Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by hyperphosphorylation of tau protein to form neurofibrillary tangles (NFTs) and amyloid β (Aβ) deposition to form senile plaques, and its specific regulatory mechanism remains incompletely understood. Neurotrophic factors (NTFs) play important roles in neuronal growth, differentiation, and survival, and are considered to have potential therapeutic effects in AD.

Objective

This study aimed to investigate the effects of NTFs on tau protein phosphorylation in AD and its underlying mechanisms.

Methods

A correlation analysis was conducted between neurotrophic factors and tau protein phosphorylation genes using bioinformatics analysis. The relationship between the candidate neurotrophic factor NRN1 and tau protein phosphorylation was validated . The effects of NRN1 on tau protein phosphorylation, neural process-related proteins, and apoptosis were explored . Subsequently, GO and KEGG pathway enrichment analyses and PPI network were utilized to identify potential functions and pathways, as well as pinpoint core regulatory factors. Finally, the mechanism by which NRN1 affects tau protein phosphorylation was explored through Western blot analysis.

Results

Bioinformatics analysis revealed a significant negative correlation between NRN1 and MAPT, a gene linked to tau protein phosphorylation. Western blot analysis indicated a decrease in NRN1 expression and an increase in p-tau levels in the hippocampus of AD mice. NRN1 significantly reduced the expression of p-tau in AD cell models and enhanced the expression of MAP2, a protein related to neural processes. Further, apoptosis analysis demonstrated that NRN1 significantly decreased the level of cleaved caspase-3 and elevated the Bcl-2/Bax ratio. Bioinformatics analysis and PPI network construction suggested PIGU and CASP3 to play pivotal roles in NRN1 regulation of tau protein phosphorylation.

Conclusion

NRN1 may mitigate tau protein phosphorylation and neuronal apoptosis by modulating the PIGU-CASP3 pathway in AD. This finding offers novel insights into NRN1 as a potential target for the treatment of AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050361366250328040542
2025-04-28
2025-10-24
Loading full text...

Full text loading...

