Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Nanotechnology augmentation have enabled the creation of innovative colloidal preparations that can modify the pharmacological characteristics of medications. Numerous effective applications in the treatment of cancer have been made possible by the distinctive physicochemical and technological characteristics of therapies based on nanomaterials. To facilitate and maximize the interaction between cells and tissues, it is necessary to examine and modify the size, shape, charge, and patterning of nanoscale therapeutic molecules. The flavonoids chalcones and their natural scaffolds provide a variety of biological effects crucial for creating medicines. Plant-based anticancer medicines represent a promising scientific and business opportunity that should be investigated. By using traditional Chinese medicine (TCM) therapies, diseases can be avoided, and healthcare can be enhanced. Traditional Chinese medicine is safe, straightforward, and reasonably priced. There are numerous treatments for chronic, geriatric, and incurable diseases. Heterocyclic equivalents of chalcones have a variety of biological properties. One of them is its anti-cancer properties, and as a result Chalcones have drawn a huge interest in the study of malignancy. Licorice is an essential primary ingredient in many traditional folk medicines, including Chinese and Mongolian medicine. Research on chalcone scaffolds with strong growth-inhibitory activity in tumor cell lines was influenced by the rising interest in this medicinal molecule, and numerous papers on these scaffolds are now accessible. It is necessary to do a thorough examination before chalcone congeners can be developed as a prodrug or primary chemical to treat cancer. To create a focused and efficient drug delivery system for cancer treatment, we shall discuss chalcone derivatives and their nano-enabled drug delivery systems in this article. It has been discussed how polymeric nanoparticles might effectively localize in particular tumor tissues and act as drug delivery vehicles for anticancer drugs due to their physicochemical characteristics. A promising strategy to increase the effectiveness of various tumor treatments is the nanoencapsulation of anticancer active substances in polymeric systems.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271606666230731103057
2023-08-09
2025-09-05
Loading full text...

Full text loading...

References

  1. ChivereV.T. KondiahP.P.D. ChoonaraY.E. PillayV. Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment.Cancers202012252210.3390/cancers12020522 32102429
    [Google Scholar]
  2. Cancer Facts and StatisticsAvailable From : http://www.cancer.org/acs/groups/content/@research/documents/webcontent/acspc-041787.pdf [Accessed on: Jan 5, 2015
  3. MahapatraDK BhartiSK AsatiV AntiChalco-cancer nes: Structural and molecular target perspectives.Eur J Med Chem201552341502233003
    [Google Scholar]
  4. GordalizaM. Natural products as leads to anticancer drugs.Clin. Transl. Oncol.200791276777610.1007/s12094‑007‑0138‑9 18158980
    [Google Scholar]
  5. Breast Cancer Facts & Figureshttp://www.cancer.org/acs/groups/content/@research/documents/document/acspc-042725.pdf
  6. DhainiB. DaoukJ. Rose bengal coupled to aguix nps for anti-cancer photodynamic therapy.Photodiagnosis. Photodyn. Ther.20234110342410.1016/j.pdpdt.2023.103424
    [Google Scholar]
  7. DhainiB. WagnerL. MoinardM. Importance of rose bengal loaded with nanoparticles for anti-cancer photodynamic therapy.Pharmaceuticals2022159109310.3390/ph15091093 36145315
    [Google Scholar]
  8. DhainiB. KenzhebayevaB. Ben-MihoubA. Peptide-conjugated nanoparticles for targeted photodynamic therapy.Nanophotonics202110123089313410.1515/nanoph‑2021‑0275
    [Google Scholar]
