Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder associated with age, marked by progressive memory loss linked to the decline of cholinergic neurons, accumulation of amyloid plaques, and the presence of Neurofibrillary Tangles (NFTs). Neuropil threads in the brain contribute to amyloidosis and dementia. Despite extensive research, AD’s etiology remains unclear, and currently, no promising therapy exists. This review examines the role of natural, semi-synthetic, and synthetic drugs in AD treatment. Natural drugs demonstrate safety and efficacy with minimal adverse effects, while most agents, whether natural or synthetic, target multiple steps or directly counteract amyloidogenesis, tau protein pathology, oxidative stress, NMDA receptor activity, inflammation, acetylcholine (AChE) function, or α, β, γ secretase activity. In pursuit of improved treatment outcomes, we explore the effectiveness and challenges of various therapeutic interventions. Our hypothesis underscores the importance of an integrated approach combining these drug types for tailored symptom relief, suggesting combined therapies may offer greater therapeutic benefits compared to single-drug approaches. The drugs discussed show potential in regulating AD, thereby presenting viable options for its management. However, to obtain more favorable results, additional studies are needed by combining these drugs.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050366727250513061730
2025-05-29
2025-12-19
Loading full text...

Full text loading...

References

  1. SinghY.P. RaiH. SinghG. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease.Eur. J. Med. Chem.202121511327810.1016/j.ejmech.2021.113278 33662757
    [Google Scholar]
  2. SinghY.P. TejG.N.V.C. PandeyA. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer’s disease.Eur. J. Med. Chem.202019811225710.1016/j.ejmech.2020.112257 32375073
    [Google Scholar]
  3. SinghY.P. PandeyA. VishwakarmaS. ModiG. A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases.Mol. Divers.201923250952610.1007/s11030‑018‑9878‑4 30293116
    [Google Scholar]
  4. DeTureM.A. DicksonD.W. The neuropathological diagnosis of Alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  5. SinghS.K. SrivastavS. YadavA.K. SrikrishnaS. PerryG. Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds.Oxid. Med. Cell. Longev.201620161736161310.1155/2016/7361613 27034741
    [Google Scholar]
  6. ChauhanB.S. KumarR. KumarP. Neuroprotective potential of flavonoid rich Ascophyllum nodosum (FRAN) fraction from the brown seaweed on an Aβ42 induced Alzheimer’s model of Drosophila.Phytomedicine20229515387210.1016/j.phymed.2021.153872 34906893
    [Google Scholar]
  7. PlutaR. A look at the etiology of Alzheimer’s disease based on the brain ischemia model.Curr. Alzheimer Res.202421316618210.2174/0115672050320921240627050736 38963100
    [Google Scholar]
  8. SinghY.P. ShankarG. JahanS. Further SAR studies on natural template based neuroprotective molecules for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20214611638510.1016/j.bmc.2021.116385 34481338
    [Google Scholar]
  9. RajmohanR. ReddyP.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑160612 27567878
    [Google Scholar]
  10. PuriD.V. NalbalwarS.L. IngleP.P. EEG-based systematic explainable Alzheimer’s disease and mild cognitive impairment identification using novel rational dyadic biorthogonal wavelet filter banks.Circuits Syst. Signal Process.20244331792182210.1007/s00034‑023‑02540‑x
    [Google Scholar]
