Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Objectives

Dementia has become a major global cause of death, posing significant health and economic challenges. Alzheimer's disease (AD) is the most common type of dementia. Recent studies have shown that long noncoding RNAs (lncRNAs) play a role in AD development. In this context, the current study conducted a comprehensive meta-analysis of high-throughput Gene Expression Omnibus (GEO) datasets to identify significant lncRNAs that could play a crucial role in the pathogenesis of AD.

Methods

Three microarray expression profiles of human subjects diagnosed with AD and corresponding healthy controls were obtained from the GEO database. Afterward, the expression profiles from the chosen microarray datasets were combined. A network of differentially expressed genes (DEGs) was visualized, identifying key hub genes. Subsequently, the two significant lncRNAs, identified as and , were chosen based on the number of interactions between hubs and lncRNAs. Blood samples were collected from AD patients as well as from healthy control individuals. Ultimately, the expression levels of and were quantitatively assessed in the blood samples of 50 AD patients and 50 healthy controls using the quantitative Real-Time PCR (q-PCR) technique.

Results

Experimental validation showed that was differentially expressed in Alzheimer's disease (AD) patients compared to the control group. In contrast, revealed no significant difference between the AD patients and the control group.

Conclusion

This study thoroughly examined the molecular landscape of AD, identifying key differentially expressed genes and highlighting candidate as a potential molecular biomarker for AD patients.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050381537250422075255
2025-04-28
2025-10-24
Loading full text...

Full text loading...

References

  1. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  2. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  3. Tahami MonfaredA.A. ByrnesM.J. WhiteL.A. ZhangQ. Alzheimer’s disease: epidemiology and clinical progression.Neurol. Ther.202211255356910.1007/s40120‑022‑00338‑835286590
    [Google Scholar]
  4. JansenW.J. JanssenO. TijmsB.M. VosS.J.B. OssenkoppeleR. VisserP.J. AarslandD. AlcoleaD. AltomareD. von ArnimC. BaiardiS. BaldeirasI. BarthelH. BatemanR.J. Van BerckelB. BinetteA.P. BlennowK. BoadaM. BoeckerH. BottlaenderM. den BraberA. BrooksD.J. Van BuchemM.A. CamusV. CarillJ.M. CermanJ. ChenK. ChételatG. ChipiE. CohenA.D. DanielsA. DelarueM. DidicM. DrzezgaA. DuboisB. EckerströmM. EkbladL.L. EngelborghsS. EpelbaumS. FaganA.M. FanY. FladbyT. FleisherA.S. Van der FlierW.M. FörsterS. ForteaJ. FrederiksenK.S. Freund-LeviY. FringsL. FrisoniG.B. FröhlichL. GabryelewiczT. GertzH.J. GillK.D. GkatzimaO. Gómez-TortosaE. GrimmerT. GuedjE. HabeckC.G. HampelH. HandelsR. HanssonO. HausnerL. HellwigS. HenekaM.T. HerukkaS.K. HildebrandtH. HodgesJ. HortJ. HuangC.C. IriondoA.J. ItohY. IvanoiuA. JagustW.J. JessenF. JohannsenP. JohnsonK.A. KandimallaR. KapakiE.N. KernS. KilanderL. Klimkowicz-MrowiecA. KlunkW.E. KoglinN. KornhuberJ. KrambergerM.G. KuoH.C. Van