Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Asparaginase (ASNase) is widely used as an important component of first-line treatment for acute lymphoblastic leukemia (ALL). Although it is associated with a high rate of complete remission (~93%), challenges remain due to several side effects ranging from immune reactions to severe toxicity, largely associated with its higher immunogenicity and glutamine coactivity. Innovative products have therefore been devised to minimise these adverse reactions while increasing the enzymes’ pharmacokinetic properties, stability, and efficacy. This review focuses on commercially available formulations and others that remain in development, discussing the most recent strategies for preparing alternative formulations of the enzyme to be less immunogenic and have low glutaminase coactivity by using site-specific mutagenesis, PEGylation, and encapsulation techniques.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271606666230104143806
2023-01-18
2025-11-06
Loading full text...

Full text loading...

References

  1. PinhoPGD CarvalhoM Pinto J. Cancer metabolomics2018MDPI 201910.3390/books978‑3‑03921‑346‑7
    [Google Scholar]
  2. Miranda-FilhoA. PiñerosM. FerlayJ. SoerjomataramI. MonnereauA. BrayF. Epidemiological patterns of leukaemia in 184 countries: a population-based study.Lancet Haematol.201851e14e2410.1016/S2352‑3026(17)30232‑6 29304322
    [Google Scholar]
  3. NguyenH.A. SuY. ZhangJ.Y. A novel l -asparaginase with low l -glutaminase coactivity is highly efficacious against both t- and b-cell acute lymphoblastic leukemias in vivo.Cancer Res.20187861549156010.1158/0008‑5472.CAN‑17‑2106 29343523
    [Google Scholar]
  4. Key statistics for acute lymphocytic leukemia (ALL).Cancer2022Available From : [https://www.cancer.org/cancer/acute-lymphocytic-leukemia/about/key-statistics.html
    [Google Scholar]
  5. LuX.T. Therapeutic strategies for childhood high-risk acute lymphoblastic leukemia.Beijing Da Xue Xue Bao2013452327332 23591360
    [Google Scholar]
  6. SchrappeM. ReiterA. LudwigW.D. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: Results of trial ALL-BFM 90.Blood2000951133103322 10828010
    [Google Scholar]
  7. MasettiR. PessionA. First-line treatment of acute lymphoblastic leukemia with pegasparaginase.Biologics20093359368 19707421
    [Google Scholar]
  8. GersonS.L. CaimiP.F. WilliamB.M. CregerR.J. Pharmacology and molecular mechanisms of antineoplastic agents for hematologic malignancies hematology.Elsevier2018849912
    [Google Scholar]
  9. GrahamM. Pegaspargase: A review of clinical studies.Adv. Drug Deliv. Rev.200355101293130210.1016/S0169‑409X(03)00110‑8 14499708
    [Google Scholar]
  10. PietersR. HungerS.P. BoosJ. L-asparaginase treatment in acute lymphoblastic leukemia.Cancer2011117223824910.1002/cncr.25489 20824725
    [Google Scholar]
  11. El-NaggarN.E.A. MoawadH. El-ShweihyN.M. El-EwasyS.M. Optimization of culture conditions for production of the anti-leukemic glutaminase free l-asparaginase by newly isolated streptomyces olivaceus neae-119 using response surface methodology.BioMed Res. Int.2015201511710.1155/2015/627031 26180806
    [Google Scholar]
  12. CecconelloD.K. MagalhãesM.R. WerlangI.C.R. LeeM.L.M. MichalowskiM.B. DaudtL.E. Asparaginase: An old drug with new questions.Hematol. Transfus. Cell Ther.202042327528210.1016/j.htct.2019.07.010 31801703
