Skip to content
2000
image of Anthocyanidins Intake is Associated with Alzheimer’s Disease Risk in Americans over 60 Years of Age: Data from NHANES 2007-2008, 2009-2010, and 2017-2018

Abstract

Objective

At present, there is limited research on the association between dietary intake of anthocyanidins and Alzheimer's disease (AD). More epidemiological studies are needed to better understand this relationship.

Methods

We explored the relationship between dietary Anthocyanidins intake and AD among 3806 American adults in the National Health and Nutrition Examination Survey (NHANES) and the United States Department of Agriculture’s Food and Nutrient Database for Dietary Studies (FNDDS) from 2007 to 2010, and 2017 to 2018. We use weighted logistic regression model, restricted cubic spline (RCS) and weighted quantile sum (WQS) regression analysis to analyze the relationship between anthocyanidins monomer and AD.

Results

The weighted logistic regression model showed that the total intake of anthocyanidins was the fourth (OR:0.979; 95% CI: 0.966-0.992) quantile (relative to the lowest quantile) is related to the reduction of AD risk. RCS analysis showed that the total intake of anthocyanidins was negatively linearly correlated with AD (nonlinear value was 0.002). The WQS regression analysis shows that cyanidin and malvidin are the main contributors to the comprehensive effects of six anthocyanidins.

Discussion

Our findings indicate that higher dietary anthocyanin intake may reduce the risk of AD and alleviate neurodegenerative processes. However, the mechanisms underlying this relationship remain unclear. Future studies should confirm these associations and investigate the relevant biological pathways.

Conclusion

Our results show that a higher dietary intake of anthocyanidins is associated with a lower risk of AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050372100250512054404
2025-05-29
2025-09-11
Loading full text...

Full text loading...

