Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer’s disease (AD) is a degenerative neurological disease characterized by a loss of memory and cognitive ability. One of the main factors influencing the development of AD is the accumulation of amyloid β (Aβ) plaque in the brain. The sequential production of Aβ is mediated by two enzymes: gamma-secretase and β-secretase (BACE1). The goal of beta-secretase inhibitors is to prevent the initial cleavage of amyloid precursor protein (APP), which reduces the production of (Aβ) peptides by limiting the substrate available for gamma-secretase. Simultaneously, gamma-secretase modulators are engineered to specifically modify enzyme performance, reducing the synthesis of the harmful Aβ42 isoform while maintaining vital physiological processes. Targeting both secretases reduces amyloidogenic processing synergistically. Selective inhibitors, which have been recently developed, have also shown good clinical development. They can reduce Aβ levels effectively with minimal side effects. The therapeutic strategy also underlines the importance of early therapy intervention in the preclinical AD phase for an optimum effect. Although there are some problems in the optimization of drug delivery and the alleviation of side effects, targeting beta and gamma secretases remains a promising direction. However, all these strategies still need more research and clinical testing to improve existing treatments and develop new, efficient Alzheimer's disease therapies. This review seeks to examine the therapeutic promise of β- and γ-secretase inhibition in Alzheimer's disease and review recent progress, challenges, and new dual-inhibition approaches.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050380899250602042028
2025-06-05
2025-11-06
Loading full text...

Full text loading...

References

  1. RabinoviciG.D. KarlawishJ. KnopmanD. SnyderH.M. SperlingR. CarrilloM.C. Testing and disclosures related to amyloid imaging and Alzheimer’s disease: Common questions and fact sheet summary.Alzheimers Dement.201612451051510.1016/j.jalz.2016.03.00227103054
    [Google Scholar]
  2. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  3. ChitiF. DobsonC.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade.Annu. Rev. Biochem.2017861276810.1146/annurev‑biochem‑061516‑04511528498720
    [Google Scholar]
  4. BrossP. CorydonT.J. AndresenB.S. JørgensenM.M. BolundL. GregersenN. Protein misfolding and degradation in genetic diseases.Hum. Mutat.199914318619810.1002/(SICI)1098‑1004(1999)14:3<186::AID‑HUMU2>3.0.CO;2‑J10477427
    [Google Scholar]
  5. GourasG.K. OlssonT.T. HanssonO. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease.Neurotherapeutics201512131110.1007/s13311‑014‑0313‑y25371168
    [Google Scholar]
  6. HussainI. PowellD.J. HowlettD.R. ChapmanG.A. GilmourL. MurdockP.R. TewD.G. MeekT.D. ChapmanC. SchneiderK. RatcliffeS.J. TattersallD. TestaT.T. SouthanC. RyanD.M. SimmonsD.L. WalshF.S. DingwallC. ChristieG. ASP1 (BACE2) cleaves the amyloid precursor protein at the β-secretase site.Mol. Cell. Neurosci.200016560961910.1006/mcne.2000.088411083922
    [Google Scholar]
  7. LairdF.M. CaiH. SavonenkoA.V. FarahM.H. HeK. MelnikovaT. WenH. ChiangH.C. XuG. KoliatsosV.E. BorcheltD.R. PriceD.L. LeeH.K. WongP.C. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions.J. Neurosci.20052550116931170910.1523/JNEUROSCI.2766‑05.200516354928
    [Google Scholar]
  8. FarzanM. SchnitzlerC.E. VasilievaN. LeungD. ChoeH. BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein.Proc. Natl. Acad. Sci. USA200097179712971710.1073/pnas.16011569710931940