LaereK. LandauS.M. LandeauB. LeeD.Y. de LeonM. LeytonC.E. LinK.J. LleóA. LöwenmarkM. MadsenK. MaierW. MarcussonJ. MarquiéM. Martinez-LageP. MaserejianN. MattssonN. de MendonçaA. MeyerP.T. MillerB.L. MinataniS. MintunM.A. MokV.C.T. MolinuevoJ.L. MorbelliS.D. MorrisJ.C. MroczkoB. NaD.L. NewbergA. NobiliF. NordbergA. Olde RikkertM.G.M. de OliveiraC.R. OlivieriP. OrellanaA. ParaskevasG. ParchiP. PardiniM. ParnettiL. PetersO. PoirierJ. PoppJ. PrabhakarS. RabinoviciG.D. RamakersI.H. RamiL. ReimanE.M. RinneJ.O. RodrigueK.M. Rodríguez-RodriguezE. RoeC.M. Rosa-NetoP. RosenH.J. RotU. RoweC.C. RütherE. RuizA. SabriO. SakhardandeJ. Sánchez-JuanP. SandoS.B. SantanaI. SarazinM. ScheltensP. SchröderJ. SelnesP. SeoS.W. SilvaD. SkoogI. SnyderP.J. SoininenH. SollbergerM. SperlingR.A. SpiruL. SternY. StomrudE. TakedaA. TeichmannM. TeunissenC.E. ThompsonL.I. TomassenJ. TsolakiM. VandenbergheR. VerbeekM.M. VerheyF.R.J. VillemagneV. VilleneuveS. VogelgsangJ. WaldemarG. WallinA. WallinÅ.K. WiltfangJ. WolkD.A. YenT.C. ZbochM. ZetterbergH. Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum.JAMA Neurol.202279322824310.1001/jamaneurol.2021.521635099509
    [Google Scholar]
  5. EfthymiouA.G. GoateA.M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk.Mol. Neurodegener.20171214310.1186/s13024‑017‑0184‑x28549481
    [Google Scholar]
  6. ChengY. TianD.Y. WangY.J. Peripheral clearance of brain-derived Aβ in Alzheimer’s disease: Pathophysiology and therapeutic perspectives.Transl. Neurodegener.2020911610.1186/s40035‑020‑00195‑132381118
    [Google Scholar]
  7. EricksonP. SimrénJ. BrumW.S. EnnisG.E. KollmorgenG. SuridjanI. LanghoughR. JonaitisE.M. Van HulleC.A. BetthauserT.J. CarlssonC.M. AsthanaS. AshtonN.J. JohnsonS.C. ShawL.M. BlennowK. AndreassonU. BendlinB.B. ZetterbergH. WeinerM. AisenP. PetersenR. JackC.R.Jr JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. SaykinA.J. MorrisJ. ShawL.M. LiuE. MontineT. ThomasR.G. DonohueM. WalterS. GessertD. SatherT. JiminezG. HarveyD. BernsteinM. FoxN. ThompsonP. SchuffN. DeCArliC. BorowskiB. GunterJ. SenjemM. VemuriP. JonesD. KantarciK. WardC. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. LandauS. CairnsN.J. HouseholderE. Taylor ReinwaldL. LeeV. KoreckaM. FigurskiM. CrawfordK. NeuS. ForoudT.M. PotkinS. ShenL. KelleyF. KimS. NhoK. KachaturianZ. FrankR. J SnyderP.J. MolchanS. KayeJ. QuinnJ. LindB. CarterR. DolenS. SchneiderL.S. PawluczykS. BecceraM. TeodoroL. M SpannB.M. BrewerJ. VanderswagH. FleisherA. HeidebrinkJ.L. LordJ.L. MasonS. AlbersC. KnopmanD. JohnsonK. DoodyR.S. Villanueva MeyerJ. ChowdhuryM. RountreeS. DangM. SternY. HonigL.S. BellK.L. AncesB. MorrisJ.C. CarrollM. LeonS. MintunM.A. SchneiderS. OliverNGA. GriffithR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. GrossmanH. MitsisE. deToledo-MorrellL. ShahR.C. DuaraR. VaronD. GreigM.T. RobertsP. AlbertM. OnyikeC. D’AgostinoD.II KielbS. GalvinJ.E. PogorelecD.M. CerboneB. MichelC.A. RusinekH. de LeonM.J. GlodzikL. De SantiS. Murali DoraiswamyP. R PetrellaJ. Z WongT. E ArnoldS. H KarlawishJ. WolkD. D SmithC. JichaG. HardyP. SinhaP. OatesE. ConradG. LopezO. OakleyM.A. SimpsonD. PorsteinssonA. GoldsteinB. MartinK. MakinoK. Saleem IsmailM. BrandC. MulnardR. ThaiG. Mc Adams OrtizC. WomackK. MathewsD. QuicenoM. Diaz ArrastiaR. KingR. WeinerM. Martin CookK. DeVousM. LeveyA. LahJ. CellarJ. BurnsJ. AndersonH. SwerdlowR. ApostolovaL. TingusK. WooE. SilvermanD. LuP. BartzokisG. Graff RadfordN. ParfittHF. KendallT. JohnsonH. FarlowM. Marie HakeA. MatthewsB. HerringS. HuntC. van DyckC. CarsonR. MacAvoyM.G. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. Yuek Robin HsiungG. FeldmanH. MudgeB. Assaly PastM. KerteszA. RogersJ. TrostD. BernickC. MunicD. KerwinD. Marsel MesulamM. LipowskiK. Kuo WuC. JohnsonN. SadowskyC. MartinezW. VillenaT. Scott TurnerR. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. FreyM. YesavageJ. TaylorJ.L. LaneB. RosenA. TinklenbergJ. SabbaghM.N. BeldenC.M. JacobsonS.A. SirrelS.A. KowallN. KillianyR. BudsonA.E. NorbashA. Lynn JohnsonP. ObisesanT.O. WoldayS. AllardJ. LernerA. OgrockiP. HudsonL. FletcherE. CarmichaelO. OlichneyJ. DeCarliC. KitturS. BorrieM. LeeT.Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. G PotkinS.G. PredaA. NguyenD. TariotP. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. AdeliA. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. SantulliR.B. KitzmillerT.J. SchwartzE.S. SinkSK.M. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. MintzerJ. SpicerK. BachmanD. FingerE. PasternakS. RachinskyI. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. Boles PontoL.L. ShimH. Elizabeth SmithK. RelkinN. ChaingG. RaudinL. SmithA. FargherK. Ashok RajB. Prevalence and clinical implications of a β-Amyloid–negative, tau-positive cerebrospinal fluid biomarker profile in Alzheimer disease.JAMA Neurol.202380996997910.1001/jamaneurol.2023.233837523162
    [Google Scholar]
  8. AbubakarM.B. SanusiK.O. UgusmanA. MohamedW. KamalH. IbrahimN.H. KhooC.S. KumarJ. Alzheimer’s disease: An update and insights into pathophysiology.Front. Aging Neurosci.20221474240810.3389/fnagi.2022.74240835431894
    [Google Scholar]
  9. MaK.G. QianY.H. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease.Neuropeptides2019739610610.1016/j.npep.2018.12.00330579679
    [Google Scholar]
  10. MoloneyC.M. LoweV.J. MurrayM.E. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: A clinicopathologic perspective for biomarker research.Alzheimers Dement.20211791554157410.1002/alz.1232133797838
    [Google Scholar]
  11. ThalD.R. ToméS.O. The central role of tau in Alzheimer’s disease: From neurofibrillary tangle maturation to the induction of cell death.Brain Res. Bull.202219020421710.1016/j.brainresbull.2022.10.00636244581
    [Google Scholar]
  12. RaulinA.C. DossS.V. TrottierZ.A. IkezuT.C. BuG. LiuC.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies.Mol. Neurodegener.20221717210.1186/s13024‑022‑00574‑436348357
    [Google Scholar]
  13. SamantaS. RameshM. GovindarajuT. Alzheimer’s is a multifactorial disease.Alzheimer's Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic ModalitiesThe Royal Society of Chemistry2022
    [Google Scholar]
  14. CalabròM. RinaldiC. SantoroG. CrisafulliC. The biological pathways of Alzheimer disease: A review.AIMS Neurosci.2021818613210.3934/Neuroscience.202100533490374
    [Google Scholar]
