Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, significantly impacting the quality of life for affected individuals. This manuscript explores various innovative therapeutic strategies aimed at enhancing drug delivery to the brain, particularly through the use of nanotechnology. This paper discussed the application of Solid Lipid Nanoparticles (SLNs), dendrimers, and Polymeric Nanoparticles (PNPs) in targeting the Central Nervous System (CNS) to improve bioavailability and therapeutic efficacy. The findings indicate that these advanced delivery systems can enhance brain penetration, reduce Amyloid-Beta (Aβ) deposition, and improve cognitive functions in animal models of AD. Furthermore, the review highlights the challenges associated with these technologies, including limited scalability and potential toxicity, while suggesting future directions for research and development in the field of AD treatment.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050380959250530112247
2025-06-05
2025-11-07
Loading full text...

Full text loading...

References

  1. DetureM. A. DicksonD. W. The neuropathological diagnosis of Alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑531375134
    [Google Scholar]
  2. HuangL.K. KuanY.C. LinH.W. HuC.J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update.J. Biomed. Sci.20233018310.1186/s12929‑023‑00976‑637784171
    [Google Scholar]
  3. KamathamP.T. ShuklaR. KhatriD.K. VoraL.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier.Ageing Res. Rev.202410110248110.1016/j.arr.2024.10248139236855
    [Google Scholar]
  4. ArafahA. KhatoonS. RasoolI. KhanA. RatherM.A. AbujabalK.A. FaqihY.A.H. RashidH. RashidS.M. Bilal AhmadS. AlexiouA. RehmanM.U. The future of precision medicine in the cure of Alzheimer’s disease.Biomedicines202311233510.3390/biomedicines1102033536830872
    [Google Scholar]
  5. BaryakovaT.H. PogostinB.H. LangerR. McHughK.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems.Nat. Rev. Drug Discov.202322538740910.1038/s41573‑023‑00670‑036973491
    [Google Scholar]
  6. LeszekJ. MikhaylenkoE.V. BelousovD.M. KoutsourakiE. SzczechowiakK. Kobusiak-ProkopowiczM. MysiakA. DinizB.S. SomasundaramS.G. KirklandC.E. AlievG. The links between cardiovascular diseases and Alzheimer’s disease.Curr. Neuropharmacol.202119215216910.2174/18756190MTA4dNjE5232727331
    [Google Scholar]
  7. HaleemA. JavaidM. SinghR.P. RabS. SumanR. Applications of nanotechnology in medical field: A brief review.Glob. Health J.202372707710.1016/j.glohj.2023.02.008
    [Google Scholar]
  8. KumarM. HillesA.R. AlmurisiS.H. BhatiaA. MahmoodS. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations: A review.JCIS Open20231210009510.1016/j.jciso.2023.100095
    [Google Scholar]
  9. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  10. ZhangS. GanL. CaoF. WangH. GongP. MaC. RenL. LinY. LinX. The barrier and interface mechanisms of the brain barrier, and brain drug delivery.Brain Res. Bull.2022190698310.1016/j.brainresbull.2022.09.01736162603
    [Google Scholar]
  11. KamathA.P. NayakP.G. JohnJ. MutalikS. BalaramanA.K. KrishnadasN. Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer’s disease.Neuropharmacology202425911009610.1016/j.neuropharm.2024.11009639084596
    [Google Scholar]
  12. LombardoS. M. SchneiderM. TüreliA. E. TüreliN. G. Key for crossing the BBB with nanoparticles: The rational design.Beilstein J. Nanotechnol.202011186688310.3762/bjnano.11.7232551212
    [Google Scholar]
  13. RoghaniA.K. GarciaR.I. RoghaniA. ReddyA. KhemkaS. ReddyR.P. PattoorV. JacobM. ReddyP.H. SeharU. Treating Alzheimer’s disease using nanoparticle-mediated drug delivery strategies/systems.Ageing Res. Rev.20249710229110.1016/j.arr.2024.10229138614367
    [Google Scholar]
  14. FukumotoH. CheungB.S. HymanB.T. IrizarryM.C. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease.Arch. Neurol.20025991381138910.1001/archneur.59.9.138112223024
    [Google Scholar]
  15. YangL.B. LindholmK. YanR. CitronM. XiaW. YangX.L. BeachT. SueL. WongP. PriceD. LiR. ShenY. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease.Nat. Med.2003913410.1038/nm0103‑312514700
    [Google Scholar]
  16. Schedin-WeissS. WinbladB. TjernbergL.O. The role of protein glycosylation in Alzheimer disease.FEBS J.20142811466210.1111/febs.1259024279329
    [Google Scholar]
  17. BrownM.S. YeJ. RawsonR.B. GoldsteinJ.L. Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans.Cell2000100439139810.1016/S0092‑8674(00)80675‑310693756
    [Google Scholar]
  18. PerryE. PerryR. BlessedG. TomlinsonB. Necropsy evidence of central cholinergic deficits in senile dementia.Lancet1977309800418910.1016/S0140‑6736(77)91780‑964712
    [Google Scholar]
  19. ChaudharyA. MauryaP.K. YadavB.S. SinghS. ManiA. Current therapeutic targets for Alzheimer’s disease.J. Biomed. (Syd.)20183748410.7150/jbm.26783
    [Google Scholar]
  20. GeulaC. MesulamM. Special properties of cholinesterases in the cerebral cortex of Alzheimer’s disease.Brain Res.1989498118518910.1016/0006‑8993(89)90419‑82790472
