Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Aims

This study seeks to examine the relationship between cerebrospinal fluid (CSF) biomarkers (Aβ1-42, Phospho-Tau181p, Total-Tau) and brain volumetric changes measured by Brain Shift Integral (BSI) in Alzheimer's disease (AD) spectrum. We explore the potential of BSI as a complementary, non-invasive tool for early diagnosis and progression monitoring of AD.

Background

AD is a neurodegenerative disorder marked by amyloid plaques and tau tangles, leading to cognitive decline. CSF biomarkers are key indicators of AD pathology, but their integration with imaging metrics like BSI could enhance early diagnosis. BSI quantifies brain volume changes MRI, offering valuable insights into neurodegeneration across the AD spectrum.

Objectives

The current study explores the use of BSI and CSF biomarkers for the early detection of Alzheimer’s disease.

Methods

This study utilized data from the ADNI database, including CSF biomarkers (Aβ1-42, t-tau, p- tau181) and BSI measurements from baseline and month 24 visits. Spearman correlations were performed to assess associations between biomarkers and brain volumetric changes. Linear regression models were used to examine the predictive value of biomarkers on BSI, controlling for potential confounders.

Results

A total of 239 participants were included in the study, comprising 94 cognitively normal (CN) individuals, 104 with mild cognitive impairment (MCI), and 41 with AD. Significant negative correlations were observed between Aβ1-42 and both BBSI and VBSI in MCI at baseline (=0.013) and 24 months (=0.018), as well as between Aβ1-42 and VBSI in CN at baseline (=0.039) and 24 months (=0.033). In MCI, p-tau181 was positively correlated with BBSI (=0.013) and VBSI (=0.030) at baseline and with BBSI at 24 months (=0.013). Linear regression analysis confirmed that Aβ1-42 and p-tau181 significantly predicted BSI measures in MCI (R2=0.141–0.173, <0.05), while Aβ1-42 was a significant predictor of VBSI in CN (R2=0.156–0.166, <0.01). No significant associations were found in AD.

Discussion

This study underscores the role of CSF biomarkers—particularly Aβ1-42 and p-tau181—in detecting early brain atrophy across the Alzheimer’s disease spectrum, with limited utility in advanced stages. The findings highlight the importance of early intervention and support the integration of CSF biomarkers and BSI as diagnostic tools for monitoring disease progression and staging.

Conclusion

The application of the BSI is pivotal for monitoring brain volume alterations and their association with CSF biomarkers.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050379856250529113023
2025-06-05
2025-11-06
Loading full text...

Full text loading...