    [Google Scholar]
  13. MitchellL. HoogendoornH. GilesA.R. VeghP. AndrewM. Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L’Asparaginase-induced antithrombin III deficiency.Blood199483238639110.1182/blood.V83.2.386.386 8286739
    [Google Scholar]
  14. Nowak-GöttlU. WolffJ.E.A. KuhnN. Enhanced thrombin generation, P-von willebrand factor, P-fibrin D-dimer and P-plasminogen activator inhibitor 1: Predictive for venous thrombosis in asparaginase-treated children.Fibrinolysis19948636510.1016/0268‑9499(94)90248‑8
    [Google Scholar]
  15. RizzariC. ZucchettiM. ConterV. L-asparagine depletion and L-asparaginase activity in children with acute lymphoblastic leukemia receiving i.m. or i.v. Erwinia C. or E. coli L-asparaginase as first exposure.Ann. Oncol.200011218919310.1023/A:1008368916800 10761754
    [Google Scholar]
  16. PuiC.H. RobisonL.L. LookA.T. Acute lymphoblastic leukaemia.Lancet200837196171030104310.1016/S0140‑6736(08)60457‑2 18358930
    [Google Scholar]
  17. SantosM.O. Estimativa 2018: Incidência de câncer no brasil.Rev. Bras. Cancerol.201864111912010.32635/2176‑9745.RBC.2018v64n1.115
    [Google Scholar]
  18. OliveiraP.D. Leukaemia prevalence worldwide: Raising aetiology questions.Lancet Haematol.201851e2e310.1016/S2352‑3026(17)30231‑4 29304323
    [Google Scholar]
  19. Earp SiqueiraA.S. GonçalvesJ.G. Xavier MendoncaP.E. Elias MerhyE. Poirot LandM.G. Economic impact analysis of cancer in the health system of Brazil: model based in public database.Health Sci. J.2017114110.21767/1791‑809X.1000514
    [Google Scholar]
  20. HijiyaN. van der SluisI.M. Asparaginase-associated toxicity in children with acute lymphoblastic leukemia.Leuk. Lymphoma201657474875710.3109/10428194.2015.1101098 26457414
    [Google Scholar]
  21. EmadiA. ZokaeeH. SausvilleE.A. Asparaginase in the treatment of non-ALL hematologic malignancies.Cancer Chemother. Pharmacol.201473587588310.1007/s00280‑014‑2402‑3 24515335
    [Google Scholar]
  22. ArrivukkarasanS. MuthusivaramapandianM. AravindanR. ViruthagiriT. Effect of medium composition and kinetic studies on extracellular and intracellular production of L-asparaginase from Pectobacterium carotovorum.Food Sci. Technol. Int.201016211512510.1177/1082013209353219 21339127
    [Google Scholar]
  23. ZuoS. XueD. ZhangT. JiangB. MuW. Biochemical characterization of an extremely thermostable l-asparaginase from thermococcus gammatolerans EJ3.J. Mol. Catal., B Enzym.201410912212910.1016/j.molcatb.2014.08.021
    [Google Scholar]
  24. WhitecarJ.P.Jr BodeyG.P. HarrisJ.E. FreireichE.J. L-Asparaginase.N. Engl. J. Med.19702821373273410.1056/NEJM197003262821307 4906449
    [Google Scholar]
  25. YunM.K. NourseA. WhiteS.W. RockC.O. HeathR.J. Crystal structure and allosteric regulation of the cytoplasmic Escherichia coli L-asparaginase I.J. Mol. Biol.2007369379481110.1016/j.jmb.2007.03.061 17451745
    [Google Scholar]
  26. BoosJ. WerberG. AhlkeE. Monitoring of asparaginase activity and asparagine levels in children on different asparaginase preparations.Eur. J. Cancer19963291544155010.1016/0959‑8049(96)00131‑1 8911116
    [Google Scholar]
  27. OrtlundE. LacountM.W. Lacount §, Lewinski K, Lukasz L. Reactions of pseudomonas 7a glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu.Biochemistry20003961199120410.1021/bi991797d 10684596
    [Google Scholar]