References

  1. HaassC. SelkoeD.J. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide.Cell19937561039104210.1016/0092‑8674(93)90312‑E8261505
    [Google Scholar]
  2. GlennerG.G. WongC.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.1984120388589010.1016/S0006‑291X(84)80190‑46375662
    [Google Scholar]
  3. Trejo-LopezJ.A. YachnisA.T. ProkopS. Neuropathology of Alzheimer’s disease.Neurotherapeutics202219117318510.1007/s13311‑021‑01146‑y34729690
    [Google Scholar]
  4. NasbM. TaoW. ChenN. Alzheimer’s disease puzzle: Delving into pathogenesis hypotheses.Aging Dis.2024151437337450931
    [Google Scholar]
  5. MuralidarS. AmbiS.V. SekaranS. ThirumalaiD. PalaniappanB. Role of tau protein in Alzheimer’s disease: The prime pathological player.Int. J. Biol. Macromol.20201631599161710.1016/j.ijbiomac.2020.07.32732784025
    [Google Scholar]
  6. SharmaS. ChauhanN. PaliwalS. JainS. VermaK. PaliwalS. GSK-3β and its inhibitors in Alzheimer’s disease: A recent update.Mini Rev. Med. Chem.202222222881289510.2174/138955752266622042009431735450523
    [Google Scholar]
  7. Moreno-JiménezE.P. Flor-GarcíaM. Terreros-RoncalJ. RábanoA. CafiniF. Pallas-BazarraN. ÁvilaJ. Llorens- MartínM. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease.Nat. Med.201925455456010.1038/s41591‑019‑0375‑930911133
    [Google Scholar]
  8. KimT.A. SytyM.D. WuK. GeS. Adult hippocampal neurogenesis and its impairment in Alzheimer’s disease.Zool. Res.202243348149610.24272/j.issn.2095‑8137.2021.47935503338
    [Google Scholar]
  9. BabcockK.R. PageJ.S. FallonJ.R. WebbA.E. Adult hippocampal neurogenesis in aging and Alzheimer’s disease.Stem Cell Reports202116468169310.1016/j.stemcr.2021.01.01933636114
    [Google Scholar]
  10. CaoY. LiuP. BianH. JinS. LiuJ. YuN. CuiH. SunF. QianX. QiuW. MaC. Reduced neurogenesis in human hippocampus with Alzheimer’s disease.Brain Pathol.2024343e1322510.1111/bpa.1322538012054
    [Google Scholar]
  11. BalestrieriJ.V.L. NonatoM.B. GhelerL. PrandiniM.N. Structural volume of hippocampus and Alzheimer's disease.Rev Assoc Med Bras2020664512515
    [Google Scholar]
  12. MattsonM.P. Pathways towards and away from Alzheimer’s disease.Nature2004430700063163910.1038/nature0262115295589
    [Google Scholar]
  13. AnK. JungJ.H. JeongA.Y. KimH.G. JungS.Y. LeeK. KimH.J. KimS-J. JeongT-Y. SonY. KimH-S. KimJ-H. Neuritin can normalize neural deficits of Alzheimer’s disease.Cell Death Dis.2014511e152310.1038/cddis.2014.47825393479
    [Google Scholar]
  14. KhezriM.R. Ghasemnejad-BerenjiM. MoloodsouriD. The PI3K/AKT signaling pathway and Caspase-3 in Alzheimer’s disease: Which one is the beginner?J. Alzheimers Dis.202392239139310.3233/JAD‑22115736776071
    [Google Scholar]
  15. YuanJ. YanknerB.A. Apoptosis in the nervous system.Nature2000407680580280910.1038/3503773911048732
    [Google Scholar]
  16. KumariS. DhapolaR. ReddyD.H. Apoptosis in Alzheimer’s disease: Insight into the signaling pathways and therapeutic avenues.Apoptosis2023287-894395710.1007/s10495‑023‑01848‑y37186274
    [Google Scholar]
  17. RapoportM. DawsonH.N. BinderL.I. VitekM.P. FerreiraA. Tau is essential to β-amyloid-induced neurotoxicity.Proc. Natl. Acad. Sci. USA20029996364636910.1073/pnas.09213619911959919
    [Google Scholar]
  18. KhanS. BarveK.H. KumarM.S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease.Curr. Neuropharmacol.202018111106112510.2174/1570159X1866620052814242932484110
    [Google Scholar]