References

  1. Saifullah M.A.B. Komine O. Dong Y. Fukumoto K. Sobue A. Endo F. Saito T. Saido T.C. Yamanaka K. Mizoguchi H. Touchscreen-based location discrimination and paired associate learning tasks detect cognitive impairment at an early stage in an App knock-in mouse model of Alzheimer’s disease. Mol. Brain 2020 13 1 147 10.1186/s13041‑020‑00690‑6 33183323
    [Google Scholar]
  2. Yao Y. Liu Q. Ding S. Chen Y. Song T. Shang Y. Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis. Heliyon 2024 10 6 e27161 10.1016/j.heliyon.2024.e27161 38533079
    [Google Scholar]
  3. Yan C. Chen L. Yinhui Y. Yazhen S. Identifying the role of oligodendrocyte genes in the diagnosis of Alzheimer’s disease through machine learning and bioinformatics analysis. Curr. Alzheimer Res. 2024 21 6 437 455 10.2174/0115672050338777241028071955 39506420
    [Google Scholar]
  4. Zhang H. Wei W. Zhao M. Ma L. Jiang X. Pei H. Cao Y. Li H. Interaction between Aβ and Tau in the pathogenesis of Alzheimer’s disease. Int. J. Biol. Sci. 2021 17 9 2181 2192 10.7150/ijbs.57078 34239348
    [Google Scholar]
  5. Takahashi R.H. Nagao T. Gouras G.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol. Int. 2017 67 4 185 193 10.1111/pin.12520 28261941
    [Google Scholar]
  6. Tcw J. Goate A.M. Genetics of β-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb. Perspect. Med. 2017 7 6 a024539 10.1101/cshperspect.a024539 28003277
    [Google Scholar]
  7. Brookmeyer R. Johnson E. Ziegler-Graham K. Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007 3 3 186 191 10.1016/j.jalz.2007.04.381 19595937
    [Google Scholar]
  8. Ourry V. Binette A.P. St-Onge F. Strikwerda-Brown C. Chagnot A. Poirier J. Breitner J. Arenaza-Urquijo E.M. Rabin J.S. Buckley R. Gonneaud J. Marchant N.L. Villeneuve S. How do modifiable risk factors affect Alzheimer’s disease pathology or mitigate its effect on clinical symptom expression? Biol. Psychiatry 2024 95 11 1006 1019 10.1016/j.biopsych.2023.09.003 37689129
    [Google Scholar]
  9. Rahman M.H. Bajgai J. Fadriquela A. Sharma S. Trinh T.T. Akter R. Jeong Y.J. Goh S.H. Kim C.S. Lee K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules 2021 26 17 5327 10.3390/molecules26175327 34500759
    [Google Scholar]
  10. Mutha R.E. Tatiya A.U. Surana S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur J Pharm Sci 2021 7 1 25 10.1186/s43094‑020‑00161‑8 33495733
    [Google Scholar]
  11. Habtemariam S. Natural products in Alzheimer’s disease therapy: Would old therapeutic approaches fix the broken promise of modern medicines? Molecules 2019 24 8 1519 10.3390/molecules24081519 30999702
    [Google Scholar]
  12. Deng M. Yan W. Gu Z. Li Y. Chen L. He B. anti-neuroinflammatory potential of natural products in the treatment of Alzheimer’s disease. Molecules 2023 28 3 1486 10.3390/molecules28031486 36771152
    [Google Scholar]
  13. Patil P. Thakur A. Sharma A. Flora S.J.S. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev. Res. 2020 81 2 165 183 10.1002/ddr.21587 31820476
    [Google Scholar]
  14. Corcoran M.P. McKay D.L. Blumberg J.B. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. J. Nutr. Gerontol. Geriatr. 2012 31 3 176 189 10.1080/21551197.2012.698219 22888837
    [Google Scholar]
  15. Kiriyama Y. Tokumaru H. Sadamoto H. Kobayashi S. Nochi H. Effects of phenolic acids produced from food-derived flavonoids and amino acids by the gut microbiota on health and disease. Molecules 2024 29 21 5102 10.3390/molecules29215102 39519743
    [Google Scholar]
  16. Li Z. Lu Y. Zhen Y. Jin W. Ma X. Yuan Z. Liu B. Zhou X.L. Zhang L. Avicularin inhibits ferroptosis and improves cognitive impairments in Alzheimer’s disease by modulating the NOX4/Nrf2 axis. Phytomedicine 2024 135 156209 10.1016/j.phymed.2024.156209 39515096
    [Google Scholar]
  17. Al-Khayri J.M. Sahana G.R. Nagella P. Joseph B.V. Alessa F.M. Al-Mssallem M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022 27 9 2901 10.3390/molecules27092901 35566252