  28. MüllerH. BoosJ. Use of? -asparaginase in childhood ALL.Crit. Rev. Oncol. Hematol.19982829711310.1016/S1040‑8428(98)00015‑8 9768345
    [Google Scholar]
  29. JonesB. HollandJ.F. GlidewellO. Optimal use of L-asparaginase (NSC-109229) in acute lymphocytic leukemia.Med. Pediatr. Oncol.19773438740010.1002/mpo.2950030410 337095
    [Google Scholar]
  30. ChandS. MahajanR.V. PrasadJ.P. A comprehensive review on microbial l ‐asparaginase: Bioprocessing, characterization, and industrial applications.Biotechnol. Appl. Biochem.202067461964710.1002/bab.1888 31954377
    [Google Scholar]
  31. AsselinB. RizzariC. Asparaginase pharmacokinetics and implications of therapeutic drug monitoring.Leuk. Lymphoma20155682273228010.3109/10428194.2014.1003056 25586605
    [Google Scholar]
  32. VöllerS. PichlmeierU. ZensA. HempelG. Pharmacokinetics of recombinant asparaginase in children with acute lymphoblastic leukemia.Cancer Chemother. Pharmacol.201881230531410.1007/s00280‑017‑3492‑5 29204688
    [Google Scholar]
  33. PlourdeP.V. JehaS. HijiyaN. Safety profile of asparaginase Erwinia chrysanthemi in a large compassionate‐use trial.Pediatr. Blood Cancer20146171232123810.1002/pbc.24938 24436152
    [Google Scholar]
  34. LiR.J. JinR. LiuC. FDA approval summary: Calaspargase pegol-mknl for treatment of acute lymphoblastic leukemia in children and young adults.Clin. Cancer Res.202026232833110.1158/1078‑0432.CCR‑19‑1255 31444252
    [Google Scholar]
  35. DinndorfP.A. GootenbergJ. CohenM.H. KeeganP. PazdurR. FDA drug approval summary: Pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL).Oncologist200712899199810.1634/theoncologist.12‑8‑991 17766659
    [Google Scholar]
  36. Costa-SilvaT.A. CostaI.M. BiasotoH.P. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer.Blood Rev.20204310065110.1016/j.blre.2020.100651 32014342
    [Google Scholar]
  37. GadelhaM.I.P. Monitoring asparaginase activity.Lancet Oncol.20181911e57510.1016/S1470‑2045(18)30782‑4 30507478
    [Google Scholar]
  38. KumarK. KaurJ. WaliaS. PathakT. AggarwalD. l -asparaginase: An effective agent in the treatment of acute lymphoblastic leukemia.Leuk. Lymphoma201455225626210.3109/10428194.2013.803224 23662993
    [Google Scholar]
  39. LabrouN.E. PapageorgiouA.C. AvramisV.I. Structure-function relationships and clinical applications of l-asparaginases.Curr. Med. Chem.2010172183219510.2174/092986710791299920 20423302
    [Google Scholar]
  40. SilvermanL.B. SupkoJ.G. StevensonK.E. Intravenous PEG-asparaginase during remission induction in children and adolescents with newly diagnosed acute lymphoblastic leukemia.Blood201011571351135310.1182/blood‑2009‑09‑245951 20007809
    [Google Scholar]
  41. AngiolilloA.L. SchoreR.J. DevidasM. Pharmacokinetic and pharmacodynamic properties of calaspargase pegol Escherichia coli L-asparaginase in the treatment of patients with acute lymphoblastic leukemia: Results from Children’s Oncology Group Study AALL07P4.J. Clin. Oncol.201432343874388210.1200/JCO.2014.55.5763 25348002
    [Google Scholar]
  42. MariniB.L. PerissinottiA.J. BixbyD.L. BrownJ. BurkeP.W. Catalyzing improvements in ALL therapy with asparaginase.Blood Rev.201731532833810.1016/j.blre.2017.06.002 28697948
    [Google Scholar]
  43. SalzerW. BostromB. MessingerY. PerissinottiA.J. MariniB. Asparaginase activity levels and monitoring in patients with acute lymphoblastic leukemia.Leuk. Lymphoma20185981797180610.1080/10428194.2017.1386305 29045165