  19. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  20. RejdakK. Sienkiewicz-JaroszH. BienkowskiP. AlvarezA. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of cerebrolysin.Med. Res. Rev.20234351668170010.1002/med.2196037052231
    [Google Scholar]
  21. El OuaamariY. Van den BosJ. WillekensB. CoolsN. WensI. Neurotrophic factors as regenerative therapy for neurodegenerative diseases: Current status, challenges and future perspectives.Int. J. Mol. Sci.2023244386610.3390/ijms2404386636835277
    [Google Scholar]
  22. XiaoL. YangX. SharmaV.K. AbebeD. LohY.P. Hippocampal delivery of neurotrophic factor-α1/carboxypeptidase E gene prevents neurodegeneration, amyloidosis, memory loss in Alzheimer’s disease male mice.Mol. Psychiatry20232883332334210.1038/s41380‑023‑02135‑737369719
    [Google Scholar]
  23. CastelliV. AlfonsettiM. d’AngeloM. Neurotrophic factor-based pharmacological approaches in neurological disorders.Neural Regen. Res.20231861220122810.4103/1673‑5374.35861936453397
    [Google Scholar]
  24. PintonS. SampaioT.B. SavallA.S. GutierrezM.E.Z. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: Implications for pathogenesis and therapy.Neural Regen. Res.201712454955710.4103/1673‑5374.20508428553325
    [Google Scholar]
  25. AllenS.J. WatsonJ.J. ShoemarkD.K. BaruaN.U. PatelN.K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration.Pharmacol. Ther.2013138215517510.1016/j.pharmthera.2013.01.00423348013
    [Google Scholar]
  26. PainterM.M. AtagiY. LiuC.C. RademakersR. XuH. FryerJ.D. BuG. TREM2 in CNS homeostasis and neurodegenerative disease.Mol. Neurodegener.20151014310.1186/s13024‑015‑0040‑926337043
    [Google Scholar]
  27. MaW. LuK. LiangH.M. ZhangJ.Y. Synapsin 1 ameliorates cognitive impairment and neuroinflammation in rats with Alzheimer’s disease: An experimental and bioinformatics study.Curr. Alzheimer Res.202320964865910.2174/011567205027659423122905090638213171
    [Google Scholar]
  28. DechantG. NeumannH. Neurotrophins.Adv. Exp. Med. Biol.200351330333410.1007/978‑1‑4615‑0123‑7_1112575826
    [Google Scholar]
  29. RhinnH. TattonN. McCaugheyS. KurnellasM. RosenthalA. Progranulin as a therapeutic target in neurodegenerative diseases.Trends Pharmacol. Sci.202243864165210.1016/j.tips.2021.11.01535039149
    [Google Scholar]
  30. PasquinS. SharmaM. GauchatJ.F. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies.Cytokine Growth Factor Rev.201526550751510.1016/j.cytogfr.2015.07.00726187860
    [Google Scholar]
  31. PahlavaniH.A. Exercise therapy to prevent and treat Alzheimer’s disease.Front. Aging Neurosci.202315124386910.3389/fnagi.2023.124386937600508
    [Google Scholar]
  32. AllenS.J. WilcockG.K. DawbarnD. Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer’s disease.Biochem. Biophys. Res. Commun.1999264364865110.1006/bbrc.1999.156110543986
    [Google Scholar]
  33. HurstC. PughD.A. AbrehaM.H. DuongD.M. DammerE.B. BennettD.A. HerskowitzJ.H. SeyfriedN.T. Integrated proteomics to understand the role of neuritin (NRN1) as a mediator of cognitive resilience to Alzheimer’s disease.Mol. Cell. Proteomics202322510054210.1016/j.mcpro.2023.10054237024090
    [Google Scholar]
  34. KamatP.K. RaiS. NathC. Okadaic acid induced neurotoxicity: An emerging tool to study Alzheimer’s disease pathology.Neurotoxicology20133716317210.1016/j.neuro.2013.05.00223688530
    [Google Scholar]
  35. MedinaM. AvilaJ. VillanuevaN. Use of okadaic acid to identify relevant phosphoepitopes in pathology: A focus on neurodegeneration.Mar. Drugs20131151656166810.3390/md1105165623697949