    [Google Scholar]
  9. YangL.B. LindholmK. YanR. CitronM. XiaW. YangX.L. BeachT. SueL. WongP. PriceD. LiR. ShenY. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease.Nat. Med.2003913410.1038/nm0103‑312514700
    [Google Scholar]
  10. WestmeyerG.G. WillemM. LichtenthalerS.F. LurmanG. MulthaupG. Assfalg-MachleidtI. ReissK. SaftigP. HaassC. Dimerization of β-site β-amyloid precursor protein-cleaving enzyme.J. Biol. Chem.200427951532055321210.1074/jbc.M41037820015485862
    [Google Scholar]
  11. ColeS.L. VassarR. The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology.J. Biol. Chem.200828344296212962510.1074/jbc.R80001520018650431
    [Google Scholar]
  12. HuntC.E. TurnerA.J. Cell biology, regulation and inhibition of β-secretase (BACE-1).FEBS J.200927671845185910.1111/j.1742‑4658.2009.06929.x19292866
    [Google Scholar]
  13. WolfeM.S. Inhibition and modulation of gamma-secretase for Alzheimer’s disease.Neurotherapeutics20085339139810.1016/j.nurt.2008.05.01018625450
    [Google Scholar]
  14. LiH. WolfeM.S. SelkoeD.J. Toward structural elucidation of the γ-secretase complex.Structure200917332633410.1016/j.str.2009.01.00719278647
    [Google Scholar]
  15. BeelA.J. SandersC.R. Substrate specificity of γ-secretase and other intramembrane proteases.Cell. Mol. Life Sci.20086591311133410.1007/s00018‑008‑7462‑218239854
    [Google Scholar]
  16. WakabayashiT. De StrooperB. Presenilins: Members of the γ-secretase quartets, but part-time soloists too.Physiology200823419420410.1152/physiol.00009.200818697993
    [Google Scholar]
  17. YuH. SauraC.A. ChoiS.Y. SunL.D. YangX. HandlerM. KawarabayashiT. YounkinL. FedelesB. WilsonM.A. YounkinS. KandelE.R. KirkwoodA. ShenJ. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice.Neuron200131571372610.1016/S0896‑6273(01)00417‑211567612
    [Google Scholar]
  18. SauraC.A. ChenG. MalkaniS. ChoiS.Y. TakahashiR.H. ZhangD. GourasG.K. KirkwoodA. MorrisR.G.M. ShenJ. Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice.J. Neurosci.200525296755676410.1523/JNEUROSCI.1247‑05.200516033885
    [Google Scholar]
  19. TabuchiK. ChenG. SüdhofT.C. ShenJ. Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration.J. Neurosci.200929227290730110.1523/JNEUROSCI.1320‑09.200919494151
    [Google Scholar]
  20. SerneelsL. Van BiervlietJ. CraessaertsK. DejaegereT. HorréK. Van HoutvinT. EsselmannH. PaulS. SchäferM.K. BerezovskaO. HymanB.T. SprangersB. SciotR. MoonsL. JuckerM. YangZ. MayP.C. KarranE. WiltfangJ. D’HoogeR. De StrooperB. γ-Secretase heterogeneity in the Aph1 subunit: Relevance for Alzheimer’s disease.Science2009324592763964210.1126/science.117117619299585
    [Google Scholar]
  21. SavonenkoA.V. MelnikovaT. LairdF.M. StewartK.A. PriceD.L. WongP.C. Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1 -null mice.Proc. Natl. Acad. Sci. USA2008105145585559010.1073/pnas.071037310518385378
    [Google Scholar]
  22. ThathiahA. SpittaelsK. HoffmannM. StaesM. CohenA. HorréK. VanbrabantM. CounF. BaekelandtV. DelacourteA. FischerD.F. PolletD. De StrooperB. MerchiersP. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons.Science2009323591694695110.1126/science.116064919213921
    [Google Scholar]
  23. MacLeodR. HillertE.K. CameronR.T. BaillieG.S. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease.Future Sci. OA201513FSO1110.4155/fso.15.928031886
    [Google Scholar]
  24. ChowV.W. SavonenkoA.V. MelnikovaT. KimH. PriceD.L. LiT. WongP.C. Modeling an anti-amyloid combination therapy for Alzheimer’s disease.Sci. Transl. Med.201021313ra110.1126/scitranslmed.300033720371462
    [Google Scholar]
