Skip to content
2000
image of Proposed Therapeutic Strategy to Combat Alzheimer’s Disease by Targeting Beta and Gamma Secretases

Abstract

Alzheimer’s disease (AD) is a degenerative neurological disease characterized by a loss of memory and cognitive ability. One of the main factors influencing the development of AD is the accumulation of amyloid β (Aβ) plaque in the brain. The sequential production of Aβ is mediated by two enzymes: gamma-secretase and β-secretase (BACE1). The goal of beta-secretase inhibitors is to prevent the initial cleavage of amyloid precursor protein (APP), which reduces the production of (Aβ) peptides by limiting the substrate available for gamma-secretase. Simultaneously, gamma-secretase modulators are engineered to specifically modify enzyme performance, reducing the synthesis of the harmful Aβ42 isoform while maintaining vital physiological processes. Targeting both secretases reduces amyloidogenic processing synergistically. Selective inhibitors, which have been recently developed, have also shown good clinical development. They can reduce Aβ levels effectively with minimal side effects. The therapeutic strategy also underlines the importance of early therapy intervention in the preclinical AD phase for an optimum effect. Although there are some problems in the optimization of drug delivery and the alleviation of side effects, targeting beta and gamma secretases remains a promising direction. However, all these strategies still need more research and clinical testing to improve existing treatments and develop new, efficient Alzheimer's disease therapies. This review seeks to examine the therapeutic promise of β- and γ-secretase inhibition in Alzheimer's disease and review recent progress, challenges, and new dual-inhibition approaches.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050380899250602042028
2025-06-05
2025-09-11
Loading full text...

Full text loading...

References

  1. Rabinovici G.D. Karlawish J. Knopman D. Snyder H.M. Sperling R. Carrillo M.C. Testing and disclosures related to amyloid imaging and Alzheimer’s disease: Common questions and fact sheet summary. Alzheimers Dement. 2016 12 4 510 515 10.1016/j.jalz.2016.03.002 27103054
    [Google Scholar]
  2. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  3. Chiti F. Dobson C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem. 2017 86 1 27 68 10.1146/annurev‑biochem‑061516‑045115 28498720
    [Google Scholar]
  4. Bross P. Corydon T.J. Andresen B.S. Jørgensen M.M. Bolund L. Gregersen N. Protein misfolding and degradation in genetic diseases. Hum. Mutat. 1999 14 3 186 198 10.1002/(SICI)1098‑1004(1999)14:3<186::AID‑HUMU2>3.0.CO;2‑J 10477427
    [Google Scholar]
  5. Gouras G.K. Olsson T.T. Hansson O. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics 2015 12 1 3 11 10.1007/s13311‑014‑0313‑y 25371168
    [Google Scholar]
  6. Hussain I. Powell D.J. Howlett D.R. Chapman G.A. Gilmour L. Murdock P.R. Tew D.G. Meek T.D. Chapman C. Schneider K. Ratcliffe S.J. Tattersall D. Testa T.T. Southan C. Ryan D.M. Simmons D.L. Walsh F.S. Dingwall C. Christie G. ASP1 (BACE2) cleaves the amyloid precursor protein at the β-secretase site. Mol. Cell. Neurosci. 2000 16 5 609 619 10.1006/mcne.2000.0884 11083922
    [Google Scholar]