    [Google Scholar]
  44. RathodS. RamseyM. RellingM.V. FinkelmanF.D. FernandezC.A. Hypersensitivity reactions to asparaginase in mice are mediated by anti-asparaginase IgE and IgG and the immunoglobulin receptors FcεRI and FcγRIII.Haematologica2019104231932910.3324/haematol.2018.199448 30237274
    [Google Scholar]
  45. van der SluisI.M. VroomanL.M. PietersR. Consensus expert recommendations for identification and management of asparaginase hypersensitivity and silent inactivation.Haematologica2016101327928510.3324/haematol.2015.137380 26928249
    [Google Scholar]
  46. AvramisV.I. SencerS. PericlouA.P. A randomized comparison of nativeEscherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: A Children’s Cancer Group study.Blood20029961986199410.1182/blood.V99.6.1986 11877270
    [Google Scholar]
  47. PanosyanE.H. SeibelN.L. Martin-AragonS. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children’s Cancer Group Study CCG-1961.J. Pediatr. Hematol. Oncol.200426421722610.1097/00043426‑200404000‑00002 15087948
    [Google Scholar]
  48. WooM.H. HakL.J. StormM.C. Hypersensitivity or development of antibodies to asparaginase does not impact treatment outcome of childhood acute lymphoblastic leukemia.J. Clin. Oncol.20001871525153210.1200/JCO.2000.18.7.1525 10735901
    [Google Scholar]
  49. AvramisV.I. Martin-AragonS. AvramisE.V. AsselinB.L. Pharmacoanalytical assays of Erwinia asparaginase (erwinase) and pharmacokinetic results in high-risk acute lymphoblastic leukemia (HR ALL) patients: Simulations of erwinase population PK-PD models.Anticancer Res.2007274C25612572 17695416
    [Google Scholar]
  50. AvramisV.I. PanosyanE.H. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: The past, the present and recommendations for the future.Clin. Pharmacokinet.200544436739310.2165/00003088‑200544040‑00003 15828851
    [Google Scholar]
  51. LarsonR.A. FretzinM.H. DodgeR.K. SchifferC.A. Hypersensitivity reactions to L-asparaginase do not impact on the remission duration of adults with acute lymphoblastic leukemia.Leukemia199812566066510.1038/sj.leu.2401007 9593262
    [Google Scholar]
  52. HoogerbruggeN. JansenH. HoogerbruggeP.M. Transient hyperlipidemia during treatment of ALL with L-asparaginase is related to decreased lipoprotein lipase activity.Leukemia19971181377137910.1038/sj.leu.2400703 9264396
    [Google Scholar]
  53. TongW.H. PietersR. de Groot-KrusemanH.A. The toxicity of very prolonged courses of PEGasparaginase or Erwinia asparaginase in relation to asparaginase activity, with a special focus on dyslipidemia.Haematologica201499111716172110.3324/haematol.2014.109413 25150254
    [Google Scholar]
  54. Heitink-PolléK.M.J. PrinsenB.H.C.M.T. de KoningT.J. van HasseltP.M. BieringsM.B. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase.JIMD Rep.•••710310810.1007/8904_2012_156 23430503
    [Google Scholar]
  55. AsselinB.L. FisherV. Impact of clinical and subclinical hypersensitivity to asparaginase in acute lymphoblastic leukemia.Clin. J. Oncol. Nurs.2014186E107E11210.1188/14.CJON.E107‑E112 25427712
    [Google Scholar]
  56. GrigoryanRS PanosyanEH SeibelNL GaynonPS AvramisIA AvramisVI Changes of amino acid serum levels in pediatric patients with higher-risk acute lymphoblastic leukemia (CCG-1961).in vivo 200418210712 15113036
    [Google Scholar]