  25. MaiaM.A. SousaE. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s disease.Pharmaceuticals20191214110.3390/ph1201004130893882
    [Google Scholar]
  26. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-beta peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑122120061647
    [Google Scholar]
  27. SunX. ChenW.D. WangY.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease.Front. Pharmacol.2015622110.3389/fphar.2015.0022126483691
    [Google Scholar]
  28. O’BrienR.J. WongP.C. Amyloid precursor protein processing and Alzheimer’s disease.Annu. Rev. Neurosci.201134118520410.1146/annurev‑neuro‑061010‑11361321456963
    [Google Scholar]
  29. ChenG. XuT. YanY. ZhouY. JiangY. MelcherK. XuH.E. Amyloid beta: Structure, biology and structure-based therapeutic development.Acta Pharmacol. Sin.20173891205123510.1038/aps.2017.2828713158
    [Google Scholar]
  30. GuL. GuoZ. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils.J. Neurochem.2013126330531110.1111/jnc.1220223406382
    [Google Scholar]
  31. ChowV.W. MattsonM.P. WongP.C. GleichmannM. An overview of APP processing enzymes and products.Neuromol. Med.201012111210.1007/s12017‑009‑8104‑z20232515
    [Google Scholar]
  32. EhehaltR. KellerP. HaassC. ThieleC. SimonsK. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts.J. Cell Biol.2003160111312310.1083/jcb.20020711312515826
    [Google Scholar]
  33. HurJ.Y. γ-Secretase in Alzheimer’s disease.Exp. Mol. Med.202254443344610.1038/s12276‑022‑00754‑835396575
    [Google Scholar]
  34. VassarR. KovacsD.M. YanR. WongP.C. The beta-secretase enzyme BACE in health and Alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential.J. Neurosci.20092941127871279410.1523/JNEUROSCI.3657‑09.200919828790
    [Google Scholar]
  35. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑321214928
    [Google Scholar]
  36. JokarS. Amyloid β-targeted inhibitory peptides for Alzheimer’s disease: Current state and future perspectives.Brisbane, AustraliaExon Publications20205168
    [Google Scholar]
  37. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑737386015
    [Google Scholar]
  38. HealthN.I.O. What happens to the brain in Alzheimer’s disease?2017Available from: https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/what-happens-brain-alzheimers-disease
  39. WalkerL.C. Aβ plaques.Free Neuropathol.202013110.17879/freeneuropathology‑2020‑302533345256
    [Google Scholar]
  40. GallardoG. HoltzmanD.M. Antibody therapeutics targeting AΒ and tau.Cold Spring Harb. Perspect. Med.2017710a02433110.1101/cshperspect.a02433128062555
    [Google Scholar]
  41. YanR. VassarR. Targeting the β secretase BACE1 for Alzheimer’s disease therapy.Lancet Neurol.201413331932910.1016/S1474‑4422(13)70276‑X24556009
    [Google Scholar]
  42. ColeS.L. VassarR. The Alzheimer’s disease Beta-secretase enzyme, BACE1.Mol. Neurodegener.2007212210.1186/1750‑1326‑2‑2218005427
    [Google Scholar]
  43. CitronM. β-Secretase: progress and open questions.2013Available from: https://www.ncbi.nlm.nih.gov/books/NBK6096/
  44. KandalepasP. VassarR. The normal and pathologic roles of the Alzheimer’s β-secretase, BACE1.Curr. Alzheimer Res.201411544144910.2174/156720501166614060412205924893886
    [Google Scholar]
  45. DasB. YanR. A close look at BACE1 inhibitors for Alzheimer’s disease treatment.CNS Drugs201933325126310.1007/s40263‑019‑00613‑730830576
    [Google Scholar]
  46. LiuL. LauroB.M. DingL. RovereM. WolfeM.S. SelkoeD.J. Multiple BACE1 inhibitors abnormally increase the BACE1 protein level in neurons by prolonging its half-life.Alzheimers Dement.20191591183119410.1016/j.jalz.2019.06.391831416794
    [Google Scholar]