  7. Laird F.M. Cai H. Savonenko A.V. Farah M.H. He K. Melnikova T. Wen H. Chiang H.C. Xu G. Koliatsos V.E. Borchelt D.R. Price D.L. Lee H.K. Wong P.C. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci. 2005 25 50 11693 11709 10.1523/JNEUROSCI.2766‑05.2005 16354928
    [Google Scholar]
  8. Farzan M. Schnitzler C.E. Vasilieva N. Leung D. Choe H. BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc. Natl. Acad. Sci. USA 2000 97 17 9712 9717 10.1073/pnas.160115697 10931940
    [Google Scholar]
  9. Yang L.B. Lindholm K. Yan R. Citron M. Xia W. Yang X.L. Beach T. Sue L. Wong P. Price D. Li R. Shen Y. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med. 2003 9 1 3 4 10.1038/nm0103‑3 12514700
    [Google Scholar]
  10. Westmeyer G.G. Willem M. Lichtenthaler S.F. Lurman G. Multhaup G. Assfalg-Machleidt I. Reiss K. Saftig P. Haass C. Dimerization of β-site β-amyloid precursor protein-cleaving enzyme. J. Biol. Chem. 2004 279 51 53205 53212 10.1074/jbc.M410378200 15485862
    [Google Scholar]
  11. Cole S.L. Vassar R. The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J. Biol. Chem. 2008 283 44 29621 29625 10.1074/jbc.R800015200 18650431
    [Google Scholar]
  12. Hunt C.E. Turner A.J. Cell biology, regulation and inhibition of β-secretase (BACE-1). FEBS J. 2009 276 7 1845 1859 10.1111/j.1742‑4658.2009.06929.x 19292866
    [Google Scholar]
  13. Wolfe M.S. Inhibition and modulation of gamma-secretase for Alzheimer’s disease. Neurotherapeutics 2008 5 3 391 398 10.1016/j.nurt.2008.05.010 18625450
    [Google Scholar]
  14. Li H. Wolfe M.S. Selkoe D.J. Toward structural elucidation of the γ-secretase complex. Structure 2009 17 3 326 334 10.1016/j.str.2009.01.007 19278647
    [Google Scholar]
  15. Beel A.J. Sanders C.R. Substrate specificity of γ-secretase and other intramembrane proteases. Cell. Mol. Life Sci. 2008 65 9 1311 1334 10.1007/s00018‑008‑7462‑2 18239854
    [Google Scholar]
  16. Wakabayashi T. De Strooper B. Presenilins: Members of the γ-secretase quartets, but part-time soloists too. Physiology 2008 23 4 194 204 10.1152/physiol.00009.2008 18697993
    [Google Scholar]
  17. Yu H. Saura C.A. Choi S.Y. Sun L.D. Yang X. Handler M. Kawarabayashi T. Younkin L. Fedeles B. Wilson M.A. Younkin S. Kandel E.R. Kirkwood A. Shen J. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron 2001 31 5 713 726 10.1016/S0896‑6273(01)00417‑2 11567612
    [Google Scholar]
  18. Saura C.A. Chen G. Malkani S. Choi S.Y. Takahashi R.H. Zhang D. Gouras G.K. Kirkwood A. Morris R.G.M. Shen J. Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. J. Neurosci. 2005 25 29 6755 6764 10.1523/JNEUROSCI.1247‑05.2005 16033885
    [Google Scholar]
  19. Tabuchi K. Chen G. Südhof T.C. Shen J. Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration. J. Neurosci. 2009 29 22 7290 7301 10.1523/JNEUROSCI.1320‑09.2009 19494151
    [Google Scholar]
  20. Serneels L. Van Biervliet J. Craessaerts K. Dejaegere T. Horré K. Van Houtvin T. Esselmann H. Paul S. Schäfer M.K. Berezovska O. Hyman B.T. Sprangers B. Sciot R. Moons L. Jucker M. Yang Z. May P.C. Karran E. Wiltfang J. D’Hooge R. De Strooper B. γ-Secretase heterogeneity in the Aph1 subunit: Relevance for Alzheimer’s disease. Science 2009 324 5927 639 642 10.1126/science.1171176 19299585
    [Google Scholar]