    [Google Scholar]
  18. Mozaffarian D. Wu J.H.Y. Flavonoids, dairy foods, and cardiovascular and metabolic health. Circ. Res. 2018 122 2 369 384 10.1161/CIRCRESAHA.117.309008 29348256
    [Google Scholar]
  19. Hamsalakshmi Alex A.M. Arehally Marappa M. Joghee S. Chidambaram S.B. Therapeutic benefits of flavonoids against neuroinflammation: a systematic review. Inflammopharmacology 2022 30 1 111 136 10.1007/s10787‑021‑00895‑8 35031904
    [Google Scholar]
  20. Zahran E.M. Mohyeldin R.H. Refaat H. Abou-Zied H.A. Elnaggar M.H. Abbas G.M. Maher S.A. Saber E.A. Zarka M.A. Elrehany M.A. Abdelmohsen U.R. Sumac liposomes/mesenchymal stem cells fight methotrexate-induced nephrotoxicity in rats via regulating Nrf-2/Keap-1/HO-1 and apoptotic signaling pathways. Arch. Pharm. 2024 e2400684 e2400684 10.1002/ardp.202400684 39548898
    [Google Scholar]
  21. Utpal B.K. Sutradhar B. Zehravi M. Sweilam S.H. Durgawale T.P. Arjun U.V.N.V. Shanmugarajan T.S. Kannan S.P. Prasad P.D. Usman M.R.M. Reddy K.T.K. Sultana R. Alshehri M.A. Rab S.O. Suliman M. Emran T.B. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res. 2025 1847 149310 10.1016/j.brainres.2024.149310 39537124
    [Google Scholar]
  22. Gonçalves A.C. Nunes A.R. Falcão A. Alves G. Silva L.R. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 2021 14 7 690 10.3390/ph14070690 34358116
    [Google Scholar]
  23. Tena N. Martín J. Asuero A.G. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020 9 5 451 10.3390/antiox9050451 32456252
    [Google Scholar]
  24. Sapian S. Taib I.S. Katas H. Latip J. Zainalabidin S. Hamid Z.A. Anuar N.N.M. Budin S.B. The role of anthocyanin in modulating diabetic cardiovascular disease and its potential to be developed as a nutraceutical. Pharmaceuticals 2022 15 11 1344 10.3390/ph15111344 36355516
    [Google Scholar]
  25. Gao W. Wang D. Shi Y. Sun Y. Deng J. Song X. Li J. Zhang M. Potential cardiovascular disease treatment by natural drugs targeting the HIF-1α factor and its pathway. Comb. Chem. High Throughput Screen. 2024 28 10.2174/0113862073331615241018081811 39506435
    [Google Scholar]
  26. Yan Y. Li J. Association of dietary anthocyanidins intake with all-cause mortality and cardiovascular diseases mortality in USA adults: a prospective cohort study. Sci. Rep. 2024 14 1 26595 10.1038/s41598‑024‑76805‑z 39496659
    [Google Scholar]
  27. Prior R.L. Wu X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 2006 40 10 1014 1028 10.1080/10715760600758522 17015246
    [Google Scholar]
  28. Borda M.G. Barreto G.E. Baldera J.P. de Lucia C. Khalifa K. Bergland A.K. Pola I. Botero-Rodríguez F. Siow R.C. Kivipelto M. Zetterberg H. Ashton N.J. Ballard C. Aarsland D. NJ FINGER A randomized, placebo-controlled trial of purified anthocyanins on cognitive function in individuals at elevated risk for dementia: Analysis of inflammatory biomarkers toward personalized interventions. Exp. Gerontol. 2024 196 112569 10.1016/j.exger.2024.112569 39226946
    [Google Scholar]
  29. Mekapogu M. Vasamsetti B.M.K. Kwon O.K. Ahn M.S. Lim S.H. Jung J.A. Anthocyanins in Floral Colors: Biosynthesis and regulation in chrysanthemum flowers. Int. J. Mol. Sci. 2020 21 18 6537 10.3390/ijms21186537 32906764
    [Google Scholar]
  30. Diaconeasa Z. Știrbu I. Xiao J. Leopold N. Ayvaz Z. Danciu C. Ayvaz H. Stǎnilǎ A. Nistor M. Socaciu C. Anthocyanins, vibrant color pigments, and their role in skin cancer prevention. Biomedicines 2020 8 9 336 10.3390/biomedicines8090336 32916849
    [Google Scholar]
  31. Salehi B. Sharifi-Rad J. Cappellini F. Reiner Ž. Zorzan D. Imran M. Sener B. Kilic M. El-Shazly M. Fahmy N.M. Al-Sayed E. Martorell M. Tonelli C. Petroni K. Docea A.O. Calina D. Maroyi A. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Front. Pharmacol. 2020 11 1300 10.3389/fphar.2020.01300 32982731
    [Google Scholar]
  32. de Sousa Moraes L.F. Sun X. Peluzio M.C.G. Zhu M.J. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Crit. Rev. Food Sci. Nutr. 2019 59 1 59 71 10.1080/10408398.2017.1357533 28799785