    [Google Scholar]
  21. HenleyJ.M. WilkinsonK.A. Synaptic AMPA receptor composition in development, plasticity and disease.Nat. Rev. Neurosci.201617633735010.1038/nrn.2016.3727080385
    [Google Scholar]
  22. BighamA. ZarepourA. KhosraviA. IravaniS. ZarrabiA. Sustainable nanomaterials for precision medicine in cancer therapy.Materials. Today. Sustain.20242710086510.1016/j.mtsust.2024.100865
    [Google Scholar]
  23. RahmanM.M. IslamM.R. AkashS. Harun-Or-RashidM. RayT.K. RahamanM.S. IslamM. AnikaF. HosainM.K. AoviF.I. HemegH.A. RaufA. WilairatanaP. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.11330535717779
    [Google Scholar]
  24. Mir Najib UllahS.N. AfzalO. AltamimiA.S.A. AtherH. SultanaS. AlmalkiW.H. BhartiP. SahooA. DwivediK. KhanG. SultanaS. AlzahraniA. RahmanM. Nanomedicine in the management of Alzheimer’s disease: State-of-the-art.Biomedicines2023116175210.3390/biomedicines1106175237371847
    [Google Scholar]
  25. ZhouL. LiuH. LiuW. WeiS. Drug conjugates for the treatment of lung cancer: From drug discovery to clinical practice.Exp. Hematol. Oncol.20241312610.1186/s40164‑024‑00493‑838429828
    [Google Scholar]
  26. WongP.T. ChoiS.K. Mechanisms of drug release in nanotherapeutic delivery systems.Chem. Rev.201511593388343210.1021/cr500463425914945
    [Google Scholar]
  27. HheidariA. MohammadiJ. GhodousiM. MahmoodiM. EbrahimiS. PishbinE. RahdarA. Metal-based nanoparticle in cancer treatment: Lessons learned and challenges.Front. Bioeng. Biotechnol.202412143629710.3389/fbioe.2024.143629739055339
    [Google Scholar]
  28. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.04427208862
    [Google Scholar]
  29. ChiangM. C. YangY. P. NicolC. J. B. WangC. J. Gold nanoparticles in neurological diseases: A review of neuroprotection.Int. J. Mol. Sci.2024254236010.3390/ijms2504236038397037
    [Google Scholar]
  30. Castillo-HenríquezL. Alfaro-AguilarK. Ugalde-álvarezJ. Vega-FernándezL. de Oca-VásquezG.M. Vega-BaudritJ.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area.Nanomaterials202079176310.3390/nano10091763
    [Google Scholar]
  31. MdS. AlhakamyN. AlfalehM. AfzalO. AltamimiA. IqubalA. ShaikR. Mechanisms involved in microglial-interceded alzheimer’s disease and nanocarrier-based treatment approaches.J. Pers. Med.20211111111610.3390/jpm1111111634834468
    [Google Scholar]
  32. HuangY. LiP. ZhaoR. ZhaoL. LiuJ. PengS. FuX. WangX. LuoR. WangR. ZhangZ. Silica nanoparticles: Biomedical applications and toxicity.Biomed. Pharmacother.202215111305310.1016/j.biopha.2022.11305335594717
    [Google Scholar]
  33. ZhaoJ. XuN. YangX. LingG. ZhangP. The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer’s disease.Colloid Interface Sci. Commun.20224610057910.1016/j.colcom.2021.100579
    [Google Scholar]
  34. JuanC. A. de la LastraJ. M. P. PlouF. J. Pérez-LebeñaE. The chemistry of Reactive Oxygen Species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  35. GaoH. Progress and perspectives on targeting nanoparticles for brain drug delivery.Acta Pharm. Sin. B20166426828610.1016/j.apsb.2016.05.01327471668
    [Google Scholar]
  36. ZhangF. LiX. WeiY. Selenium and selenoproteins in health.Biomolecules202313579910.3390/biom1305079937238669
    [Google Scholar]
  37. KarthikK.K. CheriyanB.V. RajeshkumarS. GopalakrishnanM. A review on selenium nanoparticles and their biomedical applications.Biomed. Technol.20246617410.1016/j.bmt.2023.12.001
    [Google Scholar]
  38. AbbasM. Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in Alzheimer’s patients.Polymers2021137105110.3390/polym1307105133801619
    [Google Scholar]
  39. WitikaB.A. PokaM.S. DemanaP.H. MatafwaliS.K. MelamaneS. MalungeloK.S.M. MakoniP.A. Lipid-based nanocarriers for neurological disorders: A review of the state-of-the-art and therapeutic success to date.Pharmaceutics202214483610.3390/pharmaceutics1404083635456669
    [Google Scholar]
  40. LoftsA. Abu-HijlehF. RiggN. MishraR.K. HoareT. Using the intranasal route to administer drugs to treat neurological and psychiatric illnesses: Rationale, successes, and future needs.CNS Drugs202236773977010.1007/s40263‑022‑00930‑435759210
    [Google Scholar]
  41. KaurI.P. BhandariR. BhandariS. KakkarV. Potential of solid lipid nanoparticles in brain targeting.J. Control. Release200812729710910.1016/j.jconrel.2007.12.01818313785
    [Google Scholar]
  42. PardeshiC. RajputP. BelgamwarV. TekadeA. PatilG. ChaudharyK. SonjeA. Solid lipid based nanocarriers: An overview / Nanonosači na bazi čvrstih lipida: Pregled.Acta Pharm.201262443347210.2478/v10007‑012‑0040‑z23333884
    [Google Scholar]
  43. TabattK. KneuerC. SametiM. OlbrichC. MüllerR.H. LehrC.M. BakowskyU. Transfection with different colloidal systems: Comparison of solid lipid nanoparticles and liposomes.J. Control. Release200497232133210.1016/j.jconrel.2004.02.02915196759
    [Google Scholar]
  44. HamdaniJ. MoësA.J. AmighiK. Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets.Int. J. Pharm.20032601475710.1016/S0378‑5173(03)00229‑112818809
    [Google Scholar]