  9. Al DineJ.E. A facile approach for the doxorubicine delivery in cancer cells by responsive and fluorescent core/shell quantum dots.Bioconjug. Chem.201829722482256
    [Google Scholar]
  10. YoussefZ. Jouan-HureauxV. ColombeauL. Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy.Photodiagn. Photodyn. Ther.20182211512610.1016/j.pdpdt.2018.03.005 29581041
    [Google Scholar]
  11. YoussefZ. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy.Cancer Nanotechnol.201756162
    [Google Scholar]
  12. Jamal Al DineE. Synthesis and characterization of smart nanomaterials for cancer treatment. 9th International Conference on Material Sciences (CSM9). August 26-28, 2015; ENSIC, Nancy, France.2015
    [Google Scholar]
  13. YoussefZ. ArnouxP. ColombeauL. Two approaches for elaborating sensitized TiO 2 nanoparticles of potential effect in photodynamic therapy.Photodiagn. Photodyn. Ther.201717A61A6210.1016/j.pdpdt.2017.01.138
    [Google Scholar]
  14. OuyangY. LiJ. ChenX. FuX. SunS. WuQ. Chalcone derivatives: Role in anticancer therapy.Biomolecules202111689410.3390/biom11060894 34208562
    [Google Scholar]
  15. AhmedM.F. SantaliE.Y. El-HaggarR. Novel piperazine–chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation.J. Enzyme Inhib. Med. Chem.202136130831910.1080/14756366.2020.1861606 33349069
    [Google Scholar]
  16. AbosalimH.M. NaelM.A. El-MoselhyT.F. Design, synthesis and molecular docking of chalcone derivatives as potential anticancer agents.ChemistrySelect20216488889510.1002/slct.202004088
    [Google Scholar]
  17. NgameniB. CedricK. MbavengA.T. Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives.Bioorg. Med. Chem. Lett.20213512782710.1016/j.bmcl.2021.127827 33508467
    [Google Scholar]
  18. AhnS. TruongV.N.P. KimB. Design, synthesis, and biological evaluation of chalcones for anticancer properties targeting glycogen synthase kinase 3 beta.Applied Biological Chemistry20226511710.1186/s13765‑022‑00686‑x
    [Google Scholar]
  19. ShinS.Y. JungE. LimY. Synthesis, crystal structure, hirshfeld surface analysis and docking studies of a novel flavone–chalcone hybrid compound demonstrating anticancer effects by generating ros through glutathione depletion.Crystals202212110810.3390/cryst12010108
    [Google Scholar]
  20. LiK. ZhaoS. LongJ. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products.Cancer Cell Int.20202013610.1186/s12935‑020‑1114‑5 32021565
    [Google Scholar]
  21. MedinaO ZhuY KairemoK Targeted liposomal drug delivery in cancer.Curr Pharm Des.200510242981910.2174/1381612043383467
    [Google Scholar]
  22. KhareS. AlexanderA. AjazuddiA.N. Biomedical applications of nanobiotechnology for drug design, delivery and diagnostics. In: Res.J. Pharm. Technol.201478
    [Google Scholar]
  23. AjazuddinS.S. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.001
    [Google Scholar]
  24. AlexanderA. Ajazuddin, Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives.J. Control. Release201624111012410.1016/j.jconrel.2016.09.017 27663228
    [Google Scholar]
  25. JacobS. NairA.B. ShahJ. Emerging role of nanosuspensions in drug delivery systems.Biomater. Res.2020241310.1186/s40824‑020‑0184‑8 31969986
    [Google Scholar]
  26. SalariN. FarajiF. TorghabehF.M. Polymer-based drug delivery systems for anticancer drugs: A systematic review.Cancer Treat. Res. Commun.20223210060510.1016/j.ctarc.2022.100605 35816909
    [Google Scholar]
  27. PatravaleV.B. DateA.A. KulkarniR.M. Nanosuspensions: A promising drug delivery strategy.J. Pharm. Pharmacol.201056782784010.1211/0022357023691 15233860
    [Google Scholar]
  28. LawrenceM.J. ReesG.D. Microemulsion-based media as novel drug delivery systems.Adv. Drug Deliv. Rev.20004518912110.1016/S0169‑409X(00)00103‑4 11104900
    [Google Scholar]
  29. GagliardiA. GiulianoE. VenkateswararaoE. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.601626 33613290
    [Google Scholar]