  57. RajaR.A. SchmiegelowK. FrandsenT.L. Asparaginase-associated pancreatitis in children.Br. J. Haematol.20121591182710.1111/bjh.12016 22909259
    [Google Scholar]
  58. RankC.U. WolthersB.O. GrellK. Asparaginase-associated pancreatitis in acute lymphoblastic leukemia: Results from the nopho all2008 treatment of patients 1-45 years of age.J. Clin. Oncol.202038214515410.1200/JCO.19.02208 31770057
    [Google Scholar]
  59. DurdenD.L. SalazarA.M. DistasioJ.A. Kinetic analysis of hepatotoxicity associated with antineoplastic asparaginases.Cancer Res.198343416021605 6339039
    [Google Scholar]
  60. FonsecaM.H.G. FiúzaT da S. MoraisS. Circumventing the side effects of L-asparaginase.Biomed. Pharmacother.202113911161610.1016/j.biopha.2021.111616 33932739
    [Google Scholar]
  61. NussbaumV. LubckeN. FindlayR. Hyperammonemia secondary to asparaginase: A case series.J. Oncol. Pharm. Pract.201622116116410.1177/1078155214551590 25245038
    [Google Scholar]
  62. DamodaranV.B. FeeC. Protein PEGylation: An overview of chemistry and process considerations.Eur Pharm Rev2010151826
    [Google Scholar]
  63. JevševarS. KunsteljM. PorekarV.G. PEGylation of therapeutic proteins.Biotechnol. J.20105111312810.1002/biot.200900218 20069580
    [Google Scholar]
  64. AvramisV.I. TiwariP.N. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia.Int. J. Nanomedicine200613241254 17717965
    [Google Scholar]
  65. KeatingMJ HolmesR LernerS HoDH L-asparaginase and PEG asparaginase--past, present, and future. Leuk Lymphoma199310(sup1)(Suppl.)153710.3109/104281993091491298481665
    [Google Scholar]
  66. VroomanL.M. BlonquistT.M. SupkoJ.G. Efficacy and toxicity of pegaspargase and calaspargase pegol in childhood acute lymphoblastic leukemia/lymphoma: Results of DFCI 11-001.J. Clin. Oncol.20193715Suppl.10006610.1200/JCO.2019.37.15_suppl.10006
    [Google Scholar]
  67. BrandenburgG. PoppenborgS. RadckeC. 10 - Challenges in the analytical characterization of pegylated asparaginase polymer-protein conjugates.Elsevier202020523110.1016/B978‑0‑444‑64081‑9.00010‑3
    [Google Scholar]
  68. LewG. Space for calaspargase? a new asparaginase for acute lymphoblastic leukemia.Clin. Cancer Res.202026232532710.1158/1078‑0432.CCR‑19‑2975 31641006
    [Google Scholar]
  69. ShrivastavaA. KhanA.A. KhurshidM. KalamM.A. JainS.K. SinghalP.K. Recent developments in l-asparaginase discovery and its potential as anticancer agent.Crit. Rev. Oncol. Hematol.201610011010.1016/j.critrevonc.2015.01.002 25630663
    [Google Scholar]
  70. EglerR.A. AhujaS.P. MatloubY. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia.J. Pharmacol. Pharmacother.201672627110.4103/0976‑500X.184769 27440950
    [Google Scholar]
  71. BurkeM.J. How to manage asparaginase hypersensitivity in acute lymphoblastic leukemia.Future Oncol.201410162615262710.2217/fon.14.138 24983955
    [Google Scholar]
  72. FigueiredoL. ColeP.D. DrachtmanR.A. Asparaginase erwinia chrysanthemi as a component of a multi-agent chemotherapeutic regimen for the treatment of patients with acute lymphoblastic leukemia who have developed hypersensitivity to E. coli-derived asparaginase.Expert Rev. Hematol.20169322723410.1586/17474086.2016.1142370 26765930
    [Google Scholar]
  73. ChienW.W. AllasS. RachinelN. Pharmacology, immunogenicity, and efficacy of a novel pegylated recombinant Erwinia chrysanthemi-derived L-asparaginase.Invest. New Drugs201432579580510.1007/s10637‑014‑0102‑9 24829072