  21. Savonenko A.V. Melnikova T. Laird F.M. Stewart K.A. Price D.L. Wong P.C. Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1 -null mice. Proc. Natl. Acad. Sci. USA 2008 105 14 5585 5590 10.1073/pnas.0710373105 18385378
    [Google Scholar]
  22. Thathiah A. Spittaels K. Hoffmann M. Staes M. Cohen A. Horré K. Vanbrabant M. Coun F. Baekelandt V. Delacourte A. Fischer D.F. Pollet D. De Strooper B. Merchiers P. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science 2009 323 5916 946 951 10.1126/science.1160649 19213921
    [Google Scholar]
  23. MacLeod R. Hillert E.K. Cameron R.T. Baillie G.S. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease. Future Sci. OA 2015 1 3 FSO11 10.4155/fso.15.9 28031886
    [Google Scholar]
  24. Chow V.W. Savonenko A.V. Melnikova T. Kim H. Price D.L. Li T. Wong P.C. Modeling an anti-amyloid combination therapy for Alzheimer’s disease. Sci. Transl. Med. 2010 2 13 13ra1 10.1126/scitranslmed.3000337 20371462
    [Google Scholar]
  25. Maia M.A. Sousa E. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s disease. Pharmaceuticals 2019 12 1 41 10.3390/ph12010041 30893882
    [Google Scholar]
  26. Murphy M.P. LeVine H. III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010 19 1 311 323 10.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  27. Sun X. Chen W.D. Wang Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol. 2015 6 221 10.3389/fphar.2015.00221 26483691
    [Google Scholar]
  28. O’Brien R.J. Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011 34 1 185 204 10.1146/annurev‑neuro‑061010‑113613 21456963
    [Google Scholar]
  29. Chen G. Xu T. Yan Y. Zhou Y. Jiang Y. Melcher K. Xu H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017 38 9 1205 1235 10.1038/aps.2017.28 28713158
    [Google Scholar]
  30. Gu L. Guo Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J. Neurochem. 2013 126 3 305 311 10.1111/jnc.12202 23406382
    [Google Scholar]
  31. Chow V.W. Mattson M.P. Wong P.C. Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010 12 1 1 12 10.1007/s12017‑009‑8104‑z 20232515
    [Google Scholar]
  32. Ehehalt R. Keller P. Haass C. Thiele C. Simons K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 2003 160 1 113 123 10.1083/jcb.200207113 12515826
    [Google Scholar]
  33. Hur J.Y. γ-Secretase in Alzheimer’s disease. Exp. Mol. Med. 2022 54 4 433 446 10.1038/s12276‑022‑00754‑8 35396575
    [Google Scholar]
  34. Vassar R. Kovacs D.M. Yan R. Wong P.C. The beta-secretase enzyme BACE in health and Alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential. J. Neurosci. 2009 29 41 12787 12794 10.1523/JNEUROSCI.3657‑09.2009 19828790
    [Google Scholar]
  35. Zhang Y. Thompson R. Zhang H. Xu H. APP processing in Alzheimer’s disease. Mol. Brain 2011 4 1 3 10.1186/1756‑6606‑4‑3 21214928
    [Google Scholar]
  36. Jokar S. Amyloid β-targeted inhibitory peptides for Alzheimer’s disease: Current state and future perspectives. Brisbane, Australia Exon Publications 2020 51 68
    [Google Scholar]
  37. Zhang Y. Chen H. Li R. Sterling K. Song W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023 8 1 248 10.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  38. Health N.I.O. What happens to the brain in Alzheimer’s disease? 2017 Available from: https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/what-happens-brain-alzheimers-disease