    [Google Scholar]
  36. MonteiroA.R. BarbosaD.J. RemiãoF. SilvaR. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs.Biochem. Pharmacol.202321111552210.1016/j.bcp.2023.11552236996971
    [Google Scholar]
  37. DuyckaertsC. DelatourB. PotierM.C. Classification and basic pathology of Alzheimer disease.Acta Neuropathol.2009118153610.1007/s00401‑009‑0532‑119381658
    [Google Scholar]
  38. AlonsoA.C. Grundke-IqbalI. IqbalK. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules.Nat. Med.19962778378710.1038/nm0796‑7838673924
    [Google Scholar]
  39. BartenD.M. FanaraP. AndorferC. HoqueN. WongP.Y.A. HustedK.H. CadelinaG.W. DeCarrL.B. YangL. LiuV. FesslerC. ProtassioJ. RiffT. TurnerH. JanusC.G. SankaranarayananS. PolsonC. MeredithJ.E. GrayG. HannaA. OlsonR.E. KimS.H. ViteG.D. LeeF.Y. AlbrightC.F. Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027.J. Neurosci.201232217137714510.1523/JNEUROSCI.0188‑12.201222623658
    [Google Scholar]
  40. CantallopsI. ClineH.T. Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intact Xenopus tadpoles.Dev. Neurobiol.200868674475910.1002/dneu.2052918383547
    [Google Scholar]
  41. NasrolahiA. JavaherforooshzadehF. Jafarzadeh-GharehziaaddinM. MahmoudiJ. AslK.D. ShabaniZ. Therapeutic potential of neurotrophic factors in Alzheimer’s Disease.Mol. Biol. Rep.20224932345235710.1007/s11033‑021‑06968‑934826049
    [Google Scholar]
  42. EdwardsR.H. SelbyM.J. GarciaP.D. RutterW.J. Processing of the native nerve growth factor precursor to form biologically active nerve growth factor.J. Biol. Chem.1988263146810681510.1016/S0021‑9258(18)68715‑03360808
    [Google Scholar]
  43. FahnestockM. MichalskiB. XuB. CoughlinM.D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease.Mol. Cell. Neurosci.200118221022010.1006/mcne.2001.101611520181
    [Google Scholar]
  44. LeeR. KermaniP. TengK.K. HempsteadB.L. Regulation of cell survival by secreted proneurotrophins.Science200129455481945194810.1126/science.106505711729324
    [Google Scholar]
  45. MufsonE.J. CountsS.E. PerezS.E. GinsbergS.D. Cholinergic system during the progression of Alzheimer’s disease: Therapeutic implications.Expert Rev. Neurother.20088111703171810.1586/14737175.8.11.170318986241
    [Google Scholar]
  46. YaoJ. ZhaoQ. LuJ. MeiY. Functions and the related signaling pathways of the neurotrophic factor neuritin.Acta Pharmacol. Sin.20183991414142010.1038/aps.2017.19729595190
    [Google Scholar]
  47. NaeveG.S. RamakrishnanM. KramerR. HevroniD. CitriY. TheillL.E. Neuritin: A gene induced by neural activity and neurotrophins that promotes neuritogenesis.Proc. Natl. Acad. Sci. USA19979462648265310.1073/pnas.94.6.26489122250
    [Google Scholar]
  48. ZhouJ. DuX. LongM. ZhangZ. ZhouS. ZhouJ. QianG. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats.Eur. J. Pharmacol.2016774879410.1016/j.ejphar.2016.02.00726849937
    [Google Scholar]
  49. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑321214928
    [Google Scholar]
  50. ZhangH. WeiW. ZhaoM. MaL. JiangX. PeiH. CaoY. LiH. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.5707834239348
    [Google Scholar]
  51. PengM. LingX. SongR. GaoX. LiangZ. FangF. CangJ. Upregulation of GLT-1 via PI3K/Akt pathway contributes to neuroprotection induced by dexmedetomidine.Front. Neurol.201910104110.3389/fneur.2019.0104131611842
    [Google Scholar]