  11. PuriDV KacharePH SangleSB Leadnet: detection of Alzheimer’s disease using spatiotemporal EEG analysis and low-complexity cnn.IEEE Access2024121138889710.1109/ACCESS.2024.3435768
    [Google Scholar]
  12. PuriD.V. KachareP.H. NalbalwarS.L. Metaheuristic optimized time–frequency features for enhancing Alzheimer’s disease identification.Biomed. Signal Process. Control20249410624410.1016/j.bspc.2024.106244
    [Google Scholar]
  13. SinghY.P. KumarN. PriyaK. Exploration of neuroprotective properties of a naturally inspired multifunctional molecule (F24) against oxidative stress and amyloid β induced neurotoxicity in Alzheimer’s disease models.ACS Chem. Neurosci.2022131274210.1021/acschemneuro.1c00443 34931800
    [Google Scholar]
  14. GongC.X. IqbalK. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease.Curr. Med. Chem.2008152323212328 18855662
    [Google Scholar]
  15. ChenG. XuT. YanY. Amyloid beta: Structure, biology and structure-based therapeutic development.Acta Pharmacol. Sin.20173891205123510.1038/aps.2017.28 28713158
    [Google Scholar]
  16. OlssonF. SchmidtS. AlthoffV. Characterization of intermediate steps in amyloid beta (Aβ) production under near-native conditions.J. Biol. Chem.2014289315401550 24225948
    [Google Scholar]
  17. TakamiM. NagashimaY. SanoY. γ-Secretase: Successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment.J. Neurosci.200929411304213052 19828817
    [Google Scholar]
  18. CukalevskiR. YangX. MeislG. The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation.Chem. Sci. (Camb.)2015674215423310.1039/C4SC02517B 29218188
    [Google Scholar]
  19. JinM. ShepardsonN. YangT. ChenG. WalshD. SelkoeD.J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration.Proc. Natl. Acad. Sci. USA2011108145819582410.1073/pnas.1017033108 21421841
    [Google Scholar]
  20. HolthJ.K. PatelT.K. HoltzmanD.M. Sleep in Alzheimer’s disease: Beyond amyloid.Neurobiol. Sleep Circadian Rhythms2017241410.1016/j.nbscr.2016.08.002 28217760
    [Google Scholar]
  21. LaFerlaF.M. GreenK.N. OddoS. Intracellular amyloid-β in Alzheimer’s disease.Nat. Rev. Neurosci.20078749950910.1038/nrn2168 17551515
    [Google Scholar]
  22. PlutaR. BarcikowskaM. MisickaA. LipkowskiA.W. SpisackaS. JanuszewskiS. Ischemic rats as a model in the study of the neurobiological role of human β-amyloid peptide. Time-dependent disappearing diffuse amyloid plaques in braina.Neuroreport199910173615361910.1097/00001756‑199911260‑00028 10619654
    [Google Scholar]
  23. CummingsJ. LeeG. NahedP. Alzheimer’s disease drug development pipeline: Alzheimer’s & dementia.Trans Res Clin Interven202281e1229510.1002/trc2.12295 35516416
    [Google Scholar]
  24. PandeyU.B. NicholsC.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery.Pharmacol. Rev.201163241143610.1124/pr.110.003293 21415126
    [Google Scholar]
  25. MuqitM.M. FeanyM.B. Modelling neurodegenerative diseases in Drosophila: A fruitful approach?Nat. Rev. Neurosci.200233237243 11994755
    [Google Scholar]
  26. YaoL. KanE.M. KaurC. Notch-1 signaling regulates microglia activation via NF-κB pathway after hypoxic exposure in vivo and in vitro.PLoS One2013811e78439 24223152
    [Google Scholar]
  27. PirG.J. ChoudharyB. MandelkowE. MandelkowE.M. Tau mutant A152T, a risk factor for FTD/PSP, induces neuronal dysfunction and reduced lifespan independently of aggregation in a C. elegans Tauopathy model.Mol. Neurodegener.20161133 27118310
    [Google Scholar]
  28. HoweK. ClarkM.D. TorrojaC.F. The zebrafish reference genome sequence and its relationship to the human genome.Nature20134967446498503 23594743