  45. YangS.C. LuL.F. CaiY. ZhuJ.B. LiangB.W. YangC.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain.J. Control. Release199959329930710.1016/S0168‑3659(99)00007‑310332062
    [Google Scholar]
  46. UpadhyayR.K. Drug delivery systems, CNS protection, and the blood brain barrier.BioMed. Res. Int.2014201413710.1155/2014/86926925136634
    [Google Scholar]
  47. SathyaS. ShanmuganathanB. ManirathinamG. RuckmaniK. DeviK.P. α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects Neuro-2a cells from Aβ induced neurotoxicity.J. Mol. Liq.201826443144110.1016/j.molliq.2018.05.075
    [Google Scholar]
  48. ViegasC. PatrícioA. B. PrataJ. M. NadhmanA. ChintamaneniP. K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics1506159337376042
    [Google Scholar]
  49. ShehataM.K. IsmailA.A. KamelM.A. Nose to brain delivery of astaxanthin–loaded nanostructured lipid carriers in rat model of Alzheimer’s disease: Preparation, in vitro and in vivo evaluation.Int. J. Nanomedicine2023181631165810.2147/IJN.S40244737020692
    [Google Scholar]
  50. VoulgaropoulouS.D. van AmelsvoortT.A.M.J. PrickaertsJ. VingerhoetsC. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies.Brain Res.2019172514647610.1016/j.brainres.2019.14647631560864
    [Google Scholar]
  51. BernardiA. FrozzaR.L. MeneghettiA. HoppeJ.B. OliveiraB.A.M. PohlmannA.R. GuterresS.S. SalbegoC.G. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models.Int. J. Nanomedicine201274927494210.2147/IJN.S3533323028221
    [Google Scholar]
  52. SalehH. M. HassanA. I. Synthesis and characterization of nanomaterials for application in cost-effective electrochemical devices.Sustainability202315141089110.3390/su151410891
    [Google Scholar]
  53. IdreesH. ZaidiS.Z.J. SabirA. KhanR.U. ZhangX. HassanS. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications.Nanomaterials20201010197010.3390/nano1010197033027891
    [Google Scholar]
  54. Del AmoL. EspinaM. CaminsA. GarcíaM.L. Sánchez-LópezE. Surface functionalization of plga nanoparticles to increase transport across the BBB for Alzheimer’s disease.Appl. Sci.2021119430510.3390/app11094305
    [Google Scholar]
  55. AlsaabH.O. AlharbiF.D. AlhibsA.S. AlanaziN.B. AlshehriB.Y. SalehM.A. AlshehriF.S. AlgarniM.A. AlmugaiteebT. UddinM.N. AlzhraniR.M. PLGA-based nanomedicine: History of advancement and development in clinical applications of multiple diseases.Pharmaceutics20221412272810.3390/pharmaceutics1412272836559223
    [Google Scholar]
  56. EgeD. Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery.Materials20211412333210.3390/ma1412333234208692
    [Google Scholar]
  57. KrsekA. BaticicL. Nanotechnology-driven therapeutic innovations in neurodegenerative disorders: A focus on Alzheimer’s and Parkinson’s disease.Future Pharmacol.20244235210.3390/futurepharmacol4020020
    [Google Scholar]
  58. WilsonB. SamantaM.K. MuthuM.S. VinothapooshanG. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer’s disease.Ther. Deliv.20112559960910.4155/tde.11.2122833977
    [Google Scholar]
  59. LiQ.Y. LeeJ.H. KimH.W. JinG.Z. Research models of the nanoparticle-mediated drug delivery across the blood–brain barrier.Tissue Eng. Regen. Med.202118691793010.1007/s13770‑021‑00356‑x34181202
    [Google Scholar]
  60. ÖzsoyŞ. ÇakirZ. AkçayE. GevrekF. Effects of thymoquinone and memantine alone and in combination on memory and hippocampal morphology in rats with streptozotocin-induced Alzheimer’s disease.Turk. J. Med. Sci.202353489490110.55730/1300‑0144.565338031940
    [Google Scholar]
  61. ÇınarE. MutluayS.U. BaysalI. GültekinoğluM. UlubayramK. YabanogluC.S. TelB.C. UçarG. Donepezil-loaded PLGA-b-PEG nanoparticles enhance the learning and memory function of beta-amyloid rat model of Alzheimer’s disease.Noro Psikiyatri Arsivi202259428128910.29399/npa.2827536514517
    [Google Scholar]
  62. Fonseca-SantosB. ChorilliM. PalmiraD.G.M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease.Int. J. Nanomed.2015104981500310.2147/IJN.S8714826345528
    [Google Scholar]
  63. Del Prado-AudeloM.L. Caballero-FloránI.H. Meza-ToledoJ.A. Mendoza-MuñozN. González-TorresM. FloránB. CortésH. Leyva-GómezG. Formulations of curcumin nanoparticles for brain diseases.Biomolecules2019925610.3390/biom902005630743984
    [Google Scholar]
  64. YinH. SiJ. XuH. DongJ. ZhengD. LuX. LiX. Resveratrol-loaded nanoparticles reduce oxidative stress induced by radiation or amyloid-beta in transgenic Caenorhabditis elegans.J. Biomed. Nanotechnol.20141081536154410.1166/jbn.2014.189725016653
    [Google Scholar]
  65. MarucciG. BuccioniM. BenD.D. LambertucciC. VolpiniR. AmentaF. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease.Neuropharmacology202119010835210.1016/j.neuropharm.2020.10835233035532
    [Google Scholar]
  66. SongM.S. RauwG. BakerG.B. KarS. Memantine protects rat cortical cultured neurons against β-amyloid-induced toxicity by attenuating tau phosphorylation.Eur. J. Neurosci.200828101989200210.1111/j.1460‑9568.2008.06498.x19046381
    [Google Scholar]