  52. XianY.F. LinZ.X. MaoQ.Q. ChenJ.N. SuZ.R. LaiX.P. IpP.S.P. Isorhynchophylline protects PC12 cells against beta-amyloid-induced apoptosis via PI3K/Akt signaling pathway.Evid. Based Complement. Alternat. Med.201320131810.1155/2013/16305724319473
    [Google Scholar]
  53. TatoI. BartronsR. VenturaF. RosaJ.L. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling.J. Biol. Chem.201128686128614210.1074/jbc.M110.16699121131356
    [Google Scholar]
  54. Guo, J.; Jiang, X.; Lian, J.; Li, H.; Zhang, F.; Xie, J.; Deng, J.; Hou, X.; Du, Z.; Hao, E. Evaluation of the effect of GSK-3β on liver cancer based on the PI3K/AKT pathway. Front. Cell Dev. Biol., 2024, 12, 1431423. 10.3389/fcell.2024.143142339156976
    [Google Scholar]
  55. NisbetR.M. PolancoJ.C. IttnerL.M. GötzJ. Tau aggregation and its interplay with amyloid-β.Acta Neuropathol.2015129220722010.1007/s00401‑014‑1371‑225492702
    [Google Scholar]
  56. AvrahamiL. FarfaraD. Shaham-KolM. VassarR. FrenkelD. Eldar-FinkelmanH. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies.J. Biol. Chem.201328821295130610.1074/jbc.M112.40925023155049
    [Google Scholar]
  57. GaoC. HölscherC. LiuY. LiL. GSK3: A key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease.Revneuro201223111110.1515/rns.2011.06122718609
    [Google Scholar]
  58. LiuJ. GuanX. ZhengS. ShiJ. WangX. ShenZ. ChenZ. LiaoC. ZhangZ. Neuritin accelerates Schwann cell dedifferentiation via PI3K/Akt/mTOR signalling pathway during Wallerian degeneration.J. Cell. Mol. Med.20242816e7001210.1111/jcmm.7001239187917
    [Google Scholar]
  59. ZhuD.C. GwoC.Y. DengA.W. ScheelN. DowlingM.A. ZhangR. Alzheimer’s Disease Neuroimaging Initiative Hippocampus shape characterization with 3D Zernike transformation in clinical Alzheimer’s disease progression.Hum. Brain Mapp.20234441432144410.1002/hbm.2613036346203
    [Google Scholar]
  60. TangY. YanY. MaoJ. NiJ. QingH. The hippocampus associated GABAergic neural network impairment in early-stage of Alzheimer’s disease.Ageing Res. Rev.20238610186510.1016/j.arr.2023.10186536716975
    [Google Scholar]
  61. SongD. LiG. HongY. ZhangP. ZhuJ. YangL. HuangJ. miR-199a decreases Neuritin expression involved in the development of Alzheimer’s disease in APP/PS1 mice.Int. J. Mol. Med.202046138439610.3892/ijmm.2020.460232626916
    [Google Scholar]
  62. ZhangC-D. XuA-H. YangY. SunY-X. Exogenous brain-derived neurotrophic factor attenuates cognitive impairment induced by okadaic acid in a rat model of Alzheimer’s disease.Neural Regen. Res.201813122173218110.4103/1673‑5374.24147130323150
    [Google Scholar]
  63. LiuF. Grundke-IqbalI. IqbalK. GongC.X. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation.Eur. J. Neurosci.20052281942195010.1111/j.1460‑9568.2005.04391.x16262633
    [Google Scholar]
  64. ArendtT. HolzerM. FruthR. BrücknerM.K. GärtnerU. Phosphorylation of tau, Aβ-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A.Neurobiol. Aging199819131310.1016/S0197‑4580(98)00003‑79562497
    [Google Scholar]
  65. ArendtT. HolzerM. BrücknerM.K. JankeC. GärtnerU. The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer’s disease.Neuroscience19988541337134010.1016/S0306‑4522(97)00697‑09681968
    [Google Scholar]
  66. KoehlerD. ShahZ.A. WilliamsF.E. The GSK3β inhibitor, TDZD-8, rescues cognition in a zebrafish model of okadaic acid-induced Alzheimer’s disease.Neurochem. Int.2019122313710.1016/j.neuint.2018.10.02230392874
    [Google Scholar]