  30. RehmanA.U. AkramS. SeralinA. VandammeT. AntonN. Lipid nanocarriers: Formulation, properties, and applications.In:Smart Nanocontainers.Amsterdam, The NetherlandsElsevier202035538210.1016/B978‑0‑12‑816770‑0.00021‑6
    [Google Scholar]
  31. AsasutjaritR. ManagitC. PhanaksriT. TreesuppharatW. FuongfuchatA. Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina.Int. J. Pharm.202057711908410.1016/j.ijpharm.2020.119084 31988033
    [Google Scholar]
  32. TemidayoOB OlusanyaRita Rushdi Haj Ahmad Liposomal drug delivery systems and anticancer drugs.Molecules201823907
    [Google Scholar]
  33. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  34. GrimaudoM.A. PescinaS. PadulaC. Poloxamer 407/TPGS Mixed micelles as promising carriers for cyclosporine ocular delivery.Mol. Pharm.201815571584
    [Google Scholar]
  35. BishtS. FeldmannG. SoniS. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy.J. Nanobiotechnol200751310.1186/1477‑3155‑5‑3 17439648
    [Google Scholar]
  36. WangF. BaoX. FangA. Nanoliposome-encapsulated brinzolamide-hydropropyl-beta-cyclodextrin inclusion complex: A potential therapeutic ocular drug-delivery system.Front. Pharmacol.201899110.3389/fphar.2018.00091 29487529
    [Google Scholar]
  37. ChakrabortyM. BanerjeeD. MukherjeeS. KaratiD. Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: An explicative review.Polym. Bull.202210.1007/s00289‑022‑04661‑w
    [Google Scholar]
  38. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  39. AhmedF. PakunluR.I. SrinivasG. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: PH-triggered release through copolymer degradation.Mol. Pharm.20063334035010.1021/mp050103u 16749866
    [Google Scholar]
  40. KaratiD. A concise review on bio-responsive polymers in targeted drug delivery system.Polym. Bull.202280410.1007/s00289‑022‑04424‑7
    [Google Scholar]
  41. QuaderS. Van GuyseJ.F.R. Bioresponsive polymers for nanomedicine—expectations and reality!Polymers20221417365910.3390/polym14173659 36080733
    [Google Scholar]
  42. ChuS. ShiX. TianY. GaoF. pH-Responsive polymer nanomaterials for tumor therapy.Front. Oncol.20221285501910.3389/fonc.2022.855019 35392227
    [Google Scholar]
  43. BrasseurK. GévryN. AsselinE. Chemoresistance and targeted therapies in ovarian and endometrial cancers.Oncotarget2017834008404210.18632/oncotarget.14021 28008141
    [Google Scholar]
  44. PatelA. SantS. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies.Biotechnol. Adv.201634580381210.1016/j.biotechadv.2016.04.005 27143654
    [Google Scholar]
  45. LiuJ. ChenQ. FengL. LiuZ. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement.Nano Today201821557310.1016/j.nantod.2018.06.008
    [Google Scholar]
  46. EstrellaV. ChenT. LloydM. Acidity generated by the tumor microenvironment drives local invasion.Cancer Res.20137351524153510.1158/0008‑5472.CAN‑12‑2796 23288510
    [Google Scholar]
  47. LiX. LiH. ZhangZ.Y. Research progress of stimuli-responsive polymers in tumor immunotherapy.Prog Pharm Sci2021455325336
    [Google Scholar]
  48. ManchunS. DassC.R. SriamornsakP. Targeted therapy for cancer using pH-responsive nanocarrier systems.Life Sci.20129011-1238138710.1016/j.lfs.2012.01.008 22326503
    [Google Scholar]
  49. McMahonH.T. BoucrotE. Molecular mechanism and physiological functions of clathrin-mediated endocytosis.Nat. Rev. Mol. Cell Biol.201112851753310.1038/nrm3151 21779028
    [Google Scholar]
  50. QiuL. QiaoM. ChenQ. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin.Biomaterials201435379877988710.1016/j.biomaterials.2014.08.008 25201738
    [Google Scholar]
  51. LiuF.H. CongY. QiG.B. JiL. QiaoZ.Y. WangH. Near-infrared laser-driven in situ self-assembly as a general strategy for deep tumor therapy.Nano Lett.201818106577658410.1021/acs.nanolett.8b03174 30251542
    [Google Scholar]