    [Google Scholar]
  29. JoshiG. ChiY. HuangZ. WangY. Aβ-induced Golgi fragmentation in Alzheimer’s disease enhances Aβ production.Proc. Natl. Acad. Sci. USA201411113E1230E1239 24639524
    [Google Scholar]
  30. CohenR.M. Rezai-ZadehK. WeitzT.M. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss.J. Neurosci.2013331562456256 23575824
    [Google Scholar]
  31. Do CarmoS. CuelloA. Modeling Alzheimer’s disease in transgenic rats.Mol. Neurodegener.2013813710.1186/1750‑1326‑8‑37 24161192
    [Google Scholar]
  32. AlharbiK.S. AfzalM. AlzareaS.I. KhanS.A. AlomarF.A. KazmiI. Rosinidin protects streptozotocin-induced memory impairment-activated neurotoxicity by suppressing oxidative stress and inflammatory mediators in rats.Medicina (Kaunas)2022588993 35893108
    [Google Scholar]
  33. SarasaM. PesiniP. Natural non-trasgenic animal models for research in Alzheimer’s disease.Curr. Alzheimer Res.200962171178 19355852
    [Google Scholar]
  34. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.00177 24454289
    [Google Scholar]
  35. KumarN. GahlawatA. KumarR.N. SinghY.P. ModiG. GargP. Drug repurposing for Alzheimer’s disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors.J. Biomol. Struct. Dyn.20224072878289210.1080/07391102.2020.1844054 33170091
    [Google Scholar]
  36. HowesM.J. PerryE. The role of phytochemicals in the treatment and prevention of dementia.Drugs Aging2011286439468 21639405
    [Google Scholar]
  37. JanssenB. SchäferB. Galantamine.ChemTexts.2017327
    [Google Scholar]
  38. StachlewitzR.F. ArteelG.E. RaleighJ.A. ConnorH.D. MasonR.P. ThurmanR.G. Development and characterization of a new model of tacrine-induced hepatotoxicity: Role of the sympathetic nervous system and hypoxia-reoxygenation.J. Pharmacol. Exp. Ther.199728231591159910.1016/S0022‑3565(24)36973‑3 9316876
    [Google Scholar]
  39. Castro-AlvarezJ.F. Uribe-AriasS.A. Mejía-RaigosaD. Cardona-GómezG.P. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: A systems biology approach.Front. Aging Neurosci.2014623210.3389/fnagi.2014.00232 25225483
    [Google Scholar]
  40. LordénG. WozniakJ.M. DoréK. Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model.Nat. Commun.2022131720010.1038/s41467‑022‑34679‑7 36418293
    [Google Scholar]
  41. DolanP.J. JohnsonG.V. The role of tau kinases in Alzheimer’s disease.Curr. Opin. Drug Discov. Devel.2010135595603 20812151
    [Google Scholar]
  42. BoutajangoutA. SigurdssonE.M. KrishnamurthyP.K. Tau as a therapeutic target for Alzheimer’s disease.Curr. Alzheimer Res.20118666667710.2174/156720511796717195 21679154
    [Google Scholar]
  43. SchwartzT.L. MassaJ.L. GuptaS. Al-SamarraiS. DevittP. MasandP.S. Divalproex sodium versus valproic acid in hospital treatment of psychotic disorders.Prim. Care Companion J. Clin. Psychiatry2000224548 15014582
    [Google Scholar]
  44. Le CorreS. KlafkiH.W. PlesnilaN. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice.Proc. Natl. Acad. Sci. USA2006103259673967810.1073/pnas.0602913103 16769887
    [Google Scholar]
  45. NunanJ. SmallD.H. Regulation of APP cleavage by α‐, β‐ and γ‐secretases.FEBS Lett.2000483161010.1016/S0014‑5793(00)02076‑7 11033346
    [Google Scholar]
  46. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑7 32677986
    [Google Scholar]
  47. BeherD. GrahamS.L. Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease.Expert Opin. Investig. Drugs2005141113851409 16255678
    [Google Scholar]
  48. MentingK.W. ClaassenJ.A.H.R. β-secretase inhibitor: A promising novel therapeutic drug in Alzheimer’s disease.Front. Aging Neurosci.2014616510.3389/fnagi.2014.00165 25100992