    [Google Scholar]
  33. Afzal M. Redha A. AlHasan R. Anthocyanins potentially contribute to defense against Alzheimer’s disease. Molecules 2019 24 23 4255 10.3390/molecules24234255 31766696
    [Google Scholar]
  34. Yamakawa M.Y. Uchino K. Watanabe Y. Adachi T. Nakanishi M. Ichino H. Hongo K. Mizobata T. Kobayashi S. Nakashima K. Kawata Y. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. Nutr. Neurosci. 2016 19 1 32 42 10.1179/1476830515Y.0000000042 26304685
    [Google Scholar]
  35. Peng Q. Bakulski K.M. Nan B. Park S.K. Cadmium and Alzheimer’s disease mortality in U.S. adults: Updated evidence with a urinary biomarker and extended follow-up time. Environ. Res. 2017 157 44 51 10.1016/j.envres.2017.05.011 28511080
    [Google Scholar]
  36. Zhao J. Li F. Wu Q. Cheng Y. Liang G. Wang X. Fang S. Wang Q. Fan X. Fang J. Association between trichlorophenols and neurodegenerative diseases: A cross-sectional study from NHANES 2003–2010. Chemosphere 2022 307 Pt 2 135743 10.1016/j.chemosphere.2022.135743 35870612
    [Google Scholar]
  37. Sebastian R.S. Wilkinson Enns C. Goldman J.D. Martin C.L. Steinfeldt L.C. Murayi T. Moshfegh A.J. A New Database Facilitates Characterization of Flavonoid Intake, Sources, and Positive Associations with Diet Quality among US Adults. J. Nutr. 2015 145 6 1239 1248 10.3945/jn.115.213025 25948787
    [Google Scholar]
  38. Chen Y. Tang H. Luo N. Liang X. Yang P. Zhang X. Huang J. Yang Q. Huang S. Lin L. Association between flavonoid intake and rheumatoid arthritis among US adults. J. Nutr. Biochem. 2024 131 109673 10.1016/j.jnutbio.2024.109673 38866190
    [Google Scholar]
  39. Mahemuti N. Jing X. Zhang N. Liu C. Li C. Cui Z. Liu Y. Chen J. Association between systemic immunity-inflammation index and hyperlipidemia: A population-based study from the NHANES (2015–2020). Nutrients 2023 15 5 1177 10.3390/nu15051177 36904176
    [Google Scholar]
  40. Li Z. Zhu G. Chen G. Luo M. Liu X. Chen Z. Qian J. Distribution of lipid levels and prevalence of hyperlipidemia: Data from the NHANES 2007–2018. Lipids Health Dis. 2022 21 1 111 10.1186/s12944‑022‑01721‑y 36307819
    [Google Scholar]
  41. Mao Y. Weng J. Xie Q. Wu L. Xuan Y. Zhang J. Han J. Association between dietary inflammatory index and Stroke in the US population: Evidence from NHANES 1999–2018. BMC Public Health 2024 24 1 50 10.1186/s12889‑023‑17556‑w 38166986
    [Google Scholar]
  42. Liu F. Nie J. Deng M. Yang H. Feng Q. Yang Y. Li X. Li X. Yang X. Li W. Zhou H. Wang S. Dietary flavonoid intake is associated with a lower risk of diabetic nephropathy in US adults: data from NHANES 2007–2008, 2009–2010, and 2017–2018. Food Funct. 2023 14 9 4183 4190 10.1039/D3FO00242J 37066968
    [Google Scholar]
  43. Ye J. Meng X. Yan C. Wang C. Effect of purple sweet potato anthocyanins on beta-amyloid-mediated PC-12 cells death by inhibition of oxidative stress. Neurochem. Res. 2010 35 3 357 365 10.1007/s11064‑009‑0063‑0 19771514
    [Google Scholar]
  44. You J. Kim J. Lim J. Lee E. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 2010 74 5 777 785 10.1016/j.theriogenology.2010.04.002 20537699
    [Google Scholar]
  45. Ya F. Li K. Chen H. Tian Z. Fan D. Shi Y. Song F. Xu X. Ling W. Adili R. Yang Y. Protocatechuic acid protects platelets from apoptosis via inhibiting oxidative stress-mediated PI3K/Akt/GSK3β signaling. Thromb. Haemost. 2021 121 7 931 943 10.1055/s‑0040‑1722621 33545736
    [Google Scholar]
  46. Zhong H. Xu J. Yang M. Hussain M. Liu X. Feng F. Guan R. Protective effect of anthocyanins against neurodegenerative diseases through the microbial-intestinal-brain axis: a critical review. Nutrients 2023 15 3 496 10.3390/nu15030496 36771208
    [Google Scholar]
  47. Rehman S.U. Shah S.A. Ali T. Chung J.I. Kim M.O. Anthocyanins reversed d-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol. Neurobiol. 2017 54 1 255 271 10.1007/s12035‑015‑9604‑5 26738855
    [Google Scholar]