  67. HassanzadehG. FallahiZ. KhanmohammadiM. Effect of magnetic tacrine-loaded chitosan nanoparticles on spatial learning, memory, amyloid precursor protein and seladin-1 expression in the hippocampus of streptozotocin-exposed rats.Int. Clin. Neurosci. J.201631253110.22037/ICNJ.V3I1.12358
    [Google Scholar]
  68. QiY. GuoL. JiangY. ShiY. SuiH. ZhaoL. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles.Drug Deliv.202027174575510.1080/10717544.2020.176226232397764
    [Google Scholar]
  69. RahimR. A. JayusmanP.A. MuhammadN. AhmadF. MokhtarN. NainaM.I. MohamedN. ShuidA.N. Recent advances in nanoencapsulation systems using PLGA of bioactive phenolics for protection against chronic diseases.Int. J. Environ. Res. Public Health20191624496210.3390/ijerph1624496231817699
    [Google Scholar]
  70. OhtaY. NomuraE. ShangJ. FengT. HuangY. LiuX. ShiX. NakanoY. HishikawaN. SatoK. TakemotoM. YamashitaT. AbeK. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis.J. Neurosci. Res.201997560761910.1002/jnr.2436830565312
    [Google Scholar]
  71. OnorM.L. TrevisiolM. AgugliaE. Rivastigmine in the treatment of Alzheimer’s disease: An update.Clin. Interv. Aging200721173210.2147/ciia.2007.2.1.1718044073
    [Google Scholar]
  72. NaserS.S. SinghD. PreetamS. KishoreS. KumarL. NandiA. SimnaniF.Z. ChoudhuryA. SinhaA. MishraY.K. SuarM. PandaP.K. MalikS. VermaS.K. Posterity of nanoscience as lipid nanosystems for Alzheimer’s disease regression.Mater. Today Bio20232110070110.1016/j.mtbio.2023.10070137415846
    [Google Scholar]
  73. KauravM. RuhiS. Al-GoshaeH.A. JeppuA.K. RamachandranD. SahuR.K. SarkarA.K. KhanJ. AshifI.A.M. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment.Front. Pharmacol.202314115913110.3389/fphar.2023.115913137006997
    [Google Scholar]
  74. PalanF. ChatterjeeB. Dendrimers in the context of targeting central nervous system disorders.J. Drug Deliv. Sci. Technol.20227310347410.1016/j.jddst.2022.103474
    [Google Scholar]
  75. GothwalA. KumarH. NakhateK.T. Ajazuddin DuttaA. BorahA. GuptaU. Lactoferrin coupled lower generation PAMAM dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer’s disease in mice.Bioconjug. Chem.201930102573258310.1021/acs.bioconjchem.9b0050531553175
    [Google Scholar]
  76. AsoE. MartinssonI. AppelhansD. EffenbergC. Benseny-CasesN. CladeraJ. GourasG. FerrerI. KlementievaO. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection.Nanomedicine20191719820910.1016/j.nano.2019.01.01030708052
    [Google Scholar]
  77. Zivari-GhaderT. ValiogluF. EftekhariA. AliyevaI. BeylerliO. DavranS. ChoW.C. BeilerliA. KhalilovR. JavadovS. Recent progresses in natural based therapeutic materials for Alzheimer’s disease.Heliyon2024104e2635110.1016/j.heliyon.2024.e2635138434059
    [Google Scholar]
  78. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  79. BarbaraR. BellettiD. PederzoliF. MasoniM. KellerJ. BallestrazziA. VandelliM.A. TosiG. GrabruckerA.M. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates.Int. J. Pharm.20175261-241342410.1016/j.ijpharm.2017.05.01528495580
    [Google Scholar]
  80. SunM. SunM. ZhangJ. Osthole: an overview of its sources, biological activities, and modification development.Med. Chem. Res.202130101767179410.1007/s00044‑021‑02775‑w34376964
    [Google Scholar]
  81. UllahZ. Al-AsmariA. TariqM. FataniA. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.Drug Des. Devel. Ther.20161020521510.2147/DDDT.S9393726834457
    [Google Scholar]
  82. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.7241522247858
    [Google Scholar]
  83. ShiJ. WangY. LuoG. Ligustrazine phosphate ethosomes for treatment of Alzheimer’s disease, in vitro and in animal model studies.AAPS PharmSciTech201213248549210.1208/s12249‑012‑9767‑622415639
    [Google Scholar]
  84. NiuX.Q. ZhangD.P. BianQ. FengX.F. LiH. RaoY.F. ShenY.M. GengF.N. YuanA.R. YingX.Y. GaoJ.Q. Mechanism investigation of ethosomes transdermal permeation.Int. J. Pharm. X2019110002710.1016/j.ijpx.2019.10002731517292
    [Google Scholar]
  85. PoudelP. ParkS. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems.Pharmaceutics202214483510.3390/pharmaceutics1404083535456671
    [Google Scholar]
  86. ChavesJ.C.S. DandoS.J. WhiteA.R. OikariL.E. Blood-brain barrier transporters: An overview of function, dysfunction in Alzheimer’s disease and strategies for treatment.Biochim. Biophys. Acta Mol. Basis Dis.20241870216696710.1016/j.bbadis.2023.16696738008230
    [Google Scholar]
  87. PengX. FangJ. LouC. YangL. ShanS. WangZ. ChenY. LiH. LiX. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy.Acta Pharm. Sin. B20241483432345610.1016/j.apsb.2024.05.01039220871
    [Google Scholar]
  88. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑333208141
    [Google Scholar]
  89. NayabD.E. DinF. AliH. KausarW.A. UroojS. ZafarM. KhanI. ShabbirK. KhanG.M. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective.J. Nanobiotechnol.202321147710.1186/s12951‑023‑02250‑138087359
    [Google Scholar]