  39. Walker L.C. Aβ plaques. Free Neuropathol. 2020 1 31 10.17879/freeneuropathology‑2020‑3025 33345256
    [Google Scholar]
  40. Gallardo G. Holtzman D.M. Antibody therapeutics targeting AΒ and tau. Cold Spring Harb. Perspect. Med. 2017 7 10 a024331 10.1101/cshperspect.a024331 28062555
    [Google Scholar]
  41. Yan R. Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol. 2014 13 3 319 329 10.1016/S1474‑4422(13)70276‑X 24556009
    [Google Scholar]
  42. Cole S.L. Vassar R. The Alzheimer’s disease Beta-secretase enzyme, BACE1. Mol. Neurodegener. 2007 2 1 22 10.1186/1750‑1326‑2‑22 18005427
    [Google Scholar]
  43. Citron M. β-Secretase: progress and open questions. 2013 Available from: https://www.ncbi.nlm.nih.gov/books/NBK6096/
  44. Kandalepas P. Vassar R. The normal and pathologic roles of the Alzheimer’s β-secretase, BACE1. Curr. Alzheimer Res. 2014 11 5 441 449 10.2174/1567205011666140604122059 24893886
    [Google Scholar]
  45. Das B. Yan R. A close look at BACE1 inhibitors for Alzheimer’s disease treatment. CNS Drugs 2019 33 3 251 263 10.1007/s40263‑019‑00613‑7 30830576
    [Google Scholar]
  46. Liu L. Lauro B.M. Ding L. Rovere M. Wolfe M.S. Selkoe D.J. Multiple BACE1 inhibitors abnormally increase the BACE1 protein level in neurons by prolonging its half-life. Alzheimers Dement. 2019 15 9 1183 1194 10.1016/j.jalz.2019.06.3918 31416794
    [Google Scholar]
  47. Evin G. Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer’s disease. Degener. Neurol. Neuromuscul. Dis. 2014 4 1 19 10.2147/DNND.S41056 32669897
    [Google Scholar]
  48. Peters F. Salihoglu H. Rodrigues E. Herzog E. Blume T. Filser S. Dorostkar M. Shimshek D.R. Brose N. Neumann U. Herms J. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol. 2018 135 5 695 710 10.1007/s00401‑017‑1804‑9 29327084
    [Google Scholar]
  49. Arafah A. Khatoon S. Rasool I. Khan A. Rather M.A. Abujabal K.A. Faqih Y.A.H. Rashid H. Rashid S.M. Bilal A.S. Alexiou A. Rehman M.U. The future of precision medicine in the cure of Alzheimer’s disease. Biomedicines 2023 11 2 335 10.3390/biomedicines11020335 36830872
    [Google Scholar]
  50. Bougea A. Gourzis P. Biomarker-based precision therapy for alzheimer’s disease: Multidimensional evidence leading a new breakthrough in personalized medicine. J. Clin. Med. 2024 13 16 4661 10.3390/jcm13164661 39200803
    [Google Scholar]
  51. Bolduc D.M. Montagna D.R. Seghers M.C. Wolfe M.S. Selkoe D.J. The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase. eLife 2016 5 17578 10.7554/eLife.17578 27580372
    [Google Scholar]
  52. Lamb C.A. Saifuddin A. Powell N. Rieder F. The future of precision medicine to predict outcomes and control tissue remodeling in inflammatory bowel disease. Gastroenterology 2022 162 5 1525 1542 10.1053/j.gastro.2021.09.077 34995532
    [Google Scholar]
  53. Zheng H. Koo E.H. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener. 2011 6 1 27 10.1186/1750‑1326‑6‑27 21527012
    [Google Scholar]
  54. Viola K.L. Klein W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015 129 2 183 206 10.1007/s00401‑015‑1386‑3 25604547
    [Google Scholar]