References

  1. Soria LopezJ.A. GonzálezH.M. LégerG.C. Alzheimer’s disease.Handb. Clin. Neurol.201916723125510.1016/B978‑0‑12‑804766‑8.00013‑331753135
    [Google Scholar]
  2. SchottJ.M. BartlettJ.W. FoxN.C. BarnesJ. Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Aβ1-42.Ann. Neurol.201068682583410.1002/ana.2231521181717
    [Google Scholar]
  3. BlennowK. ZetterbergH. Biomarkers for Alzheimer’s disease: Current status and prospects for the future.J. Intern. Med.2018284664366310.1111/joim.1281630051512
    [Google Scholar]
  4. HazanJ. WingM. LiuK.Y. ReevesS. HowardR. Clinical utility of cerebrospinal fluid biomarkers in the evaluation of cognitive impairment: A systematic review and meta-analysis.J. Neurol. Neurosurg. Psychiatry202394211312010.1136/jnnp‑2022‑32953036096664
    [Google Scholar]
  5. OkonkwoO.C. AloscoM.L. GriffithH.R. MielkeM.M. ShawL.M. TrojanowskiJ.Q. TremontG. Cerebrospinal fluid abnormalities and rate of decline in everyday function across the dementia spectrum: Normal aging, mild cognitive impairment, and Alzheimer disease.Arch. Neurol.201067668869610.1001/archneurol.2010.11820558388
    [Google Scholar]
  6. MajiS.K. AnoopA. SinghP.K. JacobR.S. CSF biomarkers for Alzheimer's disease diagnosis.Int. J. Alzheimers Dis.2010201060680210.4061/2010/60680220721349
    [Google Scholar]
  7. ContadorJ. Pérez-MillánA. Tort-MerinoA. BalasaM. FalgàsN. OlivesJ. CastellvíM. Borrego-ÉcijaS. BoschB. Fernández-VillullasG. Ramos-CampoyO. AntonellA. BargallóN. Sanchez-ValleR. Sala-LlonchR. LladóA. Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer’s disease.Neuroimage Clin.20213210280410.1016/j.nicl.2021.10280434474317
    [Google Scholar]
  8. BlennowK. de LeonM.J. ZetterbergH. Alzheimer’s disease.Lancet2006368953338740310.1016/S0140‑6736(06)69113‑716876668
    [Google Scholar]
  9. BlennowK. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease.NeuroRx20041221322510.1602/neurorx.1.2.21315717022
    [Google Scholar]
  10. HesseC. RosengrenL. VanmechelenE. VandersticheleH. JensenC. DavidssonP. BlennowK. Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke.J. Alzheimers Dis.200023-419920610.3233/JAD‑2000‑23‑40212214084
    [Google Scholar]
  11. BuergerK. EwersM. PirttiläT. ZinkowskiR. AlafuzoffI. TeipelS.J. DeBernardisJ. KerkmanD. McCullochC. SoininenH. HampelH. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease.Brain2006129113035304110.1093/brain/awl26917012293
    [Google Scholar]
  12. FaganA.M. MintunM.A. MachR.H. LeeS.Y. DenceC.S. ShahA.R. LaRossaG.N. SpinnerM.L. KlunkW.E. MathisC.A. DeKoskyS.T. MorrisJ.C. HoltzmanD.M. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans.Ann. Neurol.200659351251910.1002/ana.2073016372280
    [Google Scholar]
  13. StrozykD. BlennowK. WhiteL.R. LaunerL.J. CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study.Neurology200360465265610.1212/01.WNL.0000046581.81650.D012601108
    [Google Scholar]
  14. KeussS.E. CoathW. NicholasJ.M. PooleT. BarnesJ. CashD.M. LaneC.A. ParkerT.D. KeshavanA. BuchananS.M. WagenA.Z. StoreyM. HarrisM. MaloneI.B. SudreC.H. LuK. JamesS.N. StreetR. ThomasD.L. DicksonJ.C. Murray-SmithH. WongA. FreibergerT. CrutchS. RichardsM. FoxN.C. SchottJ.M. Associations of β-amyloid and vascular burden with rates of neurodegeneration in cognitively normal members of the 1946 British Birth cohort.Neurology2022992e129e14110.1212/WNL.000000000020052435410910
    [Google Scholar]
  15. BlennowK. ZetterbergH. MinthonL. LannfeltL. StridS. AnnasP. BasunH. AndreasenN. Longitudinal stability of CSF biomarkers in Alzheimer’s disease.Neurosci. Lett.20074191182210.1016/j.neulet.2007.03.06417482358
    [Google Scholar]
  16. SchneiderJ.A. ArvanitakisZ. LeurgansS.E. BennettD.A. The neuropathology of probable Alzheimer disease and mild cognitive impairment.Ann. Neurol.200966220020810.1002/ana.2170619743450