  52. AlsehliM. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery.Saudi Pharm. J.202028325526510.1016/j.jsps.2020.01.004 32194326
    [Google Scholar]
  53. Ramırez-Garc ıa PD, Retamal JS, Shenoy P, Imlach W, Sykes M, Truong N. A pH-Responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain.Nat. Nanotechnol.2019141211501159
    [Google Scholar]
  54. WangJ. ByrneJ.D. NapierM.E. DeSimoneJ.M. More effective nanomedicines through particle design.Small20117141919193110.1002/smll.201100442 21695781
    [Google Scholar]
  55. MatosM.J. Vazquez-RodriguezS. UriarteE. SantanaL. Potential pharmacological uses of chalcones: A patent review (from June 2011 – 2014).Expert Opin. Ther. Pat.201525335136610.1517/13543776.2014.995627 25598152
    [Google Scholar]
  56. LinC.T. Senthil KumarK.J. TsengY.H. Anti-inflammatory activity of flavokawain b from alpinia pricei hayata.J. Agric. Food Chem.200957146060606510.1021/jf900517d 19537711
    [Google Scholar]
  57. LinY. KuangY. LiK. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata.Bioorg. Med. Chem.201725143706371310.1016/j.bmc.2017.05.009 28522265
    [Google Scholar]
  58. FranceschelliS. PesceM. VinciguerraI. Licocalchone-c extracted from glycyrrhiza glabra inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression.Molecules20111675720573410.3390/molecules16075720 21734629
    [Google Scholar]
  59. DaikonyaA. KatsukiS. KitanakaS. Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae).Chem. Pharm. Bull.200452111326132910.1248/cpb.52.1326 15516755
    [Google Scholar]
  60. LeeW.L. HuangJ.Y. ShyurL.F. Phytoagents for cancer management: Regulation of nucleic acid oxidation, ROS, and related mechanisms.Oxid. Med. Cell. Longev.2013201312210.1155/2013/925804 24454991
    [Google Scholar]
  61. YanX. XieT. WangS. WangZ. LiH. YeZ. Apigenin inhibits proliferation of human chondrosarcoma cells via cell cycle arrest and mitochondrial apoptosis induced by ROS generation-an in vitro and in vivo study.Int. J. Clin. Exp. Med.201811316151631
    [Google Scholar]
  62. SteinY. RotterV. Aloni-GrinsteinR. Gain-of-function mutant p53: All the roads lead to tumorigenesis.Int. J. Mol. Sci.20192024619710.3390/ijms20246197 31817996
    [Google Scholar]
  63. WuD. PrivesC. Relevance of the p53–MDM2 axis to aging.Cell Death Differ.201825116917910.1038/cdd.2017.187 29192902
    [Google Scholar]
  64. HoeselB. SchmidJ.A. The complexity of NF-κB signaling in inflammation and cancer.Mol. Cancer20131218610.1186/1476‑4598‑12‑86 23915189
    [Google Scholar]
  65. PerkinsN.D. The diverse and complex roles of NF-κB subunits in cancer.Nat. Rev. Cancer201212212113210.1038/nrc3204 22257950
    [Google Scholar]
  66. GambleC. McIntoshK. ScottR. HoK.H. PlevinR. PaulA. Inhibitory kappa b kinases as targets for pharmacological regulation.Br. J. Pharmacol.2012165480281910.1111/j.1476‑5381.2011.01608.x 21797846
    [Google Scholar]
  67. BaldwinA.S. Regulation of cell death and autophagy by IKK and NF-κB: Critical mechanisms in immune function and cancer.Immunol. Rev.2012246132734510.1111/j.1600‑065X.2012.01095.x 22435564
    [Google Scholar]
  68. YadavV.R. PrasadS. SungB. AggarwalB.B. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer.Int. Immunopharmacol.201111329530910.1016/j.intimp.2010.12.006 21184860
    [Google Scholar]
  69. PandeyM.K. SandurS.K. SungB. SethiG. KunnumakkaraA.B. AggarwalB.B. Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-kappaB and NF-kappaB-regulated gene expression through direct inhibition of IkappaBalpha kinase beta on cysteine 179 residue.J. Biol. Chem.200728224173401735010.1074/jbc.M700890200 17439942
    [Google Scholar]
  70. DuckiS. RennisonD. WooM. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity.Bioorg. Med. Chem.200917227698771010.1016/j.bmc.2009.09.039 19837593
    [Google Scholar]
