Skip to content
2000
image of Assessment of the Inhibition of AChE and BChE by Carthamus caeruleus Essential Oil and Carline Oxide: Neuroprotective Effects and In Vivo Toxicity Assessment for the Management of Alzheimer’s Disease

Abstract

Background

Alzheimer’s disease is associated with dysfunction of the cholinergic system, making the inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) a promising therapeutic approach.

Objective

This study aimed to evaluate the neuroprotective effects and toxicity of essential oil (EO) and carlina oxide from in mice, assessing their potential for Alzheimer’s disease treatment.

Methods

The chemical composition of the essential oil extracted from the roots of was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The main component, carlina oxide, was isolated column chromatography. The inhibitory activities of AChE and BChE were evaluated for both the essential oil and carlina oxide. Additionally, toxicity was assessed in laboratory mice.

Results

Chemical analysis identified carlina oxide (81.6%) as the major constituent, along with minor compounds such as 13-methoxycarlin oxide and hexadecanoic acid. Both the essential oil and its main component, carlina oxide, exhibited significant inhibitory activity against AChE and BChE, enzymes associated with Alzheimer’s disease. The essential oil demonstrated promising IC values, with stronger anti-BChE activity compared to the reference drug, galantamine. Toxicity tests in mice revealed no adverse effects at lower doses (0.2-0.5 g/kg). However, higher doses (1.0-2.0 g/kg) resulted in mild to significant toxicity, including weight loss and mortality.

Discussion

The essential oil and carlina oxide demonstrated potent BChE inhibition, particularly relevant in advanced Alzheimer's disease. While effective at low doses, signs of toxicity were observed at higher concentrations, highlighting the importance of dose optimization. These findings suggest that may serve as a natural source of cholinesterase inhibitors, pending further studies and clinical validation.

Conclusion

essential oil and carlina oxide show promising inhibitory effects on AChE and BChE, suggesting their potential as neuroprotective agents. However, their toxicity at higher doses highlights the need for cautious use and further investigation.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050383227250529072253
2025-06-05
2025-09-10
Loading full text...

Full text loading...