  90. ContiA. GeffroyF. KamimuraH.A.S. NovellA. TournierN. MériauxS. LarratB. Regulation of P-glycoprotein and breast cancer resistance protein expression induced by focused ultrasound-mediated blood-brain barrier disruption: A pilot study.Int. J. Mol. Sci.202223241548810.3390/ijms23241548836555129
    [Google Scholar]
  91. MohammadI.S. HeW. YinL. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR.Biomed. Pharmacother.201810033534810.1016/j.biopha.2018.02.03829453043
    [Google Scholar]
  92. BanksW.A. Characteristics of compounds that cross the blood-brain barrier.BMC Neurol.200991S310.1186/1471‑2377‑9‑S1‑S319534732
    [Google Scholar]
  93. BorsL. A. ErdöF. Overcoming the blood–brain barrier. Challenges and tricks for CNS drug delivery.Sci. Pharm.2019871610.3390/scipharm87010006
    [Google Scholar]
  94. ShenS. ZhangW. ABC transporters and drug efflux at the blood-brain barrier.Rev. Neurosci.2010211295310.1515/REVNEURO.2010.21.1.2920458886
    [Google Scholar]
  95. ObaidR.J. NaeemN. MughalE.U. Al-RooqiM.M. SadiqA. JassasR.S. MoussaZ. AhmedS.A. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase.RSC Advances20221231197641985510.1039/D2RA03081K35919585
    [Google Scholar]
  96. SultanaA. ZareM. ThomasV. KumarT.S.S. RamakrishnaS. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects.Med. Drug Discov.20221510013410.1016/j.medidd.2022.100134
    [Google Scholar]
  97. BlaikieL. KayG. MacielP. KongT.L.P. Experimental modelling of Alzheimer’s disease for therapeutic screening.Eur. J. Med. Chem. Rep.2022510004410.1016/j.ejmcr.2022.100044
    [Google Scholar]
  98. IqbalI. SaqibF. MubarakZ. LatifM.F. WahidM. NasirB. ShahzadH. Sharifi-RadJ. MubarakM.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges.Eur. J. Med. Res.202429131310.1186/s40001‑024‑01915‑338849950
    [Google Scholar]
  99. PuranikN. YadavD. SongM. Advancements in the application of nanomedicine in Alzheimer’s disease: A therapeutic perspective.Int. J. Mol. Sci.202324181404410.3390/ijms24181404437762346
    [Google Scholar]
  100. ZhaS. LiuH. LiH. LiH. WongK.L. AllA.H. Functionalized nanomaterials capable of crossing the blood–brain barrier.ACS Nano20241831820184510.1021/acsnano.3c1067438193927
    [Google Scholar]
  101. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood–brain barrier: Structure, regulation and drug delivery.Signal Transduct Target Ther.20238121710.1038/s41392‑023‑01481‑w
    [Google Scholar]
  102. FormicaM.L. RealD.A. PicchioM.L. CatlinE. DonnellyR.F. ParedesA.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles.Appl. Mater. Today20222910163110.1016/j.apmt.2022.101631
    [Google Scholar]
  103. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  104. AlajangiH.K. KaurM. SharmaA. RanaS. ThakurS. ChatterjeeM. SinglaN. JaiswalP.K. SinghG. BarnwalR.P. Blood–brain barrier: Emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders.Mol. Brain20221514910.1186/s13041‑022‑00937‑435650613
    [Google Scholar]
  105. BellettatoC. M. ScarpaM. Possible strategies to cross the blood–brain barrier.Ital. J. Pediatr.201844S213110.1186/s13052‑018‑0563‑030442184
    [Google Scholar]
  106. HorowitzA. Chanez-ParedesS.D. HaestX. TurnerJ.R. Paracellular permeability and tight junction regulation in gut health and disease.Nat. Rev. Gastroenterol. Hepatol.202320741743210.1038/s41575‑023‑00766‑337186118
    [Google Scholar]
  107. RazzakA.R. FlorenceG.J. Gunn-MooreF.J. Approaches to CNS drug delivery with a focus on transporter-mediated transcytosis.Int. J. Mol. Sci.20192012310810.3390/ijms2012310831242683
    [Google Scholar]
  108. QianZ.M. LiH. SunH. HoK. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway.Pharmacol. Rev.200254456158710.1124/pr.54.4.56112429868
    [Google Scholar]
  109. UpadhyayR.K. Transendothelial transport and its role in therapeutics.Int. Sch. Res. Notices2014201413910.1155/2014/30940427355037
    [Google Scholar]
  110. EngelhardtB. SorokinL. The blood–brain and the blood–cerebrospinal fluid barriers: Function and dysfunction.Semin. Immunopathol.200931449751110.1007/s00281‑009‑0177‑019779720
    [Google Scholar]
  111. YangY. HeJ. WangY. WangC. TanC. LiaoJ. TongL. XiaoG. Targeting choroid plexus epithelium as a novel therapeutic strategy for hydrocephalus.J. Neuroinflammation202219115610.1186/s12974‑022‑02500‑335715859
    [Google Scholar]
  112. MadadiA. K. SohnM. J. Advances in intrathecal nanoparticle delivery: Targeting the blood–cerebrospinal fluid barrier for enhanced cns drug delivery.Pharmaceuticals2024178107010.3390/ph1708107039204177
    [Google Scholar]
  113. NiaziS.K. Non-invasive drug delivery across the blood–brain barrier: A prospective analysis.Pharmaceutics20231511259910.3390/pharmaceutics1511259938004577
    [Google Scholar]
  114. ArchieS.R. Al ShoyaibA. CuculloL. Blood-brain barrier dysfunction in CNS disorders and putative therapeutic targets: An overview.Pharmaceutics20211311177910.3390/pharmaceutics13111779
    [Google Scholar]
  115. PolliJ.E. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms.AAPS J.200810228929910.1208/s12248‑008‑9027‑618500564
    [Google Scholar]