  67. KamatP.K. TotaS. SaxenaG. ShuklaR. NathC. Okadaic acid (ICV) induced memory impairment in rats: A suitable experimental model to test anti-dementia activity.Brain Res.20101309667410.1016/j.brainres.2009.10.06419883632
    [Google Scholar]
  68. BroettoN. HansenF. BroleseG. BatassiniC. LirioF. GallandF. dos SantosJ.P.A. DutraM.F. GonçalvesC.A. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.Brain Res. Bull.201612413614310.1016/j.brainresbull.2016.04.01427108544
    [Google Scholar]
  69. SuK. KyawH. FanP. ZengZ. ShellB.K. CarterK.C. LiY. Isolation, characterization, and mapping of two human potassium channels.Biochem. Biophys. Res. Commun.1997241367568110.1006/bbrc.1997.78309434767
    [Google Scholar]
  70. BakhshM.R. RouhiL. GhaediK. HashemiM. PeymaniM. SamarghandianS. Therapeutic effects of guanidine hydrochloride on breast cancer through targeting KCNG1 gene.Biomed. Pharmacother.202316411498210.1016/j.biopha.2023.11498237311278
    [Google Scholar]
  71. BieverA. ValjentE. PuighermanalE. Ribosomal protein S6 phosphorylation in the nervous system: From regulation to function.Front. Mol. Neurosci.201587510.3389/fnmol.2015.0007526733799
    [Google Scholar]
  72. DecourtC. SchaefferJ. BlotB. PaccardA. ExcoffierB. PendeM. NawabiH. BelinS. The RSK2-RPS6 axis promotes axonal regeneration in the peripheral and central nervous systems.PLoS Biol.2023214e300204410.1371/journal.pbio.300204437068088
    [Google Scholar]
  73. MeyuhasO. Physiological roles of ribosomal protein S6: One of its kind.Int. Rev. Cell Mol. Biol.200826813710.1016/S1937‑6448(08)00801‑018703402
    [Google Scholar]
  74. GressnerA.M. WoolI.G. The phosphorylation of liver ribosomal proteins in vivo. Evidence that only a single small subunit protein (S6) is phosphorylated.J. Biol. Chem.1974249216917692510.1016/S0021‑9258(19)42145‑54423396
    [Google Scholar]
  75. KnausA. KortümF. KleefstraT. Stray-PedersenA. ĐukićD. MurakamiY. GerstnerT. van BokhovenH. IqbalZ. HornD. KinoshitaT. HempelM. KrawitzP.M. Mutations in PIGU impair the function of the GPI transamidase complex, causing severe intellectual disability, epilepsy, and brain anomalies.Am. J. Hum. Genet.2019105239540210.1016/j.ajhg.2019.06.00931353022
    [Google Scholar]
  76. NagpalJ.K. DasguptaS. JadallahS. ChaeY.K. RatovitskiE.A. ToubajiA. NettoG.J. EagleT. NissanA. SidranskyD. TrinkB. Profiling the expression pattern of GPI transamidase complex subunits in human cancer.Mod. Pathol.200821897999110.1038/modpathol.2008.7618487995
    [Google Scholar]
  77. GuoZ. LinnJ.F. WuG. AnzickS.L. EisenbergerC.F. HalachmiS. CohenY. FomenkovA. HoqueM.O. OkamiK. SteinerG. EnglesJ.M. OsadaM. MoonC. RatovitskiE. TrentJ.M. MeltzerP.S. WestraW.H. KiemeneyL.A. SchoenbergM.P. SidranskyD. TrinkB. CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer.Nat. Med.200410437438110.1038/nm101015034568
    [Google Scholar]
  78. GamblinT.C. ChenF. ZambranoA. AbrahaA. LagalwarS. GuillozetA.L. LuM. FuY. Garcia-SierraF. LaPointeN. MillerR. BerryR.W. BinderL.I. CrynsV.L. Caspase cleavage of tau: Linking amyloid and neurofibrillary tangles in Alzheimer’s disease.Proc. Natl. Acad. Sci. USA200310017100321003710.1073/pnas.163042810012888622
    [Google Scholar]
/content/journals/car/10.2174/0115672050361366250328040542
Loading
/content/journals/car/10.2174/0115672050361366250328040542
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; bioinformatics; CASP3; neurotrophic factor; NRN1; tau phosphorylation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test