    [Google Scholar]
  49. VassarR. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease.Alzheimers Res. Ther.2014698910.1186/s13195‑014‑0089‑7 25621019
    [Google Scholar]
  50. DekeryteR. FranklinZ. HullC. The BACE1 inhibitor LY2886721 improves diabetic phenotypes of BACE1 knock-in mice.Biochim. Biophys. Acta Mol. Basis Dis.202118677166149 33892080
    [Google Scholar]
  51. BlumeT. FilserS. JaworskaA. BACE1 inhibitor MK-8931 alters formation but not stability of dendritic spines.Front. Aging Neurosci.201810229 30093858
    [Google Scholar]
  52. MullardA. The drug-maker’s guide to the galaxy.Nature20175497673445447 28959982
    [Google Scholar]
  53. SiemersE. SkinnerM. DeanR.A. Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers.Clin. Neuropharmacol.2005283126132 15965311
    [Google Scholar]
  54. KaurM. PrakashA. KaliaA.N. Neuroprotective potential of antioxidant potent fractions from Convolvulus pluricaulis Chois. in 3-nitropropionic acid challenged rats.Nutr. Neurosci.20161927078 25896328
    [Google Scholar]
  55. BarakosJ. PurcellD. SuhyJ. Detection and management of amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with anti-amyloid beta therapy.J. Prev. Alzheimers Dis.20229221122010.14283/jpad.2022.21 35542992
    [Google Scholar]
  56. TongA. FlemmingK. McInnesE. OliverS. CraigJ. Enhancing transparency in reporting the synthesis of qualitative research: ENTREQ.BMC Med. Res. Methodol.201212118110.1186/1471‑2288‑12‑181 23185978
    [Google Scholar]
  57. QingH. LiN-M. LiuK-F. QiuY-J. ZhangH-H. NakanishiH. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer’s disease pathogenesis.Neural Regen. Res.201914465866510.4103/1673‑5374.247469 30632506
    [Google Scholar]
  58. VellasB. SolO. SnyderP.J. EHT0202 in Alzheimer’s disease: A 3-month, randomized, placebo-controlled, double-blind study.Curr. Alzheimer Res.20118220321210.2174/156720511795256053 21222604
    [Google Scholar]
  59. ZhaoY. ZhaoB. Oxidative stress and the pathogenesis of Alzheimer’s disease.Oxid. Med. Cell. Longev.2013201311010.1155/2013/316523 23983897
    [Google Scholar]
  60. CheignonC. TomasM. Bonnefont-RousselotD. FallerP. HureauC. CollinF. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease.Redox Biol.20181445046410.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  61. ChoiS.J. JeongC.H. ChoiS.G. Zeatin prevents amyloid beta-induced neurotoxicity and scopolamine-induced cognitive deficits.J. Med. Food200912227127710.1089/jmf.2007.0678 19459726
    [Google Scholar]
  62. YadangF.S.A. NguezeyeY. KomC.W. Scopolamine-induced memory impairment in mice: Neuroprotective effects of Carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract.Int. J. Alzheimers Dis.2020202011010.1155/2020/6372059 32934845
    [Google Scholar]
  63. Guzman-MartinezL. MaccioniR.B. AndradeV. NavarreteL.P. PastorM.G. Ramos-EscobarN. Neuroinflammation as a common feature of neurodegenerative disorders.Front. Pharmacol.201910100810.3389/fphar.2019.01008 31572186
    [Google Scholar]
  64. TabetN. FeldmandH. Ibuprofen for Alzheimer’s disease.Cochrane Database Syst. Rev.200322CD004031 12804498
    [Google Scholar]
  65. AisenP.S. DavisK.L. BergJ.D. A randomized controlled trial of prednisone in Alzheimer’s disease.Neurology200054358859310.1212/WNL.54.3.588 10680787
    [Google Scholar]
  66. ImbimboB.P. SolfrizziV. PanzaF. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment?Front. Aging Neurosci.20102151710.3389/fnagi.2010.00019 20725517
    [Google Scholar]