  15. ReitzC. Pericak-VanceM.A. ForoudT. MayeuxR. A global view of the genetic basis of Alzheimer disease.Nat. Rev. Neurol.202319526127710.1038/s41582‑023‑00789‑z37024647
    [Google Scholar]
  16. CarmonaS. HardyJ. GuerreiroR. The genetic landscape of Alzheimer disease.Handb. Clin. Neurol.201814839540810.1016/B978‑0‑444‑64076‑5.00026‑029478590
    [Google Scholar]
  17. Van CauwenbergheC. Van BroeckhovenC. SleegersK. The genetic landscape of Alzheimer disease: Clinical implications and perspectives.Genet. Med.201618542143010.1038/gim.2015.11726312828
    [Google Scholar]
  18. MattickJ.S. AmaralP.P. CarninciP. CarpenterS. ChangH.Y. ChenL.L. ChenR. DeanC. DingerM.E. FitzgeraldK.A. GingerasT.R. GuttmanM. HiroseT. HuarteM. JohnsonR. KanduriC. KapranovP. LawrenceJ.B. LeeJ.T. MendellJ.T. MercerT.R. MooreK.J. NakagawaS. RinnJ.L. SpectorD.L. UlitskyI. WanY. WiluszJ.E. WuM. Long non-coding RNAs: Definitions, functions, challenges and recommendations.Nat. Rev. Mol. Cell Biol.202324643044710.1038/s41580‑022‑00566‑836596869
    [Google Scholar]
  19. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑933353982
    [Google Scholar]
  20. NemethK. BayraktarR. FerracinM. CalinG.A. Non-coding RNAs in disease: From mechanisms to therapeutics.Nat. Rev. Genet.202425321123210.1038/s41576‑023‑00662‑137968332
    [Google Scholar]
  21. BhattiG.K. KhullarN. SidhuI.S. NavikU.S. ReddyA.P. ReddyP.H. BhattiJ.S. Emerging role of non-coding RNA in health and disease.Metab. Brain Dis.20213661119113410.1007/s11011‑021‑00739‑y33881724
    [Google Scholar]
  22. GaoN. LiY. LiJ. GaoZ. YangZ. LiY. LiuH. FanT. Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers.Front. Oncol.20201059881710.3389/fonc.2020.59881733392092
    [Google Scholar]
  23. López-JiménezE. Andrés-LeónE. The implications of ncRNAs in the development of human diseases.Noncoding RNA2021711710.3390/ncrna701001733668203
    [Google Scholar]
  24. LekkaE. HallJ. Noncoding RNAs in disease.FEBS Lett.2018592172884290010.1002/1873‑3468.1318229972883
    [Google Scholar]
  25. ChenY. LiZ. ChenX. ZhangS. Long non-coding RNAs: From disease code to drug role.Acta Pharm. Sin. B202111234035410.1016/j.apsb.2020.10.00133643816
    [Google Scholar]
  26. TanJ. LiX. ZhangL. DuZ. Recent advances in machine learning methods for predicting LncRNA and disease associations.Front. Cell. Infect. Microbiol.202212107197210.3389/fcimb.2022.107197236530425
    [Google Scholar]
  27. KhosroabadiZ. SharifiM. SalehiM. MehrzadV. Differential expression and pathological implications of Linc01089 and Linc01578 in acute myeloid leukemia.Gene Rep.20253810212910.1016/j.genrep.2025.102129
    [Google Scholar]
  28. LiaoK. XuJ. YangW. YouX. ZhongQ. WangX. The research progress of LncRNA involved in the regulation of inflammatory diseases.Mol. Immunol.201810118218810.1016/j.molimm.2018.05.03030007227
    [Google Scholar]
  29. SalvatoriB. BiscariniS. MorlandoM. Non-coding RNAs in nervous system development and disease.Front. Cell Dev. Biol.2020827310.3389/fcell.2020.0027332435641
    [Google Scholar]