    [Google Scholar]
  17. Ortega-RoblesE. de Celis AlonsoB. Cantillo-NegreteJ. Carino-EscobarR.I. Arias-CarriónO. Advanced magnetic resonance imaging for early diagnosis and monitoring of movement disorders.Brain Sci.20251517910.3390/brainsci1501007939851446
    [Google Scholar]
  18. DavatzikosC. BhattP. ShawL.M. BatmanghelichK.N. TrojanowskiJ.Q. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification.Neurobiol. Aging201132122322.e192322.e2710.1016/j.neurobiolaging.2010.05.02320594615
    [Google Scholar]
  19. AndersonV.M. FoxN.C. MillerD.H. Magnetic resonance imaging measures of brain atrophy in multiple sclerosis.J. Magn. Reson. Imaging200623560561810.1002/jmri.2055016596564
    [Google Scholar]
  20. HollandD. DesikanR.S. DaleA.M. McEvoyL.K. Rates of decline in Alzheimer disease decrease with age.PLoS One201278e4232510.1371/journal.pone.004232522876315
    [Google Scholar]
  21. PradosF. CardosoM.J. LeungK.K. CashD.M. ModatM. FoxN.C. Measuring brain atrophy with a generalized formulation of the boundary shift integral.Neurobiol. Aging201536S81S9010.1016/j.neurobiolaging.2014.04.03525264346
    [Google Scholar]
  22. DriscollI. DavatzikosC. AnY. WuX. ShenD. KrautM. ResnickS.M. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI.Neurology200972221906191310.1212/WNL.0b013e3181a8263419487648
    [Google Scholar]
  23. ChételatG. DesgrangesB. De La SayetteV. ViaderF. EustacheF. BaronJ.C. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment.Neuroreport200213151939194310.1097/00001756‑200210280‑0002212395096
    [Google Scholar]
  24. DaX. ToledoJ.B. ZeeJ. WolkD.A. XieS.X. OuY. ShacklettA. ParmpiP. ShawL. TrojanowskiJ.Q. DavatzikosC. Integration and relative value of biomarkers for prediction of MCI to AD progression: Spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers.Neuroimage Clin.2014416417310.1016/j.nicl.2013.11.01024371799
    [Google Scholar]
  25. LuK. BakerJ. NicholasJ.M. StreetR.E. KeussS.E. CoathW. Associations between accelerated forgetting, amyloid deposition and brain atrophy in older adults.Brain2024148413021315awae31610.1093/brain/awae31639423292
    [Google Scholar]
  26. JackC.R.Jr BarnesJ. BernsteinM.A. BorowskiB.J. BrewerJ. CleggS. DaleA.M. CarmichaelO. ChingC. DeCarliC. DesikanR.S. Fennema-NotestineC. FjellA.M. FletcherE. FoxN.C. GunterJ. GutmanB.A. HollandD. HuaX. InselP. KantarciK. KillianyR.J. KruegerG. LeungK.K. MackinS. MaillardP. MaloneI.B. MattssonN. McEvoyL. ModatM. MuellerS. NoshenyR. OurselinS. SchuffN. SenjemM.L. SimonsonA. ThompsonP.M. RettmannD. VemuriP. WalhovdK. ZhaoY. ZukS. WeinerM. Magnetic resonance imaging in Alzheimer’s disease neuroimaging initiative 2.Alzheimers Dement.201511774075610.1016/j.jalz.2015.05.00226194310
    [Google Scholar]
  27. LeungK.K. RidgwayG.R. OurselinS. FoxN.C. Consistent multi-time-point brain atrophy estimation from the boundary shift integral.Neuroimage20125943995400510.1016/j.neuroimage.2011.10.06822056457
    [Google Scholar]
  28. MuellerS.G. WeinerM.W. ThalL.J. PetersenR.C. JackC. JagustW. TrojanowskiJ.Q. TogaA.W. BeckettL. The Alzheimer’s disease neuroimaging initiative.Neuroimaging Clin. N. Am.200515486987710.1016/j.nic.2005.09.00816443497
    [Google Scholar]
  29. LeowA.D. YanovskyI. ParikshakN. HuaX. LeeS. TogaA.W. JackC.R.Jr BernsteinM.A. BritsonP.J. GunterJ.L. WardC.P. BorowskiB. ShawL.M. TrojanowskiJ.Q. FleisherA.S. HarveyD. KornakJ. SchuffN. AlexanderG.E. WeinerM.W. ThompsonP.M. Alzheimer’s Disease Neuroimaging Initiative: A one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition.Neuroimage200945364565510.1016/j.neuroimage.2009.01.00419280686
    [Google Scholar]