  71. DuckiS. MackenzieG. GreedyB. Combretastatin-like chalcones as inhibitors of microtubule polymerisation. Part 2: Structure-based discovery of alpha-aryl chalcones.Bioorg. Med. Chem.200917227711772210.1016/j.bmc.2009.09.044 19837594
    [Google Scholar]
  72. MirossayL. VarinskáL. MojžišJ. Antiangiogenic effect of flavonoids and chalcones: An update.Int. J. Mol. Sci.20171912710.3390/ijms19010027 29271940
    [Google Scholar]
  73. CerezoA.B. WinterboneM.S. MoyleC.W.A. NeedsP.W. KroonP.A. Molecular structure‐function relationship of dietary polyphenols for inhibiting VEGF‐induced VEGFR‐2 activity.Mol. Nutr. Food Res.201559112119213110.1002/mnfr.201500407 26250940
    [Google Scholar]
  74. ShanmugamM.K. WarrierS. KumarA.P. SethiG. ArfusoF. Potential role of natural compounds as anti-angiogenic agents in cancer.Curr. Vasc. Pharmacol.2017156503519 28707601
    [Google Scholar]
  75. MaY. XuB. YuJ. Fli-1 Activation through targeted promoter activity regulation using a novel 3′,5′-diprenylated chalcone inhibits growth and metastasis of prostate cancer cells.Int. J. Mol. Sci.2020216221610.3390/ijms21062216 32210104
    [Google Scholar]
  76. IheagwamF.N. OgunlanaO.O. OgunlanaO.E. IsewonI. OyeladeJ. Potential anti-cancer flavonoids isolated from caesalpinia bonduc young twigs and leaves: Molecular docking and in silico studies.Bioinform. Biol. Insights20191310.1177/1177932218821371 30670919
    [Google Scholar]
  77. Imidazolone-chalcone derivatives as potential anticancer agent and process for the preparation thereof.Patent WO2011086412A32012
    [Google Scholar]
  78. Coumarin-chalcones as anticancer agents.Patent US8815940B22012
    [Google Scholar]
  79. Vinylogous chalcone derivatives and their medical use.2012Patent CA2806006A1O2012013
    [Google Scholar]
  80. Arizona biomedical research commission assignee. modified chalcone compounds as antimitotic agents.20138552066
    [Google Scholar]
  81. GloriaL Abdul-RaheemTK 1-Adamantyl Chalcones for the treatment of proliferative DISORDERS.Patent US6864264B12013
    [Google Scholar]
  82. Seoul national university industry foundation seoul and industryacademic cooperation foundation, seoul, anti-cancer composition containing chalcone compounds EP26019432013
    [Google Scholar]
  83. Chalcone compound containing piperazine ring and preparation and application thereof Patent CN103102332A2013
    [Google Scholar]
  84. Novel chalcone derivative and anticancer composition comprising same as active ingredient. Patent WO2013054998A12013
    [Google Scholar]
  85. Chalcone oxime derivatives having inhibiting effect on cancer cell tubulin polymerization, and preparation method thereof.Patent CN103664689A2014
    [Google Scholar]
  86. O-phenyl chalcone compound as well as preparation method and application thereof. Patent CN10375573 2 A2014
    [Google Scholar]
  87. BonifácioB.V. SilvaP.B. RamosM.A. NegriK.M. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: A review.Int. J. Nanomedic20149115 24363556
    [Google Scholar]
  88. CarriersN. RemediesH. TechnologyN. SachanA.K. A review on nanotized herbal drugs.Int. J. Pharm. Sci. Res.20156396197010.13040/IJPSR.0975‑8232.6(3).961‑70
    [Google Scholar]
  89. KimY.J. LeeK.P. LeeD.Y. Anticancer activity of a new chalcone derivative-loaded polymeric micelle.Macromol. Res.2019271485410.1007/s13233‑019‑7002‑y
    [Google Scholar]
  90. WinterE. PizzolC. LocatelliC. In vitro and in vivo effects of free and chalcones-loaded nanoemulsions: insights and challenges in targeted cancer chemotherapies.Int. J. Environ. Res. Public Health20141110100161003510.3390/ijerph111010016 25264679
    [Google Scholar]
/content/journals/caps/10.2174/2452271606666230731103057
Loading
/content/journals/caps/10.2174/2452271606666230731103057
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; Chalcone; liposome; nano formulation; nanoparticles; polymer; polymeric micelles; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test