  67. WeggenS. EriksenJ.L. SagiS.A. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid β42 production by direct modulation of γ-secretase activity.J. Biol. Chem.200327834318313183710.1074/jbc.M303592200 12805356
    [Google Scholar]
  68. JantzenP.T. ConnorK.E. DiCarloG. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice.J. Neurosci.20022262246225410.1523/JNEUROSCI.22‑06‑02246.2002 11896164
    [Google Scholar]
  69. ChenY. LygaJ. Brain-skin connection: Stress, inflammation and skin aging.Inflamm. Allergy Drug Targets201413317719010.2174/1871528113666140522104422 24853682
    [Google Scholar]
  70. HartmannS. MöbiusH.J. Tolerability of memantine in combination with cholinesterase inhibitors in dementia therapy.Int. Clin. Psychopharmacol.2003182818510.1097/00004850‑200303000‑00003 12598818
    [Google Scholar]
  71. KlatteE.T. ScharreD.W. NagarajaH.N. DavisR.A. BeversdorfD.Q. Combination therapy of donepezil and vitamin E in Alzheimer disease.Alzheimer Dis. Assoc. Disord.200317211311610.1097/00002093‑200304000‑00010 12794389
    [Google Scholar]
  72. KabirM.T. UddinM.S. MamunA.A. Combination drug therapy for the management of Alzheimer’s disease.Int. J. Mol. Sci.2020219327210.3390/ijms21093272 32380758
    [Google Scholar]
  73. KnorzA.L. QuanteA. Alzheimer’s disease: Efficacy of mono-and combination therapy. A systematic review.J. Geriatr. Psychiatry Neurol.202235447548610.1177/08919887211044746 34476990
    [Google Scholar]
  74. PetersenR.C. ThomasR.G. GrundmanM. Vitamin E and donepezil for the treatment of mild cognitive impairment.N. Engl. J. Med.20053522323792388 15829527
    [Google Scholar]
  75. DeviR. KumariS. ElancheranR. Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract.Indian J. Pharmacol.201850313013810.4103/ijp.IJP_77_18 30166750
    [Google Scholar]
  76. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.1072994 12130773
    [Google Scholar]
  77. SallowayS. ChalkiasS. BarkhofF. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease.JAMA Neurol.2022791132110.1001/jamaneurol.2021.4161 34807243
    [Google Scholar]
  78. GauthierS. AisenP.S. CummingsJ. Non-amyloid approaches to disease modification for Alzheimer’s disease: An EU/US CTAD task force report.J. Prev. Alzheimers Dis.20207315215710.14283/jpad.2020.18 32420298
    [Google Scholar]
  79. DoodyR.S. RamanR. FarlowM. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease.N. Engl. J. Med.2013369434135010.1056/NEJMoa1210951 23883379
    [Google Scholar]
  80. PandeyM.K. DeGradoT.R. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging.Theranostics20166457159310.7150/thno.14334 26941849
    [Google Scholar]
  81. BirksJ.S. ChongL.Y. Grimley EvansJ. Rivastigmine for Alzheimer’s disease.Cochrane Database Syst. Rev.201599CD001191 26393402
    [Google Scholar]
  82. GrillJ.D. KarlawishJ. Addressing the challenges to successful recruitment and retention in Alzheimer’s disease clinical trials.Alzheimers Res. Ther.2010263410.1186/alzrt58 21172069
    [Google Scholar]
  83. CaiZ. WangC. YangW. Role of berberine in Alzheimer’s disease.Neuropsychiatr. Dis. Treat.20161225092520 27757035
    [Google Scholar]
  84. EldufaniJ. BlaiseG. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications.Alzheimers Dement. (N. Y.)20195175183 31194017
    [Google Scholar]
  85. OlinJ. SchneiderL. Galantamine for Alzheimer’s disease.Cochrane Database Syst. Rev.20023CD001747 12137632
    [Google Scholar]
  86. JungH.A. MinB.S. YokozawaT. LeeJ.H. KimY.S. ChoiJ.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids.Biol. Pharm. Bull.200932814331438 19652386