  47. EvinG. BarakatA. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer’s disease.Degener. Neurol. Neuromuscul. Dis.2014411910.2147/DNND.S4105632669897
    [Google Scholar]
  48. PetersF. SalihogluH. RodriguesE. HerzogE. BlumeT. FilserS. DorostkarM. ShimshekD.R. BroseN. NeumannU. HermsJ. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology.Acta Neuropathol.2018135569571010.1007/s00401‑017‑1804‑929327084
    [Google Scholar]
  49. ArafahA. KhatoonS. RasoolI. KhanA. RatherM.A. AbujabalK.A. FaqihY.A.H. RashidH. RashidS.M. BilalA.S. AlexiouA. RehmanM.U. The future of precision medicine in the cure of Alzheimer’s disease.Biomedicines202311233510.3390/biomedicines1102033536830872
    [Google Scholar]
  50. BougeaA. GourzisP. Biomarker-based precision therapy for alzheimer’s disease: Multidimensional evidence leading a new breakthrough in personalized medicine.J. Clin. Med.20241316466110.3390/jcm1316466139200803
    [Google Scholar]
  51. BolducD.M. MontagnaD.R. SeghersM.C. WolfeM.S. SelkoeD.J. The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase.eLife201651757810.7554/eLife.1757827580372
    [Google Scholar]
  52. LambC.A. SaifuddinA. PowellN. RiederF. The future of precision medicine to predict outcomes and control tissue remodeling in inflammatory bowel disease.Gastroenterology202216251525154210.1053/j.gastro.2021.09.07734995532
    [Google Scholar]
  53. ZhengH. KooE.H. Biology and pathophysiology of the amyloid precursor protein.Mol. Neurodegener.2011612710.1186/1750‑1326‑6‑2721527012
    [Google Scholar]
  54. ViolaK.L. KleinW.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis.Acta Neuropathol.2015129218320610.1007/s00401‑015‑1386‑325604547
    [Google Scholar]
  55. DuncanI.D. RadcliffA.B. Inherited and acquired disorders of myelin: The underlying myelin pathology.Exp. Neurol.2016283Pt B45247510.1016/j.expneurol.2016.04.002
    [Google Scholar]
  56. ZhouB. LinW. LongY. YangY. ZhangH. WuK. ChuQ. Notch signaling pathway: Architecture, disease, and therapeutics.Signal Transduct. Target. Ther.2022719510.1038/s41392‑022‑00934‑y35332121
    [Google Scholar]
  57. PatelS. BansoadA.V. SinghR. KhatikG.L. BACE1: A key regulator in Alzheimer’s disease progression and current development of its inhibitors.Curr. Neuropharmacol.20222061174119310.2174/1570159X1966621120109403134852746
    [Google Scholar]
  58. JacobsenH. OzmenL. CarusoA. NarquizianR. HilpertH. JacobsenB. TerwelD. TangheA. BohrmannB. Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice.J. Neurosci.20143435116211163010.1523/JNEUROSCI.1405‑14.201425164658
    [Google Scholar]
  59. NordvallG. LundkvistJ. SandinJ. Gamma-secretase modulators: A promising route for the treatment of Alzheimer’s disease.Front. Mol. Neurosci.202316127974010.3389/fnmol.2023.127974037908487
    [Google Scholar]
  60. ZhangX. LiY. XuH. ZhangY. The γ-secretase complex: From structure to function.Front. Cell. Neurosci.2014842710.3389/fncel.2014.0042725565961
    [Google Scholar]
  61. De StrooperB. IwatsuboT. WolfeM.S. Presenilins and γ-secretase: Structure, function, and role in Alzheimer Disease.Cold Spring Harb. Perspect. Med.201221a00630410.1101/cshperspect.a00630422315713
    [Google Scholar]
  62. TomitaT. WongP.C. Selectivity to amyloid-β precursor protein cleavage provides hope against Alzheimer’s.Alzheimers Res. Ther.201132710.1186/alzrt6621418547
    [Google Scholar]
  63. RogersK. FelsensteinK.M. HrdlickaL. TuZ. AlbayyaF. LeeW. HoppS. MillerM.J. SpauldingD. YangZ. HodgdonH. NolanS. WenM. CostaD. BlainJ.F. FreemanE. De StrooperB. VulstekeV. ScrocchiL. ZetterbergH. PorteliusE. Hutter-PaierB. HavasD. AhlijanianM. FloodD. LeventhalL. ShapiroG. PatzkeH. ChesworthR. KoenigG. Modulation of γ-secretase by EVP-0015962 reduces amyloid deposition and behavioral deficits in Tg2576 mice.Mol. Neurodegener.2012716110.1186/1750‑1326‑7‑6123249765