  55. Duncan I.D. Radcliff A.B. Inherited and acquired disorders of myelin: The underlying myelin pathology. Exp. Neurol. 2016 283 Pt B 452 475 10.1016/j.expneurol.2016.04.002
    [Google Scholar]
  56. Zhou B. Lin W. Long Y. Yang Y. Zhang H. Wu K. Chu Q. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct. Target. Ther. 2022 7 1 95 10.1038/s41392‑022‑00934‑y 35332121
    [Google Scholar]
  57. Patel S. Bansoad A.V. Singh R. Khatik G.L. BACE1: A key regulator in Alzheimer’s disease progression and current development of its inhibitors. Curr. Neuropharmacol. 2022 20 6 1174 1193 10.2174/1570159X19666211201094031 34852746
    [Google Scholar]
  58. Jacobsen H. Ozmen L. Caruso A. Narquizian R. Hilpert H. Jacobsen B. Terwel D. Tanghe A. Bohrmann B. Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice. J. Neurosci. 2014 34 35 11621 11630 10.1523/JNEUROSCI.1405‑14.2014 25164658
    [Google Scholar]
  59. Nordvall G. Lundkvist J. Sandin J. Gamma-secretase modulators: A promising route for the treatment of Alzheimer’s disease. Front. Mol. Neurosci. 2023 16 1279740 10.3389/fnmol.2023.1279740 37908487
    [Google Scholar]
  60. Zhang X. Li Y. Xu H. Zhang Y. The γ-secretase complex: From structure to function. Front. Cell. Neurosci. 2014 8 427 10.3389/fncel.2014.00427 25565961
    [Google Scholar]
  61. De Strooper B. Iwatsubo T. Wolfe M.S. Presenilins and γ-secretase: Structure, function, and role in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012 2 1 a006304 10.1101/cshperspect.a006304 22315713
    [Google Scholar]
  62. Tomita T. Wong P.C. Selectivity to amyloid-β precursor protein cleavage provides hope against Alzheimer’s. Alzheimers Res. Ther. 2011 3 2 7 10.1186/alzrt66 21418547
    [Google Scholar]
  63. Rogers K. Felsenstein K.M. Hrdlicka L. Tu Z. Albayya F. Lee W. Hopp S. Miller M.J. Spaulding D. Yang Z. Hodgdon H. Nolan S. Wen M. Costa D. Blain J.F. Freeman E. De Strooper B. Vulsteke V. Scrocchi L. Zetterberg H. Portelius E. Hutter-Paier B. Havas D. Ahlijanian M. Flood D. Leventhal L. Shapiro G. Patzke H. Chesworth R. Koenig G. Modulation of γ-secretase by EVP-0015962 reduces amyloid deposition and behavioral deficits in Tg2576 mice. Mol. Neurodegener. 2012 7 1 61 10.1186/1750‑1326‑7‑61 23249765
    [Google Scholar]
  64. Shelton C.C. Zhu L. Chau D. Yang L. Wang R. Djaballah H. Zheng H. Li Y.M. Modulation of γ-secretase specificity using small molecule allosteric inhibitors. Proc. Natl. Acad. Sci. USA 2009 106 48 20228 20233 10.1073/pnas.0910757106 19906985
    [Google Scholar]
  65. Crump C.J. Johnson D.S. Li Y.M. Development and mechanism of γ-secretase modulators for Alzheimer’s disease. Biochemistry 2013 52 19 3197 3216 10.1021/bi400377p 23614767
    [Google Scholar]
  66. Golde T.E. Koo E.H. Felsenstein K.M. Osborne B.A. Miele L. γ-Secretase inhibitors and modulators. Biochim. Biophys. Acta Biomembr. 2013 1828 12 2898 2907 10.1016/j.bbamem.2013.06.005 23791707
    [Google Scholar]
  67. Nie P. Vartak A. Li Y.M. γ-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of γ-Secretase. Semin. Cell Dev. Biol. 2020 105 43 53 10.1016/j.semcdb.2020.03.002 32249070
    [Google Scholar]
  68. He G. Luo W. Li P. Remmers C. Netzer W.J. Hendrick J. Bettayeb K. Flajolet M. Gorelick F. Wennogle L.P. Greengard P. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 2010 467 7311 95 98 10.1038/nature09325 20811458