    [Google Scholar]
  87. WinbladB. GiacobiniE. FrölichL. Phenserine efficacy in Alzheimer’s disease.J. Alzheimers Dis.20112241201120810.3233/JAD‑2010‑101311 20930279
    [Google Scholar]
  88. CoelhoF. BirksJ. Physostigmine for Alzheimer’s disease.Cochrane Database Syst. Rev.200120012CD001499 11405996
    [Google Scholar]
  89. AntuonoP.G. Effectiveness and safety of velnacrine for the treatment of Alzheimer’s disease. A double-blind, placebo-controlled study.Arch. Intern. Med.19951551617661772 7654110
    [Google Scholar]
  90. QianZ.M. KeY. HuperzineA. Is it an effective disease-modifying drug for Alzheimer’s disease?Front. Aging Neurosci.20146216 25191267
    [Google Scholar]
  91. QizilbashN. BirksJ. López-ArrietaJ. LewingtonS. SzetoS. Tacrine for Alzheimer’s disease.Cochrane Database Syst. Rev.200019992CD000202 10796507
    [Google Scholar]
  92. CummingsJ.L. CyrusP.A. BieberF. MasJ. OrazemJ. GulanskiB. Metrifonate treatment of the cognitive deficits of Alzheimer’s disease.Neurology199850512141221 9595966
    [Google Scholar]
  93. WeinrebO. AmitT. Bar-AmO. YoudimM.B. A novel anti-Alzheimer’s disease drug, ladostigil neuroprotective, multimodal brain-selective monoamine oxidase and cholinesterase inhibitor.Int. Rev. Neurobiol.2011100191215 21971009
    [Google Scholar]
  94. KnowlesJ. Donepezil in Alzheimer’s disease: An evidence-based review of its impact on clinical and economic outcomes.Core Evid.200613195219 22500154
    [Google Scholar]
  95. ChauhanB.S. RaiA. SonkarA.K. Neuroprotective activity of a novel synthetic rhodamine-based hydrazone against Cu2+-induced Alzheimer’s disease in Drosophila.ACS Chem. Neurosci.2022131015661579 35476931
    [Google Scholar]
  96. SinghS.K. SinhaP. MishraL. SrikrishnaS. Neuroprotective role of a novel copper chelator against Aβ42 induced neurotoxicity.Int. J. Alzheimers Dis.20132013567128 24159420
    [Google Scholar]
  97. ZhouF. ChenS. XiongJ. LiY. QuL. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells.Biol. Trace Elem. Res.20121492273279 22528780
    [Google Scholar]
  98. PalomoV. PerezD.I. PerezC. 5-imino-1,2,4-thiadiazoles: First small molecules as substrate competitive inhibitors of glycogen synthase kinase 3.J. Med. Chem.201255416451661 22257026
    [Google Scholar]
  99. GunosewoyoH. MidzakA. GaisinaI.N. Characterization of maleimide-based glycogen synthase kinase-3 (GSK-3) inhibitors as stimulators of steroidogenesis.J. Med. Chem.2013561251155129 23725591
    [Google Scholar]
  100. LeostM. SchultzC. LinkA. Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25.Eur. J. Biochem.20002671959835994 10998059
    [Google Scholar]
  101. ZhangS.G. WangX.S. ZhangY.D. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation.Neural Regen. Res.2016116988993 27482230
    [Google Scholar]
  102. CroftC.L. KurbatskayaK. HangerD.P. NobleW. Inhibition of glycogen synthase kinase-3 by BTA-EG4 reduces tau abnormalities in an organotypic brain slice culture model of Alzheimer’s disease.Sci. Rep.2017717434 28785087
    [Google Scholar]
  103. JhangK.A. ParkJ.S. KimH.S. ChongY.H. Resveratrol ameliorates Tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: Implication of ERK1/2 and GSK-3β signaling cascades.J. Agric. Food Chem.2017654496269634 29022339
    [Google Scholar]
  104. JavidniaM. HebronM.L. XinY. KinneyN.G. MoussaC.E.H. Pazopanib reduces phosphorylated Tau levels and alters astrocytes in a mouse model of tauopathy.J. Alzheimers Dis.201760246148110.3233/JAD‑170429 28869476
    [Google Scholar]