    [Google Scholar]
  64. SheltonC.C. ZhuL. ChauD. YangL. WangR. DjaballahH. ZhengH. LiY.M. Modulation of γ-secretase specificity using small molecule allosteric inhibitors.Proc. Natl. Acad. Sci. USA200910648202282023310.1073/pnas.091075710619906985
    [Google Scholar]
  65. CrumpC.J. JohnsonD.S. LiY.M. Development and mechanism of γ-secretase modulators for Alzheimer’s disease.Biochemistry201352193197321610.1021/bi400377p23614767
    [Google Scholar]
  66. GoldeT.E. KooE.H. FelsensteinK.M. OsborneB.A. MieleL. γ-Secretase inhibitors and modulators.Biochim. Biophys. Acta Biomembr.20131828122898290710.1016/j.bbamem.2013.06.00523791707
    [Google Scholar]
  67. NieP. VartakA. LiY.M. γ-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of γ-Secretase.Semin. Cell Dev. Biol.2020105435310.1016/j.semcdb.2020.03.00232249070
    [Google Scholar]
  68. HeG. LuoW. LiP. RemmersC. NetzerW.J. HendrickJ. BettayebK. FlajoletM. GorelickF. WennogleL.P. GreengardP. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease.Nature20104677311959810.1038/nature0932520811458
    [Google Scholar]
  69. HussainI. FabrègueJ. AnderesL. OussonS. BorlatF. EligertV. BergerS. DimitrovM. AlattiaJ.R. FraeringP.C. BeherD. The role of γ-secretase activating protein (GSAP) and imatinib in the regulation of γ-secretase activity and amyloid-β generation.J. Biol. Chem.201328842521253110.1074/jbc.M112.37092423209290
    [Google Scholar]
  70. Olsauskas-KuprysR. ZlobinA. OsipoC. Gamma secretase inhibitors of Notch signaling.OncoTargets Ther.2013694395523901284
    [Google Scholar]
  71. McCawT.R. IngaE. ChenH. Jaskula-SztulR. DudejaV. BibbJ.A. RenB. RoseJ.B. Gamma secretase inhibitors in cancer: A current perspective on clinical performance.Oncologist2021264e608e62110.1002/onco.1362733284507
    [Google Scholar]
  72. HampelH. VassarR. De StrooperB. HardyJ. WillemM. SinghN. ZhouJ. YanR. VanmechelenE. De VosA. NisticòR. CorboM. ImbimboB.P. StrefferJ. VoytyukI. TimmersM. TahamiM.A.A. IrizarryM. AlbalaB. KoyamaA. WatanabeN. KimuraT. YarenisL. ListaS. KramerL. VergalloA. The β-secretase BACE1 in Alzheimer’s disease.Biol. Psychiatry202189874575610.1016/j.biopsych.2020.02.00132223911
    [Google Scholar]
  73. YanR. FanQ. ZhouJ. VassarR. Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer’s disease.Neurosci. Biobehav. Rev.20166532634010.1016/j.neubiorev.2016.03.02527044452
    [Google Scholar]
  74. ZhangJ. ZhangY. WangJ. XiaY. ZhangJ. ChenL. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies.Signal Transduct. Target. Ther.20249121110.1038/s41392‑024‑01911‑339174535
    [Google Scholar]
  75. EganM.F. MukaiY. VossT. KostJ. StoneJ. FurtekC. MahoneyE. CummingsJ.L. TariotP.N. AisenP.S. VellasB. LinesC. MichelsonD. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease.Alzheimers Res. Ther.20191116810.1186/s13195‑019‑0520‑131387606
    [Google Scholar]
  76. DekeryteR. FranklinZ. HullC. CroceL. Kamli-SalinoS. HelkO. HoffmannP.A. YangZ. RiedelG. DelibegovicM. PlattB. The BACE1 inhibitor LY2886721 improves diabetic phenotypes of BACE1 knock-in mice.Biochim. Biophys. Acta Mol. Basis Dis.20211867716614910.1016/j.bbadis.2021.16614933892080
    [Google Scholar]
  77. BazzariF.H. BazzariA.H. BACE1 inhibitors for Alzheimer’s disease: The past, present and any future?Molecules20222724882310.3390/molecules2724882336557955
    [Google Scholar]