    [Google Scholar]
  69. Hussain I. Fabrègue J. Anderes L. Ousson S. Borlat F. Eligert V. Berger S. Dimitrov M. Alattia J.R. Fraering P.C. Beher D. The role of γ-secretase activating protein (GSAP) and imatinib in the regulation of γ-secretase activity and amyloid-β generation. J. Biol. Chem. 2013 288 4 2521 2531 10.1074/jbc.M112.370924 23209290
    [Google Scholar]
  70. Olsauskas-Kuprys R. Zlobin A. Osipo C. Gamma secretase inhibitors of Notch signaling. OncoTargets Ther. 2013 6 943 955 23901284
    [Google Scholar]
  71. McCaw T.R. Inga E. Chen H. Jaskula-Sztul R. Dudeja V. Bibb J.A. Ren B. Rose J.B. Gamma secretase inhibitors in cancer: A current perspective on clinical performance. Oncologist 2021 26 4 e608 e621 10.1002/onco.13627 33284507
    [Google Scholar]
  72. Hampel H. Vassar R. De Strooper B. Hardy J. Willem M. Singh N. Zhou J. Yan R. Vanmechelen E. De Vos A. Nisticò R. Corbo M. Imbimbo B.P. Streffer J. Voytyuk I. Timmers M. Tahami Monfared A.A. Irizarry M. Albala B. Koyama A. Watanabe N. Kimura T. Yarenis L. Lista S. Kramer L. Vergallo A. The β-secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry 2021 89 8 745 756 10.1016/j.biopsych.2020.02.001 32223911
    [Google Scholar]
  73. Yan R. Fan Q. Zhou J. Vassar R. Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer’s disease. Neurosci. Biobehav. Rev. 2016 65 326 340 10.1016/j.neubiorev.2016.03.025 27044452
    [Google Scholar]
  74. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  75. Egan M.F. Mukai Y. Voss T. Kost J. Stone J. Furtek C. Mahoney E. Cummings J.L. Tariot P.N. Aisen P.S. Vellas B. Lines C. Michelson D. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimers Res. Ther. 2019 11 1 68 10.1186/s13195‑019‑0520‑1 31387606
    [Google Scholar]
  76. Dekeryte R. Franklin Z. Hull C. Croce L. Kamli-Salino S. Helk O. Hoffmann P.A. Yang Z. Riedel G. Delibegovic M. Platt B. The BACE1 inhibitor LY2886721 improves diabetic phenotypes of BACE1 knock-in mice. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 7 166149 10.1016/j.bbadis.2021.166149 33892080
    [Google Scholar]
  77. Bazzari F.H. Bazzari A.H. BACE1 Inhibitors for Alzheimer’s Disease: The Past, Present and Any Future? Molecules 2022 27 24 8823 10.3390/molecules27248823 36557955
    [Google Scholar]
  78. Panza F. Frisardi V. Imbimbo B.P. Capurso C. Logroscino G. Sancarlo D. Seripa D. Vendemiale G. Pilotto A. Solfrizzi V. γ-Secretase inhibitors for the treatment of Alzheimer’s disease: The current state. CNS Neurosci. Ther. 2010 16 5 272 284 10.1111/j.1755‑5949.2010.00164.x 20560993
    [Google Scholar]
  79. Coric V. van Dyck C.H. Salloway S. Andreasen N. Brody M. Richter R.W. Soininen H. Thein S. Shiovitz T. Pilcher G. Colby S. Rollin L. Dockens R. Pachai C. Portelius E. Andreasson U. Blennow K. Soares H. Albright C. Feldman H.H. Berman R.M. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 2012 69 11 1430 1440 10.1001/archneurol.2012.2194 22892585
    [Google Scholar]
  80. Shearman M.S. Beher D. Clarke E.E. Lewis H.D. Harrison T. Hunt P. Nadin A. Smith A.L. Stevenson G. Castro J.L. L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry 2000 39 30 8698 8704 10.1021/bi0005456 10913280
    [Google Scholar]