    [Google Scholar]
  74. DerstC. HenselingJ. RöhmK.H. Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248.Protein Sci.20009102009201710.1110/ps.9.10.2009 11106175
    [Google Scholar]
  75. OffmanM.N. KrolM. PatelN. Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity.Blood201111751614162110.1182/blood‑2010‑07‑298422 21106986
    [Google Scholar]
  76. Melik-NubarovN.S. GrozdovaI.D. LomakinaG.Y. PEGylated recombinant L-asparaginase from Erwinia carotovora: Production, properties, and potential applications.Prikl. Biokhim. Mikrobiol.2017532164172 29508977
    [Google Scholar]
  77. AllasS. SahakianP. FichtnerI. AbribatT. Immunogenicity profile in mice of a pegylated recombinant Erwinia chrysanthemi-derived l-asparaginase.Blood2009114222034410.1182/blood.V114.22.2034.2034
    [Google Scholar]
  78. MeneguettiG.P. SantosJ.H.P.M. ObrequeK.M.T. Novelsite-specific PEGylated L-asparaginase.PLoS One201914e021195110.1371/journal.pone.0211951 30753228
    [Google Scholar]
  79. Ramirez-PazJ. SaxenaM. DelinoisL.J. Thiol-maleimide poly(ethylene glycol) crosslinking of L-asparaginase subunits at recombinant cysteine residues introduced by mutagenesis.PLoS One2018137e019764310.1371/journal.pone.0197643 30052638
    [Google Scholar]
  80. Manuela GasparM. BlancoD. CruzM.E.M. José AlonsoM. Formulation of l-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release.J. Control. Release1998521-2536210.1016/S0168‑3659(97)00196‑X 9685935
    [Google Scholar]
  81. WolfM. WirthM. PittnerF. GaborF. Stabilisation and determination of the biological activity of l-asparaginase in poly(d,l-lactide-co-glycolide) nanospheres.Int. J. Pharm.20032561-214115210.1016/S0378‑5173(03)00071‑1 12695020
    [Google Scholar]
  82. TinocoA. RibeiroA. OliveiraC. ParpotP. GomesA. Cavaco-PauloA. Albumin/asparaginase capsules prepared by ultrasound to retain ammonia.Appl. Microbiol. Biotechnol.2016100229499950810.1007/s00253‑016‑7668‑4 27314846
    [Google Scholar]
  83. RigouinC. NguyenH.A. SchalkA.M. LavieA. Discovery of human-like L-asparaginases with potential clinical use by directed evolution.Sci. Rep.2017711022410.1038/s41598‑017‑10758‑4 28860480
    [Google Scholar]
  84. BelvisoS. IulianoR. AmatoR. PerrottiN. MennitiM. The human asparaginase enzyme (ASPG) inhibits growth in leukemic cells.PLoS One2017125e017817410.1371/journal.pone.0178174 28542249
    [Google Scholar]
  85. NartaU.K. KanwarS.S. AzmiW. Pharmacological and clinical evaluation of l-asparaginase in the treatment of leukemia.Crit. Rev. Oncol. Hematol.200761320822110.1016/j.critrevonc.2006.07.009 17011787
    [Google Scholar]
  86. ChiuM. TarditoS. PillozziS. Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts.Br. J. Cancer201411161159116710.1038/bjc.2014.425 25072259
    [Google Scholar]
  87. ParmentierJ.H. MaggiM. TarascoE. ScottiC. AvramisV.I. MittelmanS.D. Glutaminase activity determines cytotoxicity of l-asparaginases on most leukemia cell lines.Leuk. Res.201539775776210.1016/j.leukres.2015.04.008 25941002
    [Google Scholar]
  88. FungM.K.L. ChanG.C.F. Drug-induced amino acid deprivation as strategy for cancer therapy.J. Hematol. Oncol.201710114410.1186/s13045‑017‑0509‑9 28750681
    [Google Scholar]
  89. ChanW.K. LorenziP.L. AnishkinA. The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells.Blood2014123233596360610.1182/blood‑2013‑10‑535112 24659632