  105. LiangZ. LiQ.X. Discovery of Selective, substrate-competitive, and passive membrane permeable glycogen synthase Kinase-3β inhibitors: Synthesis, biological evaluation, and molecular modeling of new C-glycosylflavones.ACS Chem. Neurosci.2018951166118310.1021/acschemneuro.8b00010 29381861
    [Google Scholar]
  106. GirouxV. LentoA.A. IslamM. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration.J. Clin. Invest.201712762378239110.1172/JCI88941 28481227
    [Google Scholar]
  107. ZhouD. LiuH. LiC. Atorvastatin ameliorates cognitive impairment, Aβ1-42 production and Tau hyperphosphorylation in APP/PS1 transgenic mice.Metab. Brain Dis.201631369370310.1007/s11011‑016‑9803‑4 26883430
    [Google Scholar]
  108. AnnamalaiB. WonJ.S. ChoiS. SinghI. SinghA.K. Role of S-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation.Biochem. Biophys. Res. Commun.2015458121421910.1016/j.bbrc.2015.01.093 25640839
    [Google Scholar]
  109. LiuY. SuY. WangJ. Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase.Neurochem. Int.201362445846710.1016/j.neuint.2013.01.014 23357480
    [Google Scholar]
  110. BallatoreC. BrundenK.R. HurynD.M. TrojanowskiJ.Q. LeeV.M.Y. SmithA.B. Microtubule stabilizing agents as potential treatment for Alzheimer’s disease and related neurodegenerative tauopathies.J. Med. Chem.201255218979899610.1021/jm301079z 23020671
    [Google Scholar]
  111. HamannM. AlonsoD. Martín-AparicioE. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease.J. Nat. Prod.20077091397140510.1021/np060092r 17708655
    [Google Scholar]
  112. BrundenK.R. YaoY. PotuzakJ.S. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies.Pharmacol. Res.201163434135110.1016/j.phrs.2010.12.002 21163349
    [Google Scholar]
  113. FrostD. MeechoovetB. WangT. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites.PLoS One201165e1926410.1371/journal.pone.0019264 21573099
    [Google Scholar]
  114. PetersonD.W. GeorgeR.C. ScaramozzinoF. Cinnamon extract inhibits tau aggregation associated with Alzheimer’s disease in vitro.J. Alzheimers Dis.200917358559710.3233/JAD‑2009‑1083 19433898
    [Google Scholar]
  115. IuvoneT. De FilippisD. EspositoG. D’AmicoA. IzzoA.A. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity.J. Pharmacol. Exp. Ther.200631731143114910.1124/jpet.105.099317 16495207
    [Google Scholar]
  116. CaccamoA. OddoS. TranL.X. LaFerlaF.M. Lithium reduces tau phosphorylation but not Abeta or working memory deficits in a transgenic model with both plaques and tangles.Am. J. Pathol.200717051669167510.2353/ajpath.2007.061178 17456772
    [Google Scholar]
  117. XiaH. WuL. ChuM. Effects of breviscapine on amyloid beta 1-42 induced Alzheimer’s disease mice: A HPLC-QTOF-MS based plasma metabonomics study.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201710579210010.1016/j.jchromb.2017.05.003 28511119
    [Google Scholar]
  118. GarcezM.L. MinaF. Bellettini-SantosT. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1-42) in mice.Prog. Neuropsychopharmacol. Biol. Psychiatry201777233110.1016/j.pnpbp.2017.03.010 28336494
    [Google Scholar]
  119. GongL. LiS.L. LiH. ZhangL. Ginsenoside Rg1 protects primary cultured rat hippocampal neurons from cell apoptosis induced by β-amyloid protein.Pharm. Biol.201149550150710.3109/13880209.2010.521514 21438847
    [Google Scholar]
  120. Sabogal-GuáquetaA.M. Muñoz-MancoJ.I. Ramírez-PinedaJ.R. Lamprea-RodriguezM. OsorioE. Cardona-GómezG.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice.Neuropharmacology20159313414510.1016/j.neuropharm.2015.01.027 25666032
    [Google Scholar]