  78. PanzaF. FrisardiV. ImbimboB.P. CapursoC. LogroscinoG. SancarloD. SeripaD. VendemialeG. PilottoA. SolfrizziV. γ-Secretase inhibitors for the treatment of Alzheimer’s disease: The current state.CNS Neurosci. Ther.201016527228410.1111/j.1755‑5949.2010.00164.x20560993
    [Google Scholar]
  79. CoricV. van DyckC.H. SallowayS. AndreasenN. BrodyM. RichterR.W. SoininenH. TheinS. ShiovitzT. PilcherG. ColbyS. RollinL. DockensR. PachaiC. PorteliusE. AndreassonU. BlennowK. SoaresH. AlbrightC. FeldmanH.H. BermanR.M. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease.Arch. Neurol.201269111430144010.1001/archneurol.2012.219422892585
    [Google Scholar]
  80. ShearmanM.S. BeherD. ClarkeE.E. LewisH.D. HarrisonT. HuntP. NadinA. SmithA.L. StevensonG. CastroJ.L. L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity.Biochemistry200039308698870410.1021/bi000545610913280
    [Google Scholar]
  81. CuiJ. WangX. LiX. WangX. ZhangC. LiW. ZhangY. GuH. XieX. NanF. ZhaoJ. PeiG. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer’s disease-related pathogenesis.Cell Discov.2015111502110.1038/celldisc.2015.2127462420
    [Google Scholar]
  82. BrendelM. JaworskaA. OverhoffF. BlumeT. ProbstF. GildehausF.J. BartensteinP. HaassC. BohrmannB. HermsJ. WillemM. RomingerA. Efficacy of chronic BACE1 inhibition in PS2APP mice depends on the regional Aβ deposition rate and plaque burden at treatment initiation.Theranostics20188184957496810.7150/thno.2786830429879
    [Google Scholar]
  83. Pardo-MorenoT. González-AcedoA. Rivas-DomínguezA. García-MoralesV. García-CozarF.J. Ramos-RodríguezJ.J. Melguizo-RodríguezL. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives.Pharmaceutics2022146111710.3390/pharmaceutics1406111735745693
    [Google Scholar]
  84. CongdonE.E. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.201814739941510.1038/s41582‑018‑0013‑z29895964
    [Google Scholar]
  85. CummingsJ. OsseA.M.L. CammannD. PowellJ. ChenJ. Anti-amyloid monoclonal antibodies for the treatment of alzheimer’s disease.BioDrugs202438152210.1007/s40259‑023‑00633‑237955845
    [Google Scholar]
  86. EkhatorC. QureshiM.Q. ZuberiA.W. HussainM. SangroulaN. YerraS. DeviM. NaseemM.A. BellegardeS.B. PendyalaP.R. Advances and opportunities in nanoparticle drug delivery for central nervous system disorders: A review of current advances.Cureus20231584430210.7759/cureus.4430237649926
    [Google Scholar]
  87. CoimbraJ.R.M. MarquesD.F.F. BaptistaS.J. PereiraC.M.F. MoreiraP.I. DinisT.C.P. SantosA.E. SalvadorJ.A.R. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment.Front Chem.2018617810.3389/fchem.2018.0017829881722
    [Google Scholar]
  88. ChenX. JiangS. WangR. BaoX. LiY. Neural stem cells in the treatment of alzheimer’s disease: Current status, challenges, and future prospects.J. Alzheimers Dis.202394s1S173S18610.3233/JAD‑22072136336934
    [Google Scholar]
  89. LiuX.Y. YangL.P. ZhaoL. Stem cell therapy for Alzheimer’s disease.World J. Stem Cells202012878780210.4252/wjsc.v12.i8.78732952859
    [Google Scholar]
  90. BallD.E. MattkeS. FrankL. MurrayJ.F. NoritakeR. MacLeodT. Benham-HermetzS. KurzmanA. FerrellP. A framework for addressing Alzheimer’s disease: Without a frame, the work has no aim.Alzheimers Dement.20231941568157810.1002/alz.1286936478657
    [Google Scholar]
  91. HajjoR. SabbahD.A. AbusaraO.H. Al BawabA.Q. A review of the recent advances in Alzheimer’s disease research and the utilization of network biology approaches for prioritizing diagnostics and therapeutics.Diagnostics20221212297510.3390/diagnostics1212297536552984
    [Google Scholar]
  92. IqbalI. SaqibF. MubarakZ. LatifM.F. WahidM. NasirB. ShahzadH. Sharifi-RadJ. MubarakM.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges.Eur. J. Med. Res.202429131310.1186/s40001‑024‑01915‑338849950