References

  1. Ahmad F.B. Cisewski J.A. Xu J. Anderson R.N. Provisional Mortality Data — United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023 72 18 488 492 10.15585/mmwr.mm7218a3 37141156
    [Google Scholar]
  2. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  3. Birks J.S. Harvey R.J. Donepezil for dementia due to Alzheimer’s disease. Cochrane Libr. 2018 2018 6 CD001190 10.1002/14651858.CD001190.pub3 29923184
    [Google Scholar]
  4. Yiannopoulou K.G. Papageorgiou S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis. 2020 12 1179573520907397 10.1177/1179573520907397 32165850
    [Google Scholar]
  5. Howes M.J. Houghton P.J. Ethnobotanical treatment strategies against Alzheimer’s disease. Curr. Alzheimer Res. 2012 9 1 67 85 10.2174/156720512799015046 22329652
    [Google Scholar]
  6. Hancianu M. Cioanca O. Mihasan M. Hritcu L. Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via anti-oxidative activities in rats. Phytomedicine 2013 20 5 446 452 10.1016/j.phymed.2012.12.005 23351960
    [Google Scholar]
  7. Lopresti A.L. Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs R D. 2017 17 1 53 64 10.1007/s40268‑016‑0157‑5 27888449
    [Google Scholar]
  8. Chaiyana W. Okonogi S. Inhibition of cholinesterase by essential oil from food plant. Phytomedicine 2012 19 8-9 836 839 10.1016/j.phymed.2012.03.010
    [Google Scholar]
  9. Panel I. A.; Owokotomo, O.; Ekundayo, T.G.; Abayomi, A.V.: Chukwuka. In vitro anti-cholinesterase activity of essential oil from four tropical medicinal plants. Toxicol. Rep. 2015 2 850 857 10.1016/j.toxrep.2015.05.003 28962420
    [Google Scholar]
  10. Rahman M.A. Sultana A. Khan M.F. Boonhok R. Afroz S. Tea tree oil, a vibrant source of neuroprotection via neuroinflammation inhibition: a critical insight into repurposing Melaleuca alternifolia by unfolding its characteristics. J. Zhejiang Univ. Sci. B 2023 24 7 554 573 10.1631/jzus.B2300168 37455134
    [Google Scholar]
  11. Lai Shi Min S. Liew S.Y. Chear N.J.Y. Goh B.H. Tan W.N. Khaw K.Y. Plant terpenoids as the promising source of cholinesterase inhibitors for anti-AD therapy. Biology 2022 11 2 307 10.3390/biology11020307 35205173
    [Google Scholar]
  12. Benmansour N. Said R.M. El Hanbali F. Cherif H. Akssira M. Study of the anti-inflammatory and healing properties of the rhizomes of Carthamus Caeruleus L. (asteraceae) harvested in the region of tipaza. Medical Technologies Journal 2020 4 1 525 526 10.26415/2572‑004X‑vol4iss1p525‑526
    [Google Scholar]
  13. Mami I.R. Belabbes R. Dib M.A. Tabti B. Costa, J.; Muselli, A. Biological activities of carlina oxide isolated from the roots of Carthamus caeruleus. Nat. Prod. J. 2020 10 2 145 152 10.2174/2210315509666190117152740
    [Google Scholar]
  14. Đorđević S. Petrović S. Dobrić S. Milenković M. Vučićević D. Žižić S. Kukić J. Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. J. Ethnopharmacol. 2007 109 3 458 463 10.1016/j.jep.2006.08.021 17011148
    [Google Scholar]
  15. Hammoudi A. Tabet Zatla A. Mami I.R. Benariba N. Brixi-Gormat R. Fekhikher Z. Benramdane H. Dib M.A. α-amylase inhibition activity of carlina oxide and aplotaxene isolated from the roots of and Rhaponticum acaule. Curr. Chem. Biol. 2024 18 2 94 103 10.2174/0122127968317328240918041222
    [Google Scholar]
  16. Adams R. Identification of essential oils by Capillary Gas Chromatography/Mass Spectroscopy, Allured Publ. Corp. IL Carol Stream 2001
    [Google Scholar]
  17. Kçnig W. Joulain D. Hochmuth D. Terpenoids and Related Constituents of Essential Oils, Library of Mass Finder 2.1. Hamburg Institute of Organic Chemistry, University of Hamburg 2001
    [Google Scholar]
  18. McLafferty F.W. Stauffer D.B. Registry of Mass Spectral Data, 6th electronic ed Wiley New York 1994
    [Google Scholar]
  19. McLafferty F.W. Stauffer D.B. PC Version 1.7 of The NIST/EPA/NIH Mass Spectral Library. PerkinElmer Corporation 1999
    [Google Scholar]