  121. AsoE. FerrerI. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic.Front. Pharmacol.2014537 24634659
    [Google Scholar]
  122. Garrido-MesaN. ZarzueloA. GálvezJ. What is behind the non-antibiotic properties of minocycline?Pharmacol. Res.20136711830 23085382
    [Google Scholar]
  123. CaltagironeC. FerranniniL. MarchionniN. NappiG. ScapagniniG. TrabucchiM. The potential protective effect of tramiprosate (homotaurine) against Alzheimer’s disease: A review.Aging Clin. Exp. Res.2012246580587 22961121
    [Google Scholar]
  124. Garcia-AllozaM. BorrelliL.A. RozkalneA. HymanB.T. BacskaiB.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model.J. Neurochem.2007102410951104 17472706
    [Google Scholar]
  125. ZhangC TanziRE. Natural modulators of amyloid-beta precursor protein processing.Curr Alzheimer Res2012 22998566
    [Google Scholar]
  126. PengY. SunJ. HonS. L-3-n-butylphthalide improves cognitive impairment and reduces amyloid-beta in a transgenic model of Alzheimer’s disease.J. Neurosci.201030248180818910.1523/JNEUROSCI.0340‑10.2010 20554868
    [Google Scholar]
  127. KukarT. PrescottS. EriksenJ.L. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice.BMC Neurosci.2007815410.1186/1471‑2202‑8‑54 17650315
    [Google Scholar]
  128. TelermanA. OfirR. KashmanY. ElmannA. 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling.BMC Complement. Altern. Med.201717133210.1186/s12906‑017‑1840‑y 28645294
    [Google Scholar]
  129. KimJ. ChoC.H. HahnH.G. ChoiS.Y. ChoS.W. Neuroprotective effects of N-adamantyl-4-methylthiazol-2-amine against amyloid β-induced oxidative stress in mouse hippocampus.Brain Res. Bull.20171282228 27816554
    [Google Scholar]
  130. GrimmM.O. MettJ. HartmannT. The impact of Vitamin E and other fat-soluble vitamins on Alzheimer’s disease.Int. J. Mol. Sci.201617111785 27792188
    [Google Scholar]
  131. ReinisaloM. KårlundA. KoskelaA. KaarnirantaK. KarjalainenR.O. Polyphenol Stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases.Oxid. Med. Cell. Longev.20152015340520 26180583
    [Google Scholar]
  132. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.201048118126 22228951
    [Google Scholar]
  133. ShiC. LiuJ. WuF. YewD.T. Ginkgo biloba extract in Alzheimer’s disease: From action mechanisms to medical practice.Int. J. Mol. Sci.2010111107123 20162004
    [Google Scholar]
  134. Pham-HuyL.A. HeH. Pham-HuyC. Free radicals, antioxidants in disease and health.Int. J. Biomed. Sci.2008428996 23675073
    [Google Scholar]
  135. CarmanA.J. DacksP.A. LaneR.F. ShinemanD.W. FillitH.M. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease.J. Nutr. Health Aging2014184383392 24676319
    [Google Scholar]
  136. XieS. ChenJ. LiX. Synthesis and evaluation of selegiline derivatives as monoamine oxidase inhibitor, antioxidant and metal chelator against Alzheimer’s disease.Bioorg. Med. Chem.2015231337223729 25934229
    [Google Scholar]
  137. SinghS.K. GaurR. KumarA. FatimaR. MishraL. SrikrishnaS. The flavonoid derivative 2-(4′ Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic Drosophila: Insights from in silico and in vivo studies.Neurotox. Res.2014264331350 24706035
    [Google Scholar]
  138. ChauhanB.S. SinghY.P. Phytochemistry and pharmacological advances of Ascophyllum nodosum in the management of human diseases: A comprehensive review.Phytomed. Plus202451100718
    [Google Scholar]
/content/journals/car/10.2174/0115672050366727250513061730
Loading
/content/journals/car/10.2174/0115672050366727250513061730
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test