    [Google Scholar]
  93. ChenQ. YangZ. LiuH. ManJ. OladejoA.O. IbrahimS. WangS. HaoB. Novel drug delivery systems: An important direction for drug innovation research and development.Pharmaceutics202416567410.3390/pharmaceutics1605067438794336
    [Google Scholar]
  94. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a02041225561720
    [Google Scholar]
  95. NguyenT.T. Dung NguyenT.T. VoT.K. TranN.M.A. NguyenM.K. Van VoT. Van VoG. Nanotechnology-based drug delivery for central nervous system disorders.Biomed. Pharmacother.202114311211710.1016/j.biopha.2021.11211734479020
    [Google Scholar]
  96. SunY. ZabihiM. LiQ. LiX. KimB.J. UboguE.E. RajaS.N. WesselmannU. ZhaoC. Drug permeability: From the blood–brain barrier to the peripheral nerve barriers.Adv. Ther.202364220015010.1002/adtp.20220015037649593
    [Google Scholar]
  97. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood–brain barrier: Structure, regulation and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w37231000
    [Google Scholar]
  98. BurgessA. ShahK. HoughO. HynynenK. Focused ultrasound-mediated drug delivery through the blood–brain barrier.Expert Rev. Neurother.201515547749110.1586/14737175.2015.102836925936845
    [Google Scholar]
  99. QuinnK. GullapalliR.P. Merisko-liversidgeE. GoldbachE. WongA. LiversidgeG.G. HoffmanW. SauerJ. BullockJ. TonnG. A formulation strategy for gamma secretase inhibitor ELND006, a BCS class II compound: Development of a nanosuspension formulation with improved oral bioavailability and reduced food effects in dogs.J. Pharm. Sci.201210141462147410.1002/jps.2303422213574
    [Google Scholar]
  100. BatemanR.J. SiemersE.R. MawuenyegaK.G. WenG. BrowningK.R. SigurdsonW.C. YarasheskiK.E. FriedrichS.W. DeMattosR.B. MayP.C. PaulS.M. HoltzmanD.M. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system.Ann. Neurol.2009661485410.1002/ana.2162319360898
    [Google Scholar]
  101. DuaraR. BarkerW. Heterogeneity in Alzheimer’s disease diagnosis and progression rates: Implications for therapeutic trials.Neurotherapeutics202219182510.1007/s13311‑022‑01185‑z35084721
    [Google Scholar]
  102. MolinuevoJ.L. AytonS. BatrlaR. BednarM.M. BittnerT. CummingsJ. FaganA.M. HampelH. MielkeM.M. MikulskisA. O’BryantS. ScheltensP. SevignyJ. ShawL.M. SoaresH.D. TongG. TrojanowskiJ.Q. ZetterbergH. BlennowK. Current state of Alzheimer’s fluid biomarkers.Acta Neuropathol.2018136682185310.1007/s00401‑018‑1932‑x30488277
    [Google Scholar]
  103. SadeeW. WangD. HartmannK. TolandA.E. Pharmacogenomics: Driving personalized medicine.Pharmacol. Rev.202375478981410.1124/pharmrev.122.00081036927888
    [Google Scholar]
  104. CummingsJ.L. OsseA.M.L. KinneyJ.W. CammannD. ChenJ. Alzheimer’s disease: Combination therapies and clinical trials for combination therapy development.CNS Drugs202438861362410.1007/s40263‑024‑01103‑138937382
    [Google Scholar]
  105. KornE.L. FreidlinB. Adaptive clinical trials: Advantages and disadvantages of various adaptive design elements.J. Natl. Cancer Inst.20171096djx01310.1093/jnci/djx01328376148
    [Google Scholar]
  106. KaizerA.M. BelliH.M. MaZ. NicklawskyA.G. RobertsS.C. WildJ. WoguA.F. XiaoM. SaboR.T. Recent innovations in adaptive trial designs: A review of design opportunities in translational research.J. Clin. Transl. Sci.20237112510.1017/cts.2023.53737313381
    [Google Scholar]
/content/journals/car/10.2174/0115672050380899250602042028
Loading
/content/journals/car/10.2174/0115672050380899250602042028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test