  81. Cui J. Wang X. Li X. Wang X. Zhang C. Li W. Zhang Y. Gu H. Xie X. Nan F. Zhao J. Pei G. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer’s disease-related pathogenesis. Cell Discov. 2015 1 1 15021 10.1038/celldisc.2015.21 27462420
    [Google Scholar]
  82. Brendel M. Jaworska A. Overhoff F. Blume T. Probst F. Gildehaus F.J. Bartenstein P. Haass C. Bohrmann B. Herms J. Willem M. Rominger A. Efficacy of chronic BACE1 inhibition in PS2APP mice depends on the regional Aβ deposition rate and plaque burden at treatment initiation. Theranostics 2018 8 18 4957 4968 10.7150/thno.27868 30429879
    [Google Scholar]
  83. Pardo-Moreno T. González-Acedo A. Rivas-Domínguez A. García-Morales V. García-Cozar F.J. Ramos-Rodríguez J.J. Melguizo-Rodríguez L. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives. Pharmaceutics 2022 14 6 1117 10.3390/pharmaceutics14061117 35745693
    [Google Scholar]
  84. Congdon E.E. Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018 14 7 399 415 10.1038/s41582‑018‑0013‑z 29895964
    [Google Scholar]
  85. Cummings J. Osse A.M.L. Cammann D. Powell J. Chen J. Anti-amyloid monoclonal antibodies for the treatment of alzheimer’s disease. BioDrugs 2024 38 1 5 22 10.1007/s40259‑023‑00633‑2 37955845
    [Google Scholar]
  86. Ekhator C. Qureshi M.Q. Zuberi A.W. Hussain M. Sangroula N. Yerra S. Devi M. Naseem M.A. Bellegarde S.B. Pendyala P.R. Advances and opportunities in nanoparticle drug delivery for central nervous system disorders: A review of current advances. cureus 2023 15 8 44302 10.7759/cureus.44302 37649926
    [Google Scholar]
  87. Coimbra J.R.M. Marques D.F.F. Baptista S.J. Pereira C.M.F. Moreira P.I. Dinis T.C.P. Santos A.E. Salvador J.A.R. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem. 2018 6 178 10.3389/fchem.2018.00178 29881722
    [Google Scholar]
  88. Chen X. Jiang S. Wang R. Bao X. Li Y. Neural stem cells in the treatment of alzheimer’s disease: Current status, challenges, and future prospects. J. Alzheimers Dis. 2023 94 s1 S173 S186 10.3233/JAD‑220721 36336934
    [Google Scholar]
  89. Liu X.Y. Yang L.P. Zhao L. Stem cell therapy for Alzheimer’s disease. World J. Stem Cells 2020 12 8 787 802 10.4252/wjsc.v12.i8.787 32952859
    [Google Scholar]
  90. Ball D.E. Mattke S. Frank L. Murray J.F. Noritake R. MacLeod T. Benham-Hermetz S. Kurzman A. Ferrell P. A framework for addressing Alzheimer’s disease: Without a frame, the work has no aim. Alzheimers Dement. 2023 19 4 1568 1578 10.1002/alz.12869 36478657
    [Google Scholar]
  91. Hajjo R. Sabbah D.A. Abusara O.H. Al Bawab A.Q. A review of the recent advances in Alzheimer’s disease research and the utilization of network biology approaches for prioritizing diagnostics and therapeutics. Diagnostics 2022 12 12 2975 10.3390/diagnostics12122975 36552984
    [Google Scholar]
  92. Iqbal I. Saqib F. Mubarak Z. Latif M.F. Wahid M. Nasir B. Shahzad H. Sharifi-Rad J. Mubarak M.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges. Eur. J. Med. Res. 2024 29 1 313 10.1186/s40001‑024‑01915‑3 38849950
    [Google Scholar]
  93. Chen Q. Yang Z. Liu H. Man J. Oladejo A.O. Ibrahim S. Wang S. Hao B. Novel drug delivery systems: An important direction for drug innovation research and development. Pharmaceutics 2024 16 5 674 10.3390/pharmaceutics16050674 38794336
    [Google Scholar]