  20. Bensaad M.S. Dassamiour S. Hambaba L. Bensouici C. Haba H. In vitro assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea tougourensis Boiss. & Reut. J. Pharm. Pharmacogn. Res. 2021 9 6 790 802 10.56499/jppres21.1103_9.6.790
    [Google Scholar]
  21. Benhamidat L. Amine Dib M.E. Bensaid O. Zatla A.T. Keniche A. Ouar I.E. Nassim D. Muselli A. Chemical composition and antioxidant, anti-inflammatory and anticholinesterase properties of the aerial and root parts of Centaurea acaulis essential oils: Study of the combinatorial activities of aplotaxene with reference standards. J. Essent. Oil-Bear. Plants 2022 25 1 126 146 10.1080/0972060X.2022.2046177
    [Google Scholar]
  22. Semaoui M. Dib M.E.A. Djabou N. Costa J. Muselli A. Chemical composition, biological activities and toxicity study of carduncellus pinnatus essential oil from West Algeria. Curr. Bioact. Compd. 2022 18 3 e020821195186 10.2174/1573407217666210802113423
    [Google Scholar]
  23. Mejdoub K. Mami I.R. Belabbes R. Dib M.E.A. DJabou N. Tabti B. Benyelles N.G. Costa J. Muselli A. Chemical variability of Atractylis gummifera essential oils at three developmental stages and investigation of their antioxidant, antifungal and insecticidal activities. Curr. Bioact. Compd. 2020 16 4 489 497 10.2174/1573407215666190126152112
    [Google Scholar]
  24. Schmidt B. Audörsch S. Stereoselective total syntheses of polyacetylene plant metabolites via ester-tethered ring closing metathesis. J. Org. Chem. 2017 82 3 1743 1760 10.1021/acs.joc.6b02987 28085285
    [Google Scholar]
  25. Semmler F.W. Zusammensetzung des ätherischen Oels der Eberwurzel (Carlina acaulis L.). Ber. Dtsch. Chem. Ges. 1906 39 1 726 731 10.1002/cber.190603901108
    [Google Scholar]
  26. Dosoky, N.S.; Setzer, W.N. Biological activities of Cistus spp. essential oils. Int. J. Mol. Sci. 2018 19 7 1966 10.3390/ijms19071966 29976894
    [Google Scholar]
  27. Loizzo M.R. Menichini F. Tundis R. Bonesi M. Conforti F. Nadjafi F. Statti G.A. Frega N.G. Menichini F. In vitro biological activity of Salvia leriifolia benth essential oil relevant to the treatment of Alzheimer’s disease. J. Oleo Sci. 2009 58 8 443 446 10.5650/jos.58.443 19584571
    [Google Scholar]
  28. Garcion E. Wion-Barbot N. Montero-Menei C.N. Berger F. Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab. 2002 13 3 100 105 10.1016/S1043‑2760(01)00547‑1 11893522
    [Google Scholar]
  29. Grimm M. Mett J. Hartmann T. The impact of vitamin E and other fat-soluble vitamins on Alzheimer´s disease. Int. J. Mol. Sci. 2016 17 11 1785 10.3390/ijms17111785 27792188
    [Google Scholar]
  30. Ciro A. Park J. Burkhard G. Yan N. Geula C. Biochemical differentiation of cholinesterases from normal and Alzheimer’s disease cortex. Curr. Alzheimer Res. 2012 9 1 138 143 10.2174/156720512799015127 21244353
    [Google Scholar]
  31. Darreh-Shori T. Brimijoin S. Kadir A. Almkvist O. Nordberg A. Differential CSF butyrylcholinesterase levels in Alzheimer’s disease patients with the ApoE ε4 allele, in relation to cognitive function and cerebral glucose metabolism. Neurobiol. Dis. 2006 24 2 326 333 10.1016/j.nbd.2006.07.013 16973370
    [Google Scholar]
  32. Herrmann F. Hamoud R. Sporer F. Tahrani A. Wink M. Carlina oxide--a natural polyacetylene from Carlina acaulis (Asteraceae) with potent antitrypanosomal and antimicrobial properties. Planta Med. 2011 77 17 1905 1911 10.1055/s‑0031‑1279984 21678234
    [Google Scholar]
  33. Stojanović-Radić Z. Čomić L. Radulović N. Blagojević P. Mihajilov-Krstev T. Rajković J. Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharm. Biol. 2012 50 8 933 940 10.3109/13880209.2011.649214 22480199
    [Google Scholar]
  34. Djordjevic S. Petrovic S. Ristic M. Djokovic D. Composition of Carlina acanthifolia root essential oil. Chem. Nat. Compd. 2005 41 4 410 412 10.1007/s10600‑005‑0163‑2
    [Google Scholar]
  35. Mami I.R. Amina T.Z. Pérard J. Arrar Z. Dib M.E.A. Hemisyntheses and in-silico study of new analogues of carlina oxide from Carthamus Caeruleus roots. Comb. Chem. High Throughput Screen. 2021 24 9 1503 1513 10.2174/1386207323999201103214141 33155891
    [Google Scholar]