  30. BittnerT. ZetterbergH. TeunissenC.E. OstlundR.E.Jr MilitelloM. AndreassonU. HubeekI. GibsonD. ChuD.C. EichenlaubU. HeissP. KoboldU. LeinenbachA. MadinK. ManuilovaE. RabeC. BlennowK. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid.Alzheimers Dement.201612551752610.1016/j.jalz.2015.09.00926555316
    [Google Scholar]
  31. ShawLM FieldsL. KoreckaM. WaligórskaT. TrojanowskiJ.Q. AllegranzaD. Method comparison study of the Elecsys® β-Amyloid (1-42) CSF assay versus comparator assays and LC-MS/MS.Clin. Biochem.20197271410.1016/j.clinbiochem.2019.05.00631129181
    [Google Scholar]
  32. HanssonO. SeibylJ. StomrudE. ZetterbergH. TrojanowskiJ.Q. BittnerT. LifkeV. CorradiniV. EichenlaubU. BatrlaR. BuckK. ZinkK. RabeC. BlennowK. ShawL.M. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts.Alzheimers Dement.201814111470148110.1016/j.jalz.2018.01.01029499171
    [Google Scholar]
  33. LewisE.B. FoxN.C. Correction of differential intensity inhomogeneity in longitudinal MR images.Neuroimage2004231758310.1016/j.neuroimage.2004.04.03015325354
    [Google Scholar]
  34. LeungK.K. ClarksonM.J. BartlettJ.W. CleggS. JackC.R.Jr WeinerM.W. FoxN.C. OurselinS. Robust atrophy rate measurement in Alzheimer’s disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection.Neuroimage201050251652310.1016/j.neuroimage.2009.12.05920034579
    [Google Scholar]
  35. ZhouB. TeramukaiS. YoshimuraK. FukushimaM. Validity of cerebrospinal fluid biomarkers as endpoints in early-phase clinical trials for Alzheimer’s disease.J. Alzheimers Dis.20091818910210.3233/JAD‑2009‑112419542628
    [Google Scholar]
  36. PyunJ.M. ParkY.H. KimH.R. SuhJ. KangM.J. KimB.J. YounY.C. JangJ.W. KimS. Posterior atrophy predicts time to dementia in patients with amyloid-positive mild cognitive impairment.Alzheimers Res. Ther.2017919910.1186/s13195‑017‑0326‑y29246250
    [Google Scholar]
  37. BarnesJ. CarmichaelO.T. LeungK.K. SchwarzC. RidgwayG.R. BartlettJ.W. MaloneI.B. SchottJ.M. RossorM.N. BiesselsG.J. DeCarliC. FoxN.C. Vascular and Alzheimer’s disease markers independently predict brain atrophy rate in Alzheimer’s disease neuroimaging initiative controls.Neurobiol. Aging20133481996200210.1016/j.neurobiolaging.2013.02.00323522844
    [Google Scholar]
  38. ToledoJ.B. BjerkeM. DaX. LandauS.M. FosterN.L. JagustW. JackC.Jr WeinerM. DavatzikosC. ShawL.M. TrojanowskiJ.Q. Nonlinear association between cerebrospinal fluid and florbetapir F-18 β-amyloid measures across the spectrum of Alzheimer disease.JAMA Neurol.201572557158110.1001/jamaneurol.2014.482925822737
    [Google Scholar]
  39. MaC. HongF. YangS. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions.Molecules2022274121010.3390/molecules2704121035209007
    [Google Scholar]
  40. LibowitzM.R. WeiK. TranT. ChuK. MoncrieffeK. HarringtonM.G. Regional brain volumes relate to Alzheimer's disease cerebrospinal fluid biomarkers and neuropsychometry: A cross-sectional, observational study.PLoS One2021167e025433210.1371/journal.pone.025433234292973
    [Google Scholar]
  41. MoradiK. FaghaniS. AbdolalizadehA. Khomeijani-FarahaniM. Ashraf-GanjoueiA. Biological features of reversion from mild cognitive impairment to normal cognition: A study of cerebrospinal fluid markers and brain volume.J. Alzheimers Dis. Rep.20215117918610.3233/ADR‑20022933981955
    [Google Scholar]
  42. ThomasK.R. EdmondsE.C. EppigJ.S. WongC.G. WeigandA.J. BangenK.J. JakA.J. Delano-WoodL. GalaskoD.R. SalmonD.P. EdlandS.D. BondiM.W. MCI-to-normal reversion using neuropsychological criteria in the Alzheimer’s disease neuroimaging initiative.Alzheimers Dement.201915101322133210.1016/j.jalz.2019.06.494831495605
    [Google Scholar]
/content/journals/car/10.2174/0115672050379856250529113023
Loading
/content/journals/car/10.2174/0115672050379856250529113023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test