  30. AsadiM.R. HassaniM. KianiS. SabaieH. MoslehianM.S. KazemiM. Ghafouri-FardS. TaheriM. RezazadehM. The perspective of dysregulated lncRNAs in Alzheimer’s disease: A systematic scoping review.Front. Aging Neurosci.20211370956810.3389/fnagi.2021.70956834621163
    [Google Scholar]
  31. LiD. ZhangJ. LiX. ChenY. YuF. LiuQ. Insights into lncRNAs in Alzheimer’s disease mechanisms.RNA Biol.20211871037104710.1080/15476286.2020.178884832605500
    [Google Scholar]
  32. Trejo-LopezJ.A. YachnisA.T. ProkopS. Neuropathology of Alzheimer’s disease.Neurotherapeutics202219117318510.1007/s13311‑021‑01146‑y34729690
    [Google Scholar]
  33. HuayingC. XingJ. LuyaJ. LinhuiN. DiS. XianjunD. A Signature of five long non-coding RNAs for predicting the prognosis of Alzheimer’s disease based on competing endogenous RNA networks.Front. Aging Neurosci.20211259860610.3389/fnagi.2020.59860633584243
    [Google Scholar]
  34. WuX. XiaP. YangL. LuC. LuZ. The roles of long non- coding RNAs in Alzheimer’s disease diagnosis, treatment, and their involvement in Alzheimer’s disease immune responses.Noncoding RNA Res.20249365966610.1016/j.ncrna.2024.03.00838577023
    [Google Scholar]
  35. LiD. WangJ. ZhangM. HuX. SheJ. QiuX. ZhangX. XuL. LiuY. QinS. LncRNA MAGI2-AS3 is regulated by BRD4 and promotes gastric cancer progression via maintaining ZEB1 overexpression by sponging miR-141/200a.Mol. Ther. Nucleic Acids20201910912310.1016/j.omtn.2019.11.00331837602
    [Google Scholar]
  36. LiuY. ChenX. CheY. LiH. ZhangZ. PengW. YangJ. LncRNAs as the regulators of brain function and therapeutic targets for Alzheimer’s disease.Aging Dis.202213383785110.14336/AD.2021.111935656102
    [Google Scholar]
  37. MaN. TieC. YuB. ZhangW. WanJ. Identifying lncRNA–miRNA–mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy.Aging20201232897292010.18632/aging.10278532035423
    [Google Scholar]
  38. CloughE. BarrettT. MathéE. DavisS. The gene expression omnibus database BT.Statistical Genomics: Methods and ProtocolsSpringerNew York, NY20169311010.1007/978‑1‑4939‑3578‑9_5
    [Google Scholar]
  39. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  40. ZhouG. SoufanO. EwaldJ. HancockR.E.W. BasuN. XiaJ. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis.Nucleic Acids Res.201947W1W234W24110.1093/nar/gkz24030931480
    [Google Scholar]
  41. LeekJ.T. JohnsonW.E. ParkerH.S. JaffeA.E. StoreyJ.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments.Bioinformatics201228688288310.1093/bioinformatics/bts03422257669
    [Google Scholar]
  42. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e47e4710.1093/nar/gkv00725605792
    [Google Scholar]
  43. WickhamH. ChangW. WickhamM.H. Package ‘ggplot2.Graph. Version2016211189
    [Google Scholar]
  44. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  45. (aDoncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data.J. Proteome Res.,201918262363210.1021/acs.jproteome.8b0070230450911
    [Google Scholar]
  46. (aDoncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data.J. Proteome Res.,201918262363210.1021/acs.jproteome.8b0070230450911
    [Google Scholar]
  47. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S1125521941
    [Google Scholar]
  48. JiaA. XuL. WangY. Venn diagrams in bioinformatics.Brief. Bioinform.2021225bbab10810.1093/bib/bbab10833839742