  94. Daneman R. Prat A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020412 10.1101/cshperspect.a020412 25561720
    [Google Scholar]
  95. Nguyen T.T. Dung Nguyen T.T. Vo T.K. Tran N.M.A. Nguyen M.K. Van Vo T. Van Vo G. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother. 2021 143 112117 10.1016/j.biopha.2021.112117 34479020
    [Google Scholar]
  96. Sun Y. Zabihi M. Li Q. Li X. Kim B.J. Ubogu E.E. Raja S.N. Wesselmann U. Zhao C. Drug permeability: From the blood–brain barrier to the peripheral nerve barriers. Adv. Ther. 2023 6 4 2200150 10.1002/adtp.202200150 37649593
    [Google Scholar]
  97. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  98. Burgess A. Shah K. Hough O. Hynynen K. Focused ultrasound-mediated drug delivery through the blood–brain barrier. Expert Rev. Neurother. 2015 15 5 477 491 10.1586/14737175.2015.1028369 25936845
    [Google Scholar]
  99. Quinn K. Gullapalli R.P. Merisko-liversidge E. Goldbach E. Wong A. Liversidge G.G. Hoffman W. Sauer J. Bullock J. Tonn G. A formulation strategy for gamma secretase inhibitor ELND006, a BCS class II compound: Development of a nanosuspension formulation with improved oral bioavailability and reduced food effects in dogs. J. Pharm. Sci. 2012 101 4 1462 1474 10.1002/jps.23034 22213574
    [Google Scholar]
  100. Bateman R.J. Siemers E.R. Mawuenyega K.G. Wen G. Browning K.R. Sigurdson W.C. Yarasheski K.E. Friedrich S.W. DeMattos R.B. May P.C. Paul S.M. Holtzman D.M. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 2009 66 1 48 54 10.1002/ana.21623 19360898
    [Google Scholar]
  101. Duara R. Barker W. Heterogeneity in Alzheimer’s disease diagnosis and progression rates: Implications for therapeutic trials. Neurotherapeutics 2022 19 1 8 25 10.1007/s13311‑022‑01185‑z 35084721
    [Google Scholar]
  102. Molinuevo J.L. Ayton S. Batrla R. Bednar M.M. Bittner T. Cummings J. Fagan A.M. Hampel H. Mielke M.M. Mikulskis A. O’Bryant S. Scheltens P. Sevigny J. Shaw L.M. Soares H.D. Tong G. Trojanowski J.Q. Zetterberg H. Blennow K. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018 136 6 821 853 10.1007/s00401‑018‑1932‑x 30488277
    [Google Scholar]
  103. Sadee W. Wang D. Hartmann K. Toland A.E. Pharmacogenomics: Driving personalized medicine. Pharmacol. Rev. 2023 75 4 789 814 10.1124/pharmrev.122.000810 36927888
    [Google Scholar]
  104. Cummings J.L. Osse A.M.L. Kinney J.W. Cammann D. Chen J. Alzheimer’s disease: Combination therapies and clinical trials for combination therapy development. CNS Drugs 2024 38 8 613 624 10.1007/s40263‑024‑01103‑1 38937382
    [Google Scholar]
  105. Korn E.L. Freidlin B. Adaptive clinical trials: Advantages and disadvantages of various adaptive design elements. J. Natl. Cancer Inst. 2017 109 6 djx013 10.1093/jnci/djx013 28376148
    [Google Scholar]
  106. Kaizer A.M. Belli H.M. Ma Z. Nicklawsky A.G. Roberts S.C. Wild J. Wogu A.F. Xiao M. Sabo R.T. Recent innovations in adaptive trial designs: A review of design opportunities in translational research. J. Clin. Transl. Sci. 2023 7 1 125 10.1017/cts.2023.537 37313381
    [Google Scholar]
/content/journals/car/10.2174/0115672050380899250602042028
Loading
/content/journals/car/10.2174/0115672050380899250602042028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test