StefanssonH. ThordardottirS. JonssonP.V. SnaedalJ. ZettergrenA. SkoogI. KernS. WaernM. ZetterbergH. BlennowK. StordalE. HveemK. ZwartJ-A. AthanasiuL. SelnesP. SaltvedtI. SandoS.B. UlsteinI. DjurovicS. FladbyT. AarslandD. SelbækG. RipkeS. StefanssonK. AndreassenO.A. PosthumaD. 23andMe Research Team A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease.Nat. Genet.20215391276128210.1038/s41588‑021‑00921‑z34493870
    [Google Scholar]
  21. MathysH. Davila-VelderrainJ. PengZ. GaoF. MohammadiS. YoungJ.Z. MenonM. HeL. AbdurrobF. JiangX. MartorellA.J. RansohoffR.M. HaflerB.P. BennettD.A. KellisM. TsaiL.H. Single-cell transcriptomic analysis of Alzheimer’s disease.Nature2019570776133233710.1038/s41586‑019‑1195‑231042697
    [Google Scholar]
  22. YinF. Lipid metabolism and Alzheimer’s disease: Clinical evidence, mechanistic link and therapeutic promise.FEBS J.202329061420145310.1111/febs.1634434997690
    [Google Scholar]
  23. IoannouMS JacksonJ SheuSH ChangCL WeigelAV LiuH Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity.Cell2019177615221535 10.1016/j.cell.2019.04.001
    [Google Scholar]
  24. NaiaL. ShimozawaM. BereczkiE. LiX. LiuJ. JiangR. GiraudR. LealN.S. PinhoC.M. BergerE. FalkV.L. DentoniG. AnkarcronaM. NilssonP. Mitochondrial hypermetabolism precedes impaired autophagy and synaptic disorganization in App knock-in Alzheimer mouse models.Mol. Psychiatry20232893966398110.1038/s41380‑023‑02289‑437907591
    [Google Scholar]
  25. TraxlerL. HerdyJ.R. StefanoniD. EichhornerS. PelucchiS. SzücsA. SantagostinoA. KimY. AgarwalR.K. SchlachetzkiJ.C.M. GlassC.K. LagerwallJ. GalaskoD. GageF.H. D’AlessandroA. MertensJ. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer’s disease.Cell Metab.202234912481263.e610.1016/j.cmet.2022.07.01435987203
    [Google Scholar]
  26. AndersenJ.V. SkotteN.H. ChristensenS.K. PolliF.S. ShabaniM. MarkussenK.H. HaukedalH. WestiE.W. Diaz-delCastilloM. SunR.C. KohlmeierK.A. SchousboeA. GentryM.S. TanilaH. FreudeK.K. AldanaB.I. MannM. WaagepetersenH.S. Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease.Cell Death Dis.2021121195410.1038/s41419‑021‑04237‑y34657143
    [Google Scholar]
  27. LiY. Munoz-MayorgaD. NieY. KangN. TaoY. LagerwallJ. PernaciC. CurtinG. CoufalN.G. MertensJ. ShiL. ChenX. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK.Cell Metab.202436613511370.e810.1016/j.cmet.2024.03.01438657612
    [Google Scholar]
  28. LengL. YuanZ. PanR. SuX. WangH. XueJ. ZhuangK. GaoJ. ChenZ. LinH. XieW. LiH. ChenZ. RenK. ZhangX. WangW. JinZ.B. WuS. WangX. YuanZ. XuH. ChowH.M. ZhangJ. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance.Nat. Metab.20224101287130510.1038/s42255‑022‑00643‑436203054
    [Google Scholar]
  29. MinhasP.S. JonesJ.R. Latif-HernandezA. SugiuraY. DurairajA.S. WangQ. MhatreS.D. UenakaT. CrapserJ. ConleyT. EnnerfeltH. JungY.J. LiuL. PrasadP. JenkinsB.C. AyY.A. MatrongoloM. GoodmanR. NewmeyerT. HeardK. KangA. WilsonE.N. YangT. UllianE.M. SerranoG.E. BeachT.G. WernigM. RabinowitzJ.D. SuematsuM. LongoF.M. McReynoldsM.R. GageF.H. AndreassonK.I. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies.Science20243856711eabm613110.1126/science.abm613139172838
    [Google Scholar]
  30. Le DouceJ. MaugardM. VeranJ. MatosM. JégoP. VigneronP.A. FaivreE. ToussayX. VandenbergheM. BalbastreY. PiquetJ. GuiotE. TranN.T. TavernaM. MarinescoS. KoyanagiA. FuruyaS. Gaudin-GuérifM. GoutalS. GhettasA. PruvostA. BemelmansA.P. GaillardM.C. CambonK. StimmerL. SazdovitchV. DuyckaertsC. KnottG. HérardA.S. DelzescauxT. HantrayeP. BrouilletE. CauliB. OlietS.H.R. PanatierA. BonventoG. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s Disease.Cell Metab.2020313503517.e810.1016/j.cmet.2020.02.00432130882
    [Google Scholar]
  31. McDonaldT.S. LerskiatiphanichT. WoodruffT.M. McCombeP.A. LeeJ.D. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders.J. Cereb. Blood Flow Metab.2023431264310.1177/0271678X22113506136281012
    [Google Scholar]
  32. Martínez-ReyesI. ChandelN.S. Mitochondrial TCA cycle metabolites control physiology and disease.Nat. Commun.202011110210.1038/s41467‑019‑13668‑331900386
    [Google Scholar]
/content/journals/car/10.2174/0115672050379410250421065857
Loading
/content/journals/car/10.2174/0115672050379410250421065857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test