  48. Shah S.A. Amin F.U. Khan M. Abid M.N. Rehman S.U. Kim T.H. Kim M.W. Kim M.O. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J. Neuroinflammation 2016 13 1 286 10.1186/s12974‑016‑0752‑y 27821173
    [Google Scholar]
  49. Ali T. Kim T. Rehman S.U. Khan M.S. Amin F.U. Khan M. Ikram M. Kim M.O. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 2018 55 7 6076 6093 10.1007/s12035‑017‑0798‑6 29170981
    [Google Scholar]
  50. Song Y. Huang L. Yu J. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J. Neuroimmunol. 2016 301 1 6 10.1016/j.jneuroim.2016.11.001 27847126
    [Google Scholar]
  51. Banji O.J.F. Banji D. Makeen H.A. Alqahtani S.S. Alshahrani S. Neuroinflammation: The role of anthocyanins as neuroprotectants. Curr. Neuropharmacol. 2022 20 11 2156 2174 10.2174/1570159X20666220119140835 35043761
    [Google Scholar]
  52. Desjardins J. Tanabe S. Bergeron C. Gafner S. Grenier D. Anthocyanin-rich black currant extract and cyanidin-3-O-glucoside have cytoprotective and anti-inflammatory properties. J. Med. Food 2012 15 12 1045 1050 10.1089/jmf.2011.0316 22738124
    [Google Scholar]
  53. Liang Z. Liang H. Guo Y. Yang D. Cyanidin 3-O-galactoside: A natural compound with multiple health benefits. Int. J. Mol. Sci. 2021 22 5 2261 10.3390/ijms22052261 33668383
    [Google Scholar]
  54. Tarozzi A. Morroni F. Merlicco A. Bolondi C. Teti G. Falconi M. Cantelli-Forti G. Hrelia P. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci. Lett. 2010 473 2 72 76 10.1016/j.neulet.2010.02.006 20152881
    [Google Scholar]
  55. Thummayot S. Tocharus C. Suksamrarn A. Tocharus J. Neuroprotective effects of cyanidin against Aβ-induced oxidative and ER stress in SK-N-SH cells. Neurochem. Int. 2016 101 15 21 10.1016/j.neuint.2016.09.016 27697517
    [Google Scholar]
  56. Sun Y. Zheng Y. Wang W. Yao H. Ali Z. Xiao M. Ma Z. Li J. Zhou W. Cui J. Yu K. Liu Y. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. Plant Cell 2024 37 1 koae303 10.1093/plcell/koae303 39539042
    [Google Scholar]
  57. Li X. Tian Y. Zuo N. Tang J. Cheng S. Li L. Tan J. Zhang J. Shen W. Cyanidin-3-O-glucoside protects Zearalenone-induced in vitro maturation disorders of porcine oocytes by alleviating NOX4-dependent oxidative stress and endoplasmic reticulum stress in cumulus cells. Chemosphere 2024 358 142153 10.1016/j.chemosphere.2024.142153 38688352
    [Google Scholar]
  58. Duan A.Q. Deng Y.J. Tan S.S. Liu S.S. Liu H. Xu Z.S. Shu S. Xiong A.S. DcGST1, encoding a glutathione S-transferase activated by DcMYB7, is the main contributor to anthocyanin pigmentation in purple carrot. Plant J. 2024 117 4 1069 1083 10.1111/tpj.16539 37947285
    [Google Scholar]
  59. Thummayot S. Tocharus C. Jumnongprakhon P. Suksamrarn A. Tocharus J. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells. Acta Pharmacol. Sin. 2018 39 9 1439 1452 10.1038/aps.2017.203 29671417
    [Google Scholar]
  60. Gilani S.J. Bin-Jumah M.N. Al-Abbasi F.A. Imam S.S. Alshehri S. Ghoneim M.M. Shahid Nadeem M. Afzal M. Alzarea S.I. Sayyed N. Kazmi I. Antiamnesic potential of malvidin on aluminum chloride activated by the free radical scavenging property. ACS Omega 2022 7 28 24231 24240 10.1021/acsomega.2c01406 35874261
    [Google Scholar]
  61. Matsunaga N. Imai S. Inokuchi Y. Shimazawa M. Yokota S. Araki Y. Hara H. Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro and in vivo. Mol. Nutr. Food Res. 2009 53 7 869 877 10.1002/mnfr.200800394 19415665
    [Google Scholar]
  62. Merecz-Sadowska A. Sitarek P. Kowalczyk T. Zajdel K. Jęcek M. Nowak P. Zajdel R. Food Anthocyanins: Malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits. Nutrients 2023 15 13 3016 10.3390/nu15133016 37447342
    [Google Scholar]
  63. AlGhannam S.M. El-Rahman S.N.A. Antioxidant evaluation study of black rice anthocyanins nano-composite as prospective against infertility induced by AlCl3 in rats. Braz. J. Biol. 2024 84 e280570 10.1590/1519‑6984.280570 39109714
    [Google Scholar]