  36. Benelli G. Pavoni L. Zeni V. Ricciardi R. Cosci F. Cacopardo G. Gendusa S. Spinozzi E. Petrelli R. Cappellacci L. Maggi F. Pavela R. Bonacucina G. Lucchi A. Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana. Nanomaterials 2020 10 9 1867 10.3390/nano10091867 32961890
    [Google Scholar]
  37. Belabbes R. Mami I.R. Dib M.E.A. Mejdoub K. Tabti B. Costa J. Muselli A. I.R.; Dib, M.A.; Mejdoub, K.; Tabti, B.; Costa, J.; Muselli, M. Chemical composition and biological activities of essential oils of Echinops spinosus and Carlina vulgaris rich in polyacetylene compounds. Curr. Nutr. Food Sci. 2020 16 4 563 570 10.2174/1573401315666190206142929
    [Google Scholar]
  38. Mejdoub K. Mami I.R. Belabbes R. Dib M.E.A. DJabou N. Tabti B. Benyelles N.G. Costa J. Muselli A. DJabou, N.; Tabti, B.; Benyelles, N.; Costa, J.; Muselli, A. Chemical variability of Atractylis gummifera essential oils at three developmental stages and investigation of their antioxidant, antifungal and insecticidal activities. Curr. Bioact. Compd. 2020 16 4 489 497 10.2174/1573407215666190126152112
    [Google Scholar]
  39. Benelli G. Pavela R. Petrelli R. Nzekoue F.K. Cappellacci L. Lupidi G. Quassinti L. Bramucci M. Sut S. Dall’Acqua S. Canale A. Maggi F. Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind. Crops Prod. 2019 137 356 366 10.1016/j.indcrop.2019.05.037
    [Google Scholar]
  40. Ayaz M. Junaid M. Ahmed J. Ullah F. Sadiq A. Ahmad S. Imran M. Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complement. Altern. Med. 2014 14 1 145 10.1186/1472‑6882‑14‑145 24884823
    [Google Scholar]
  41. Ahmad S. Ullah F. Sadiq A. Ayaz M. Imran M. Ali I. Zeb A. Ullah F. Shah M.R. Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complement. Altern. Med. 2016 16 1 29 10.1186/s12906‑016‑0998‑z 26810212
    [Google Scholar]
  42. Souza A. Silva M.C. Cardoso-Lopes E.M. Cordeiro I. Sobral M.E.G. Young M.C.M. Moreno P.R.H. Differential acetyl cholinesterase inhibition by volatile oils from two specimens of Marlierea racemosa (Myrtaceae) collected from different areas of the Atlantic Rain Forest. Nat. Prod. Commun. 2009 4 8 1934578X0900400826 10.1177/1934578X0900400826 19769001
    [Google Scholar]
  43. Okello E. Dimaki C. Howes M. Houghton P. Perry E. In vitro inhibition of human acetyl-and butyryl-cholinesterase by Narcissus poeticus L. (Amaryllidaceae) flower absolute. Int. J. Essent. Oil Ther 2008 2 105 110
    [Google Scholar]
  44. Hung N.H. Quan P.M. Satyal P. Dai D.N. Hoa V.V. Huy N.G. Giang L.D. Ha N.T. Huong L.T. Hien V.T. Setzer W.N. Acetylcholinesterase inhibitory activities of essential oils from Vietnamese traditional medicinal plants. Molecules 2022 27 20 7092 10.3390/molecules27207092 36296686
    [Google Scholar]
  45. Staton Laws J. III Smid S.D. Sesquiterpene-evoked phytochemical toxicity in PC12 neuronal cells reveals a variable degree of oxidative stress and alpha-tocopherol and glutathione-dependent protection. Curr. Res. Toxicol. 2024 6 100144 10.1016/j.crtox.2023.100144 38193034
    [Google Scholar]
  46. Salvi M. Fiore C. Battaglia V. Palermo M. Armanini D. Toninello A. Carbenoxolone induces oxidative stress in liver mitochondria, which is responsible for transition pore opening. Endocrinology 2005 146 5 2306 2312 10.1210/en.2004‑1128 15677764
    [Google Scholar]
  47. Preeti D. Sambhakar S. Malik R. Bhatia S. Al Harrasi A. Rani C. Saharan R. Kumar S. Geeta Sehrawat R. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs. Scientifica (Cairo) 2023 2023 1 25 10.1155/2023/6640103 37928749
    [Google Scholar]
  48. Ávila-Gálvez M.Á. Marques D. Figueira I. Cankar K. Bosch D. Brito M.A. dos Santos C.N. Costunolide and parthenolide: Novel blood-brain barrier permeable sesquiterpene lactones to improve barrier tightness. Biomed. Pharmacother. 2023 167 115413 10.1016/j.biopha.2023.115413 37683593
    [Google Scholar]
/content/journals/car/10.2174/0115672050383227250529072253
Loading
/content/journals/car/10.2174/0115672050383227250529072253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test