    [Google Scholar]
  49. (aKang, J.; Tang, Q.; He, J.; Li, L.; Yang, N.; Yu, S.; Wang, M.; Zhang, Y.; Lin, J.; Cui, T.; Hu, Y.; Tan, P.; Cheng, J.; Zheng, H.; Wang, D.; Su, X.; Chen, W.; Huang, Y. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibilityNucleic Acids Res.202250D1D326D33210.1093/nar/gkab99734718726
    [Google Scholar]
  50. (aKang, J.; Tang, Q.; He, J.; Li, L.; Yang, N.; Yu, S.; Wang, M.; Zhang, Y.; Lin, J.; Cui, T.; Hu, Y.; Tan, P.; Cheng, J.; Zheng, H.; Wang, D.; Su, X.; Chen, W.; Huang, Y. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibilityNucleic Acids Res.202250D1D326D33210.1093/nar/gkab99734718726
    [Google Scholar]
  51. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  52. MitchellA.J. LarnerA.J. The mini-mental state examination (MMSE): Update on its diagnostic accuracy and clinical utility for cognitive disorders.Cognitive Screening Instruments: A Practical Approach.Springer International PublishingCham2017374810.1007/978‑3‑319‑44775‑9_3
    [Google Scholar]
  53. Arevalo-RodriguezI. SmailagicN. Roqué-FigulsM. CiapponiA. Sanchez-PerezE. GiannakouA. PedrazaO.L. Bonfill CospX. CullumS. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI).Cochrane Libr.202120217CD01078310.1002/14651858.CD010783.pub334313331
    [Google Scholar]
  54. ChapmanK.R. Bing-CanarH. AloscoM.L. SteinbergE.G. MartinB. ChaissonC. KowallN. TripodisY. SternR.A. Mini mental state examination and logical memory scores for entry into Alzheimer’s disease trials.Alzheimers Res. Ther.201681910.1186/s13195‑016‑0176‑z26899835
    [Google Scholar]
  55. CecatoJ.F. MartinelliJ.E. IzbickiR. YassudaM.S. AprahamianI. A subtest analysis of the Montreal cognitive assessment (MoCA): Which subtests can best discriminate between healthy controls, mild cognitive impairment and Alzheimer’s disease?Int. Psychogeriatr.201628582583210.1017/S104161021500198226620850
    [Google Scholar]
  56. JulayanontP. NasreddineZ.S. LarnerA.J. Montreal Cognitive Assessment (MoCA): Concept and Clinical Review BT.Cognitive Screening Instruments: A Practical Approach.Springer International PublishingCham201713919510.1007/978‑3‑319‑44775‑9_7
    [Google Scholar]
  57. IlardiC.R. MenichelliA. MicheluttiM. CattaruzzaT. FedericoG. SalvatoreM. IavaroneA. ManganottiP. On the clinimetrics of the montreal cognitive assessment: Cutoff analysis in patients with mild cognitive impairment due to Alzheimer’s disease.J. Alzheimers Dis.2024101129330810.3233/JAD‑24033939150828
    [Google Scholar]
  58. MattapS.M. MohanD. McGrattanA.M. AlloteyP. StephanB.C.M. ReidpathD.D. SiervoM. RobinsonL. ChaiyakunaprukN. The economic burden of dementia in low- and middle-income countries (LMICs): A systematic review.BMJ Glob. Health202274e00740910.1136/bmjgh‑2021‑00740935379735
    [Google Scholar]
  59. NicholsE. Global mortality from dementia: Application of a new method and results from the global burden of disease study 2019.Alzheimers Dement202171e1220010.1002/trc2.1220034337138
    [Google Scholar]