  116. MeyerA.H. FeldsienT.M. MezlerM. UntuchtC. VenugopalanR. LefebvreD.R. Novel developments to enable treatment of cns diseases with targeted drug delivery.Pharmaceutics2023154110010.3390/pharmaceutics1504110037111587
    [Google Scholar]
  117. PatelM.M. GoyalB.R. BhadadaS.V. BhattJ.S. AminA.F. Getting into the brain.CNS Drugs2009231355810.2165/0023210‑200923010‑0000319062774
    [Google Scholar]
  118. HuttunenJ. AdlaS.K. Markowicz-PiaseckaM. HuttunenK.M. Increased/targeted brain (Pro)drug delivery via utilization of solute carriers (SLCs).Pharmaceutics2022146123410.3390/pharmaceutics1406123435745806
    [Google Scholar]
  119. ChengX. XieQ. SunY. Advances in nanomaterial-based targeted drug delivery systems.Front. Bioeng. Biotechnol.202311117715110.3389/fbioe.2023.117715137122851
    [Google Scholar]
  120. LiuY. LiangY. YuhongJ. XinP. HanJ.L. DuY. YuX. ZhuR. ZhangM. ChenW. MaY. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs.Drug Des. Devel. Ther.2024181469149510.2147/DDDT.S44749638707615
    [Google Scholar]
  121. DeyA. GhoshS. RajendranR.L. BhuniyaT. DasP. BhattacharjeeB. DasS. MahajanA.A. SamantA. KrishnanA. AhnB.C. GangadaranP. Alzheimer’s disease pathology and assistive nanotheranostic approaches for its therapeutic interventions.Int. J. Mol. Sci.20242517969010.3390/ijms2517969039273645
    [Google Scholar]
  122. KhafoorA.A. KarimA.S. SajadiS.M. Recent progress in synthesis of nano based liposomal drug delivery systems: A glance to their medicinal applications.Result. Surface. Interf.20231110012410.1016/j.rsurfi.2023.100124
    [Google Scholar]
  123. HershA.M. AlomariS. TylerB.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology.Int. J. Mol. Sci.2022238415310.3390/ijms2308415335456971
    [Google Scholar]
  124. ScarpaE. CascioneM. GriegoA. PellegrinoP. MoschettiG. De MatteisV. Gold and silver nanoparticles in Alzheimer’s and Parkinson’s diagnostics and treatments.Ibrain20239329831510.1002/ibra.1212637786760
    [Google Scholar]
  125. AhmadF. Salem-BekhitM.M. KhanF. AlshehriS. KhanA. GhoneimM.M. WuH.F. TahaE.I. ElbagoryI. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application.Nanomaterials2022128133310.3390/nano1208133335458041
    [Google Scholar]
  126. HammamiI. AlabdallahN.M. JomaaA.A. KamounM. Gold nanoparticles: Synthesis properties and applications.J. King Saud Univ. Sci.202133710156010.1016/j.jksus.2021.101560
    [Google Scholar]
  127. ChakrabortyA. MohapatraS.S. BarikS. RoyI. GuptaB. BiswasA. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: A systematic review.Biosci. Rep.2023432BSR2022032410.1042/BSR2022032436630532
    [Google Scholar]
  128. SongM. SunY. LuoY. ZhuY. LiuY. LiH. Exploring the mechanism of inhibition of Au nanoparticles on the aggregation of Amyloid-β(16-22) peptides at the atom level by all-atom molecular dynamics.Int. J. Mol. Sci.2018196181510.3390/ijms1906181529925792
    [Google Scholar]
  129. Tapia-ArellanoA. CabreraP. Cortés-AdasmeE. RiverosA. HassanN. KoganM.J. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases.J. Nanobiotechnology202422124810.1186/s12951‑024‑02526‑038741193
    [Google Scholar]
  130. AuA. MojadadiA. ShaoJ.Y. AhmadG. WittingP.K. Physiological benefits of novel selenium delivery via nanoparticles.Int. J. Mol. Sci.2023247606810.3390/ijms2407606837047040
    [Google Scholar]
  131. KieliszekM. BanoI. ZareH. A comprehensive review on selenium and its effects on human health and distribution in middle eastern countries.Biol. Trace Elem. Res.2022200397198710.1007/s12011‑021‑02716‑z33884538
    [Google Scholar]
  132. YinT. YangL. LiuY. ZhouX. SunJ. LiuJ. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease.Acta Biomater.20152517218310.1016/j.actbio.2015.06.03526143603
    [Google Scholar]
  133. ZhangW. SigdelG. MintzK.J. SevenE.S. ZhouY. WangC. LeblancR.M. Carbon Dots: A future blood–brain barrier penetrating nanomedicine and drug nanocarrier.Int. J. Nanomedicine2021165003501610.2147/IJN.S31873234326638
    [Google Scholar]
  134. BartkowskiM. ZhouY. NabilA.M.M. EustaceA.J. GiordaniS. CARBON DOTS: Bioimaging and anticancer drug delivery.Chemistry20243019e20230398210.1002/chem.20230398238205882
    [Google Scholar]
  135. GuoF. LiQ. ZhangX. LiuY. JiangJ. ChengS. YuS. ZhangX. LiuF. LiY. RoseG. ZhangH. Applications of carbon dots for the treatment of Alzheimer’s disease.Int. J. Nanomedicine2022176621663810.2147/IJN.S38803036582459
    [Google Scholar]
  136. ZhouY. LiyanageP.Y. DevadossD. RiosG.L.R. ChengL. GrahamR.M. ChandH.S. Al-YoubiA.O. BashammakhA.S. El-ShahawiM.S. LeblancR.M. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid.Nanoscale20191146223872239710.1039/C9NR08194A31730144
    [Google Scholar]
  137. KapadiaA. SharmaK.K. MauryaI.K. SinghV. KhullarM. JainR. Structural and mechanistic insights into the inhibition of amyloid-β aggregation by Aβ39-42 fragment derived synthetic peptides.Eur. J. Med. Chem.202121211312610.1016/j.ejmech.2020.11312633395622
    [Google Scholar]