    [Google Scholar]
  90. ArdalanN. MirzaieS. SepahiA.A. Khavari-NejadR.A. Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies.Med. Hypotheses201811271710.1016/j.mehy.2018.01.004 29447943
    [Google Scholar]
  91. Battiston LoureiroC. Silva BorgesK. Faria AndradeA. Gonzaga ToneL. SaidS. Purification and biochemical characterization of native and pegylated form of L-asparaginase from aspergillus terreus and evaluation of its antiproliferative activity.Adv. Microbiol.20122213814510.4236/aim.2012.22019
    [Google Scholar]
  92. ChienW.W. LebeuxC. RachinelN. Anti-leukemic activity of a novel pegylated recombinant Erwinia chrysanthemi-derived L-asparaginase on lymphoid cell lines and leukemia-bearing mouse models.Blood2012120212571110.1182/blood.V120.21.2571.2571
    [Google Scholar]
  93. PisalD.S. KosloskiM.P. Balu-IyerS.V. Delivery of therapeutic proteins.J. Pharm. Sci.20109962557257510.1002/jps.22054 20049941
    [Google Scholar]
  94. AbeM. AkbarzaderalehP. HamachiM. YoshimotoN. YamamotoS. Interaction mechanism of mono-PEGylated proteins in electrostatic interaction chromatography.Biotechnol. J.20105547748310.1002/biot.201000013 20440716
    [Google Scholar]
  95. NairD. PodgórskiM. ChataniS. The thiol‐michael addition click reaction: a powerful and widely used tool in materials chemistry.Chem. Mater.201426172474410.1021/cm402180t
    [Google Scholar]
  96. SoaresA.L. GuimarãesG.M. PolakiewiczB. PitomboR.N.M. Abrahão-NetoJ. Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli l-asparaginase.Int. J. Pharm.20022371-216317010.1016/S0378‑5173(02)00046‑7 11955814
    [Google Scholar]
  97. EdmanP. SjöholmI. Acrylic microspheres in vivo V: Immunological properties of immobilized asparaginase in microparticles.J. Pharm. Sci.198271557658010.1002/jps.2600710523 6212669
    [Google Scholar]
  98. BaranE.T. OzerN. HasirciV. in vivo half life of nanoencapsulated L-asparaginase.J. Mater. Sci. Mater. Med.2002131113112110.1023/a:1021125617828 15348652
    [Google Scholar]
  99. VasudevS.S. AhmadS. ParveenR. Formulation of PEG-ylated L-asparaginase loaded poly (lactide-co-glycolide) nanoparticles: influence of Pegylation on enzyme loading, activity and in vitro release.Pharmazie20116612956960 22312702
    [Google Scholar]
  100. KaramitrosC.S. KonradM. Human 60-kDa lysophospholipase contains an N-terminal L-asparaginase domain that is allosterically regulated by L-asparagine.J. Biol. Chem.201428919129621297510.1074/jbc.M113.545038 24657844
    [Google Scholar]
  101. SchalkA.M. NguyenH.A. RigouinC. LavieA. Identification and structural analysis of an L-asparaginase enzyme from guinea pig with putative tumor cell killing properties.J. Biol. Chem.201428948331753318610.1074/jbc.M114.609552 25320094
    [Google Scholar]
  102. RothG. NunesJ.E.S. RosadoL.A. Recombinant Erwinia carotovora l-asparaginase II production in Escherichia coli fed-batch cultures.Braz. J. Chem. Eng.201330224525610.1590/S0104‑66322013000200003
    [Google Scholar]
  103. KiddJ.G. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum.J. Exp. Med.195398656558210.1084/jem.98.6.565 13109110
    [Google Scholar]
/content/journals/caps/10.2174/2452271606666230104143806
Loading
/content/journals/caps/10.2174/2452271606666230104143806
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test