  60. KlyucherevT.O. OlszewskiP. ShalimovaA.A. ChubarevV.N. TarasovV.V. AttwoodM.M. SyvänenS. SchiöthH.B. Advances in the development of new biomarkers for Alzheimer’s disease.Transl. Neurodegener.20221112510.1186/s40035‑022‑00296‑z35449079
    [Google Scholar]
  61. BuccellatoF.R. D’AncaM. FenoglioC. ScarpiniE. GalimbertiD. Role of oxidative damage in Alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery.Antioxidants2021109135310.3390/antiox1009135334572985
    [Google Scholar]
  62. WangY. ChenG. ShaoW. Identification of ferroptosis-related genes in Alzheimer’s disease based on bioinformatic analysis.Front. Neurosci.20221682374110.3389/fnins.2022.82374135197821
    [Google Scholar]
  63. JiangX. LuH. XuZ. LiuT. WuQ. YangY. ZhaoQ. GaoH. In silico analyses for key genes and molecular genetic mechanism in epilepsy and Alzheimer’s disease.CNS Neurol. Disord. Drug Targets201817860861710.2174/187152731766618072415083930047339
    [Google Scholar]
  64. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑537433768
    [Google Scholar]
  65. SoniS. VermaL. Nicotine and neurotransmitters an update.Res. J. Pharm. Technol.20241762605261210.52711/0974‑360X.2024.00407
    [Google Scholar]
  66. WallinC. SholtsS.B. ÖsterlundN. LuoJ. JarvetJ. RoosP.M. IlagL. GräslundA. WärmländerS.K.T.S. Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation.Sci. Rep.2017711442310.1038/s41598‑017‑13759‑529089568
    [Google Scholar]
  67. WhiteakerP. GeorgeA.A. Discoveries and future significance of research into amyloid-beta/α7-containing nicotinic acetylcholine receptor (nAChR) interactions.Pharmacol. Res.202319110674310.1016/j.phrs.2023.10674337084859
    [Google Scholar]
  68. TerryA.V.Jr JonesK. BertrandD. Nicotinic acetylcholine receptors in neurological and psychiatric diseases.Pharmacol. Res.202319110676410.1016/j.phrs.2023.10676437044234
    [Google Scholar]
  69. EstevesI.M. Lopes-AguiarC. RossignoliM.T. RuggieroR.N. BrogginiA.C.S. Bueno-JuniorL.S. KandrataviciusL. MonteiroM.R. Romcy-PereiraR.N. LeiteJ.P. Chronic nicotine attenuates behavioral and synaptic plasticity impairments in a streptozotocin model of Alzheimer’s disease.Neuroscience2017353879710.1016/j.neuroscience.2017.04.01128433649
    [Google Scholar]
  70. LiY. SunH. ChenZ. XuH. BuG. ZhengH. Implications of GABAergic neurotransmission in Alzheimer’s disease.Front. Aging Neurosci.201683110.3389/fnagi.2016.0003126941642
    [Google Scholar]
  71. BiD. WenL. WuZ. ShenY. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease.Alzheimers Dement.20201691312132910.1002/alz.1208832543726
    [Google Scholar]
  72. XuY. ZhaoM. HanY. ZhangH. GABAergic inhibitory interneuron deficits in Alzheimer’s disease: Implications for treatment.Front. Neurosci.20201466010.3389/fnins.2020.0066032714136
    [Google Scholar]
  73. ZadkaŁ. SochockaM. HachiyaN. Chojdak-ŁukasiewiczJ. DzięgielP. PiaseckiE. LeszekJ. Endocytosis and Alzheimer’s disease.Geroscience2023461718510.1007/s11357‑023‑00923‑137646904
    [Google Scholar]
  74. JayeS. SandauU.S. McFarlandT.J. WoltjerR.L. SaugstadJ.A. A clathrin mediated endocytosis scaffolding protein, Intersectin 1, changes in an isoform, brain region, and sex specific manner in Alzheimer’s disease.Front. Neurosci.202418142618010.3389/fnins.2024.142618038915309