  64. Bin Hafeez B. Asim M. Siddiqui I.A. Adhami V.M. Murtaza I. Mukhtar H. Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: A new weapon to blunt prostate cancer growth. Cell Cycle 2008 7 21 3320 3326 10.4161/cc.7.21.6969 18948740
    [Google Scholar]
  65. Yamamoto H. Matsumura R. Nakashima M. Adachi M. Ogawa K. Hongo K. Mizobata T. Kawata Y. Effects of the polyphenols delphinidin and rosmarinic acid on the inducible intra-cellular aggregation of alpha-synuclein in model neuron cells. Appl. Biochem. Biotechnol. 2023 195 7 4134 4147 10.1007/s12010‑023‑04362‑8 36656539
    [Google Scholar]
  66. Heysieattalab S. Sadeghi L. Effects of delphinidin on pathophysiological signs of nucleus basalis of meynert lesioned rats as animal model of Alzheimer disease. Neurochem. Res. 2020 45 7 1636 1646 10.1007/s11064‑020‑03027‑w 32297026
    [Google Scholar]
  67. Kim H.S. Sul D. Lim J.Y. Lee D. Joo S.S. Hwang K.W. Park S.Y. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation. Biosci. Biotechnol. Biochem. 2009 73 7 1685 1689 10.1271/bbb.90032 19584523
    [Google Scholar]
  68. Sohanaki H. Baluchnejadmojarad T. Nikbakht F. Roghani M. Pelargonidin improves passive avoidance task performance in a rat amyloid beta25-35 model of Alzheimer’s disease via estrogen receptor independent pathways. Acta Med. Iran. 2016 54 4 245 250 27309265
    [Google Scholar]
  69. Agarwal P. Holland T.M. James B.D. Cherian L.J. Aggarwal N.T. Leurgans S.E. Bennett D.A. Schneider J.A. Pelargonidin and berry intake association with Alzheimer’s disease neuropathology: a community-based study. J. Alzheimers Dis. 2022 88 2 653 661 10.3233/JAD‑215600 35694918
    [Google Scholar]
  70. Li J. Wang P. Hou M.J. Zhu B.T. Attenuation of amyloid-β-induced mitochondrial dysfunction by active components of anthocyanins in HT22 neuronal cells. MedComm 2023 4 4 e301 10.1002/mco2.301 37346934
    [Google Scholar]
  71. Lin Y.C. Tsai P.F. Wu J.S.B. Protective effect of anthocyanidins against sodium dithionite-induced hypoxia injury in C6 glial cells. J. Agric. Food Chem. 2014 62 24 5603 5608 10.1021/jf501564h 24845373
    [Google Scholar]
  72. Ni T. Yang W. Xing Y. Protective effects of delphinidin against H2O2–induced oxidative injuries in human retinal pigment epithelial cells. Biosci. Rep. 2019 39 8 BSR20190689 10.1042/BSR20190689 31345961
    [Google Scholar]
  73. Rojas-García A. Fernández-Ochoa Á. Cádiz-Gurrea M.L. Arráez-Román D. Segura-Carretero A. Neuroprotective effects of agri-food by-products rich in phenolic compounds. Nutrients 2023 15 2 449 10.3390/nu15020449 36678322
    [Google Scholar]
  74. Bendokas V. Stanys V. Mažeikienė I. Trumbeckaite S. Baniene R. Liobikas J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants 2020 9 9 819 10.3390/antiox9090819 32887513
    [Google Scholar]
  75. Zaa C.A. Marcelo Á.J. An Z. Medina-Franco J.L. Velasco-Velázquez M.A. Anthocyanins: Molecular aspects on their neuroprotective activity. Biomolecules 2023 13 11 1598 10.3390/biom13111598 38002280
    [Google Scholar]
  76. do Rosario V. Lorzadeh E. Brodaty H. Anstey K.J. Chan K. Roodenrys S. Kent K. Bliokas V. Phillipson L. Weston-Green K. Francois M.E. Jiang X. George J. Potter J. Batterham M.J. Charlton K. Assessing the effect of anthocyanins through diet and supplementation on cognitive function in older adults at risk for dementia: protocol for a randomised controlled trial. BMJ Open 2024 14 9 e086435 10.1136/bmjopen‑2024‑086435 39260845
    [Google Scholar]
  77. Maeda-Yamamoto M. Nishimura M. Kitaichi N. Nesumi A. Monobe M. Nomura S. Horie Y. Tachibana H. Nishihira J. A randomized, placebo-controlled study on the safety and efficacy of daily ingestion of green tea (Camellia sinensis L.) cv. “Yabukita” and “Sunrouge” on eyestrain and blood pressure in healthy adults. Nutrients 2018 10 5 569 10.3390/nu10050569 29734777
    [Google Scholar]
/content/journals/car/10.2174/0115672050372100250512054404
Loading
/content/journals/car/10.2174/0115672050372100250512054404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test