  138. KunachowiczD. ŚciskalskaM. JakubekM. KizekR. KepinskaM. Structural changes in selected human proteins induced by exposure to quantum dots, their biological relevance and possible biomedical applications.NanoImpact20222610040510.1016/j.impact.2022.10040535560289
    [Google Scholar]
  139. GilH.M. PriceT.W. ChelaniK. BouillardJ.S.G. CalaminusS.D.J. StasiukG.J. NIR-quantum dots in biomedical imaging and their future.iScience202124310218910.1016/j.isci.2021.10218933718839
    [Google Scholar]
  140. XuG. MahajanS. RoyI. YongK.T. Theranostic quantum dots for crossing blood–brain barrier in vitro and providing therapy of HIV-associated encephalopathy.Front. Pharmacol.2013414010.3389/fphar.2013.0014024298256
    [Google Scholar]
  141. WangK. WangL. ChenL. PengC. LuoB. MoJ. ChenW. Intranasal administration of dauricine loaded on graphene oxide: Multi-target therapy for Alzheimer’s disease.Drug Deliv.202128158059310.1080/10717544.2021.189590933729067
    [Google Scholar]
  142. CetinkayaA. KurutasE.B. BuyukbeseM.A. KantarcekenB. BulbulogluE. Levels of malondialdehyde and superoxide dismutase in subclinical hyperthyroidism.Mediators Inflamm.200520051575910.1155/MI.2005.5715770068
    [Google Scholar]
  143. Calvo-Flores GuzmánB. Elizabeth ChaffeyT. Hansika PalpagamaT. WatersS. BoixJ. TateW.P. PeppercornK. DragunowM. WaldvogelH.J. FaullR.L.M. KwakowskyA. The interplay between beta-Amyloid 1–42 (Aβ1–42)-Induced hippocampal inflammatory response, p-tau, vascular pathology, and their synergistic contributions to neuronal death and behavioral deficits.Front. Mol. Neurosci.20201352207310.3389/fnmol.2020.55207333224025
    [Google Scholar]
  144. AlbadraniH.M. ChauhanP. AshiqueS. BabuM.A. IqbalD. AlmutaryA.G. AbomughaidM.M. KamalM. Paiva-SantosA.C. AlsaweedM. HamedM. SachdevaP. DewanjeeS. JhaS.K. OjhaS. SlamaP. JhaN.K. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer’s disease.Biomed. Pharmacother.202417411637610.1016/j.biopha.2024.11637638508080
    [Google Scholar]
  145. FentaE.W. MebratieB.A. Advancements in carbon nanotube-polymer composites: Enhancing properties and applications through advanced manufacturing techniques.Heliyon20241016e3649010.1016/j.heliyon.2024.e3649039247356
    [Google Scholar]
  146. NiedzielskaE. SmagaI. GawlikM. MoniczewskiA. StankowiczP. PeraJ. FilipM. Oxidative stress in neurodegenerative diseases.Mol. Neurobiol.20165364094412510.1007/s12035‑015‑9337‑526198567
    [Google Scholar]
  147. SimS. WongN. Nanotechnology and its use in imaging and drug delivery (Review).Biomed. Rep.20211454210.3892/br.2021.141833728048
    [Google Scholar]
  148. NaqviS. PanghalA. FloraS.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs.Front. Neurosci.20201449410.3389/fnins.2020.0049432581676
    [Google Scholar]
  149. StielowM. WitczyńskaA. KubryńN. FijałkowskiŁ. NowaczykJ. NowaczykA. The bioavailability of drugs: The current state of knowledge.Molecules20232824803810.3390/molecules2824803838138529
    [Google Scholar]
  150. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms2303185135163773
    [Google Scholar]
  151. QiaoR. FuC. ForghamH. JavedI. HuangX. ZhuJ. WhittakerA.K. DavisT.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery.Adv. Drug Deliv. Rev.202319711482210.1016/j.addr.2023.11482237086918
    [Google Scholar]
  152. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Transferrin-functionalized liposomes loaded with vitamin VB12 for Alzheimer’s disease therapy.Int. J. Pharm.202262612216710.1016/j.ijpharm.2022.12216736075524
    [Google Scholar]
  153. AndradeS. LoureiroJ.A. PereiraM.C. Caffeic acid for the prevention and treatment of Alzheimer’s disease: The effect of lipid membranes on the inhibition of aggregation and disruption of Aβ fibrils.Int. J. Biol. Macromol.202119085386110.1016/j.ijbiomac.2021.08.19834480909
    [Google Scholar]
  154. ZhuY. LiuC. PangZ. Dendrimer-based drug delivery systems for brain targeting.Biomolecules201991279010.3390/biom912079031783573
    [Google Scholar]
  155. SinghA.K. GothwalA. RaniS. RanaM. SharmaA.K. YadavA.K. GuptaU. Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics.ACS Omega2019434519452910.1021/acsomega.8b0344531459646
    [Google Scholar]
  156. WongK.H. ChenH. BianZ. ChenX. LuA. YangZ. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier.Int. J. Mol. Sci.201920238110.3390/ijms20020381
    [Google Scholar]
  157. ZielinskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  158. La BarberaL. MauriE. D’AmelioM. GoriM. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer’s disease: Current trends and future perspectives.Front. Neurosci.20221693985510.3389/fnins.2022.93985535992936
    [Google Scholar]
  159. MathewA. FukudaT. NagaokaY. HasumuraT. MorimotoH. YoshidaY. MaekawaT. VenugopalK. KumarD.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease.PLoS One201273e3261610.1371/journal.pone.003261622403681
    [Google Scholar]
  160. Yavarpour-BaliH. Ghasemi-KasmanM. PirzadehM. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders.Int. J. Nanomed.2019144449446010.2147/IJN.S20833231417253
    [Google Scholar]