    [Google Scholar]
  75. MassoneS. VassalloI. FiorinoG. CastelnuovoM. BarbieriF. BorghiR. TabatonM. RobelloM. GattaE. RussoC. FlorioT. DieciG. CanceddaR. PaganoA. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease.Neurobiol. Dis.201141230831710.1016/j.nbd.2010.09.01920888417
    [Google Scholar]
  76. MassoneS. CiarloE. VellaS. NizzariM. FlorioT. RussoC. CanceddaR. PaganoA. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion.Biochim. Biophys. Acta Mol. Cell Res.2012182371170117710.1016/j.bbamcr.2012.05.00122580042
    [Google Scholar]
  77. GaneshV.S. RiquinK. ChatronN. YoonE. LamarK.M. AzizM.C. MoninP. O’LearyM.C. GoodrichJ.K. GarimellaK.V. EnglandE. WeisburdB. AguetF. BacinoC.A. MurdockD.R. DaiH. RosenfeldJ.A. EmrickL.T. KetkarS. SarusiY. SanlavilleD. KayaniS. BroadbentB. PengamA. IsidorB. BezieauS. CognéB. MacArthurD.G. UlitskyI. CarvillG.L. O’Donnell-LuriaA. Neurodevelopmental disorder caused by deletion of CHASERR, a lncRNA gene.N. Engl. J. Med.2024391161511151810.1056/NEJMoa240071839442041
    [Google Scholar]
  78. RomA. MelamedL. GilN. GoldrichM.J. KadirR. GolanM. BitonI. PerryR.B.T. UlitskyI. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability.Nat. Commun.2019101509210.1038/s41467‑019‑13075‑831704914
    [Google Scholar]
  79. KimY.J. KhoshkhooS. FrankowskiJ.C. ZhuB. AbbasiS. LeeS. WuY.E. HuntR.F. Chd2 is necessary for neural circuit development and long-term memory.Neuron2018100511801193.e610.1016/j.neuron.2018.09.04930344048
    [Google Scholar]
  80. HeR. ChengJ. QiuY. HuY. LiuJ. WangT. CaoX. IGF1R and FLT1 in female endothelial cells and CHD2 in male microglia play important roles in Alzheimer’s disease based on gender difference analysis.Exp. Gerontol.202419411251210.1016/j.exger.2024.11251238971545
    [Google Scholar]
  81. BogdanovicN. DavidssonP. VolkmannI. WinbladB. BlennowK. Growth-associated protein GAP-43 in the frontal cortex and in the hippocampus in Alzheimer’s disease: An immunohistochemical and quantitative study.J. Neural Transm. (Vienna)2000107446347810.1007/s00702007008811215757
    [Google Scholar]
  82. LiaoW. LuoH. RuanY. MaiY. LiuC. ChenJ. YangS. XuanA. LiuJ. Identification of candidate genes associated with clinical onset of Alzheimer’s disease.Front. Neurosci.202216106011110.3389/fnins.2022.106011136605552
    [Google Scholar]
  83. DirkxN. MiceliF. TaglialatelaM. WeckhuysenS. The role of Kv7. 2 in neurodevelopment: Insights and gaps in our understanding.Front. Physiol.20201157058810.3389/fphys.2020.57058833192566
    [Google Scholar]
  84. de OliveiraF.F. de AlmeidaT.E. de AlmeidaS.S. SmithM.A.C. BertolucciP.H.F. GRIN2B genotypes and APOE haplotypes affect the age at onset of Alzheimer’s dementia as well as variations in dementia staging according to the use of Memantine.Alzheimers Dement.202319S12e07119910.1002/alz.071199
    [Google Scholar]
/content/journals/car/10.2174/0115672050381537250422075255
Loading
/content/journals/car/10.2174/0115672050381537250422075255
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Alzheimer’s disease; CHASERR; expression; lncRNA; pathogenesis; regulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test