  161. LuY. ChengD. NiuB. WangX. WuX. WangA. Properties of poly (Lactic-co-Glycolic Acid) and progress of poly (Lactic-co-Glycolic Acid)-based biodegradable materials in biomedical research.Pharmaceuticals202316345410.3390/ph1603045436986553
    [Google Scholar]
  162. CarawayC. A. GaitschH. WicksE. E. KalluriA. KunadiN. TylerB. M. Polymeric nanoparticles in brain cancer therapy: A review of current approaches.Polymers20221414296310.3390/polym1414296335890738
    [Google Scholar]
  163. AbbasiR. ShinehG. MobarakiM. DoughtyS. TayebiL. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review.J. Nanopart. Res.20232534310.1007/s11051‑023‑05690‑w36875184
    [Google Scholar]
  164. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics1404088335456717
    [Google Scholar]
  165. EmenchetaS.C. OnugwuA.L. KaluC.F. EzinkwoP.N. EzeO.C. VilaM.M.D.C. BalcãoV.M. AttamaA.A. OnuigboE.B. Bacteriophages as nanocarriers for targeted drug delivery and enhanced therapeutic effects.Mater. Adv.202453986101610.1039/D3MA00817G
    [Google Scholar]
  166. NadyD.S. BakowskyU. FahmyS.A. Recent advances in brain delivery of synthetic and natural nano therapeutics: Reviving hope for Alzheimer’s disease patients.J. Drug Deliv. Sci. Technol.20238910504710.1016/j.jddst.2023.105047
    [Google Scholar]
  167. TeixeiraM.I. LopesC.M. AmaralM.H. CostaP.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases.Colloids Surf. B Biointerfaces202322111299910.1016/j.colsurfb.2022.11299936368148
    [Google Scholar]
  168. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomed. Technol.2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  169. KumarR. AcooliA. RoyS. ChatterjeeA. ChattarajS. NayakJ. JeonB-H. BasuA. BanerjeeS. ChakraborttyS. TripathyS.K. Transforming nanomaterial synthesis through advanced microfluidic approaches: A review on accessing unrestricted possibilities.J. Composit. Sci.202481038610.3390/jcs8100386
    [Google Scholar]
  170. ChenthamaraD. SubramaniamS. RamakrishnanS.G. KrishnaswamyS. EssaM.M. LinF.H. QoronflehM.W. Therapeutic efficacy of nanoparticles and routes of administration.Biomater. Res.20192312010.1186/s40824‑019‑0166‑x31832232
    [Google Scholar]
  171. DudalS. BissantzC. CarusoA. David-PiersonP. DriessenW. KollerE. KrippendorffB.F. LechmannM. Olivares-MoralesA. PaehlerA. RynnC. TürckD. Van De VyverA. WangK. WintherL. Translating pharmacology models effectively to predict therapeutic benefit.Drug Discov. Today20222761604162110.1016/j.drudis.2022.03.00935304340
    [Google Scholar]
  172. SoutoE.B. Blanco-LlameroC. KrambeckK. KiranN.S. YashaswiniC. PostwalaH. SeverinoP. PrieferR. PrajapatiB.G. MaheshwariR. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives.Acta Biomater.202418011710.1016/j.actbio.2024.04.01038604468
    [Google Scholar]
  173. SuS. M KangP. Recent advances in nanocarrier-assisted therapeutics delivery systems.Pharmaceutics202012983710.3390/pharmaceutics1209083732882875
    [Google Scholar]
  174. PuccettiM. ParianoM. SchoubbenA. GiovagnoliS. RicciM. Biologics, theranostics, and personalized medicine in drug delivery systems.Pharmacol. Res.202420110708610.1016/j.phrs.2024.10708638295917
    [Google Scholar]
  175. NguyenT.T. NguyenT.T.D. NguyenT.K.O. VoT.K. VoV.G. Advances in developing therapeutic strategies for Alzheimer’s disease.Biomed. Pharmacother.202113911162310.1016/j.biopha.2021.11162333915504
    [Google Scholar]
  176. BezelyaA. KüçüktürkmenB. BozkırA. Microfluidic devices for precision nanoparticle production.Micro20233482286610.3390/micro3040058
    [Google Scholar]
  177. ChackoA.M. HoodE.D. ZernB.J. MuzykantovV.R. Targeted nanocarriers for imaging and therapy of vascular inflammation.Curr. Opin. Colloid Interface Sci.201116321522710.1016/j.cocis.2011.01.00821709761
    [Google Scholar]
  178. MaC. SeongH. LiX. YuX. XuS. LiY. Human brain organoid: A versatile tool for modeling neurodegeneration diseases and for drug screening.Stem Cells Int.2022202212010.1155/2022/215068036061149
    [Google Scholar]
  179. ĐorđevićS. GonzalezM.M. Conejos-SánchezI. CarreiraB. PozziS. AcúrcioR.C. Satchi-FainaroR. FlorindoH.F. VicentM.J. Current hurdles to the translation of nanomedicines from bench to the clinic.Drug Deliv. Transl. Res.202212350052510.1007/s13346‑021‑01024‑234302274
    [Google Scholar]
  180. NunesD. LoureiroJ.A. PereiraM.C. Drug delivery systems as a strategy to improve the efficacy of FDA-approved Alzheimer’s drugs.Pharmaceutics20221411229610.3390/pharmaceutics1411229636365114
    [Google Scholar]
  181. DigheS. JogS. MominM. SawarkarS. OmriA. Intranasal drug delivery by nanotechnology: Advances in and challenges for Alzheimer’s disease management.Pharmaceutics20231615810.3390/pharmaceutics1601005838258068
    [Google Scholar]
  182. FDA approves treatment for adults with Alzheimer’s disease.2025Available from: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-adults-alzheimers-disease
/content/journals/car/10.2174/0115672050380959250530112247
Loading
/content/journals/car/10.2174/0115672050380959250530112247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test