Skip to content
2000
Volume 8, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Introduction

Currently, the literature on amino acid delivery through microspheres is almost nonexistent. The present study was based on the development and characterization of hybrid microspheres of a polymeric matrix structured with palygorskite nanoclays. These microspheres are proposed to be used as controlled delivery systems of amino acids for agricultural applications.

Methods

Hybrid microspheres of Poly(lactic acid) (PLA) and Palygorskite (Pal) were prepared the double emulsion method with solvent evaporation. Likewise, the amino acids Glycine (Gly) and Glutamic acid (Glu) were integrated during the preparation of the microspheres, all of which were characterized through Scanning Electron Microscopy (SEM), Particle Size (TP) and X-ray Diffraction (XRD); the amino acids were detected through Ultraviolet (UV) spectrophotometry.

Results and Discusssion

Microspheres with spherical morphology were obtained, and as the Pal content increased, they displayed irregular surfaces with particle sizes between 101 and 152 µm. Pal in the microspheres was detected with XRD. The microspheres that trapped a greater amount of amino acids were those containing 2.5% Pal, which presented longer delivery times compared to those microspheres with only the PLA matrix.

Conclusion

The mathematical modeling of the delivery kinetics demonstrated that the amino acid release depends on the diffusion mechanism through the microspheres; the study also demonstrated that the presence of nanoclays influences the diffusion speed.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716378503250428045810
2025-05-21
2025-09-28
Loading full text...

Full text loading...

References

  1. VermoesenE. BodeS. BrosensG. Chemical strategies towards controlled release in agriculture.Rev. Chem. Eng.202440224727710.1515/revce‑2022‑0057
    [Google Scholar]
  2. DuY. ZhangQ. YuM. JiaoB. ChenF. YinM. Sodium alginate-based composite microspheres for controlled release of pesticides and reduction of adverse effects of copper in agricultural soils.Chemosphere202331313753910.1016/j.chemosphere.2022.13753936521750
    [Google Scholar]
  3. ZhengL. SeidiF. LiuY. Polymer-based and stimulus-responsive carriers form controlled release of agrochemicals.Eur. Polym. J.20221774111432
    [Google Scholar]
  4. TorresE. Study of the controlled release of amino acids captured in hybrid microspheres of polymer matrix and palygorskite nanoclays.2024Available from[https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/3178/1/PCMP_D_Tesis_2024_Enrique_Torres_Lopez.pdf]
    [Google Scholar]
  5. LagesM. NicolasJ. In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media.Prog. Polym. Sci.2022137101637
    [Google Scholar]
  6. DampteyR. TorresS. CummingsL. Synthesis and characterization of polylactic acid microspheres via emulsion-based processing.MRS Adv.202381098298710.1557/s43580‑023‑00634‑x
    [Google Scholar]
  7. KuperkarK. AtanaseL.I. BahadurA. CriveiI.C. BahadurP. Degradable polymeric bio(nano)materials and their biomedical applications: A comprehensive overview and recent updates.Polymers202416220610.3390/polym1602020638257005
    [Google Scholar]
  8. NooeaidP. ChuysinuanP. PitakdanthamW. Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture.J. Polym. Environ.202129255256410.1007/s10924‑020‑01902‑9
    [Google Scholar]
  9. AltunkaynakF. OkurM. SaracogluN. Controlled release of paroxetine from chitosan/montmorillonite composite films.J. Drug Deliv. Sci. Technol.20226810309910.1016/j.jddst.2022.103099
    [Google Scholar]
  10. YangY. WangX. YangF. MuB. WangA. Progress and future prospects of hemostatic materials based on nanostructured clay minerals.Biomater. Sci.202311237469748810.1039/d3bm01326j37873611
    [Google Scholar]
  11. WangX. HouX. ZouP. HuangA. ZhangM. MaL. Cationic starch modified bentonite-alginate nanocomposites for highly controlled diffusion release of pesticides.Int. J. Biol. Macromol.2022213412313310.1016/j.ijbiomac.2022.05.14835643153
    [Google Scholar]
  12. EssifiK. BrahmiM. BerraaouanD. Development and characterization of alginate@montmorillonite hybrid microcapsules for encapsulation and controlled release of quercetin: Effect of clay type.Mater. Today Proc.20237273280328610.1016/j.matpr.2022.07.242
    [Google Scholar]
  13. SuárezM. García-RivasJ. MoralesJ. LorenzoA. García-VicenteA. García-RomeroE. Review and new data on the surface properties of palygorskite: A comparative study.Appl. Clay Sci.2022216210631110.1016/j.clay.2021.106311
    [Google Scholar]
  14. RuggeriM. Sánchez-EspejoR. CasulaL. Bentonite and Palygorskite-based gels for tropical drug delivery applications.Pharmaceutics2023154125310.3390/pharmaceutics1504125337111738
    [Google Scholar]
  15. MeneguinA. PachecoG. SilvaJ.M. Nanocellulose/] palygorskite biocomposite membranes for controlled release of metronidazole.Int. J. Biol. Macromol.202118868969510.1016/j.ijbiomac.2021.08.01834371050
    [Google Scholar]
  16. VejanP. KhadiranT. AbdullahR. AhmadN. Controlled release fertilizer: A review on developments, applications and potential in agriculture.J. Control. Release2021339232133410.1016/j.jconrel.2021.10.00334626724
    [Google Scholar]
  17. ZhanS XiangjuF ZhaohuiT Lignin-clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer.2020851189576510.1021/acssuschemeng.0c06472
    [Google Scholar]
  18. EddaraiE.M. El MouzahimM. BoussenR. BellaouchouA. GuenbourA. ZarroukA. Chitosan-kaolinite clay composite as durable coating material for slow release NPK fertilizer.Int. J. Biol. Macromol.202219542443210.1016/j.ijbiomac.2021.12.05534920058
    [Google Scholar]
  19. RamosM. FortunatiE. BeltránA. Controlled Release, Disintegration, Antioxidant, and Antimicrobial Properties of Poly (Lactic Acid)/Thymol/Nanoclay Composites.Polymers2020129187810.3390/polym1209187832825481
    [Google Scholar]
  20. BritoL.M. TavaresM.I. PLA-starch microparticles containing clays focusing controlled release of Rifampicin.Mater. Sci. Appl.202213744145210.4236/msa.2022.137026
    [Google Scholar]
  21. GedeonS. IoannouA. BalestriniR. FotopoulosV. AntoniouC. Application of biostimulants in Tomato (Solanum lycopersicum) to enhance plant growth and salt stress tolerance.Plants20221122308210.3390/plants1122308236432816
    [Google Scholar]
  22. MaY. FreitasH. DiasM.C. Strategies and prospects for biostimulants to alleviate abiotic stress in plants.Front Plant Sci202213102424310.3389/fpls.2022.102424336618626
    [Google Scholar]
  23. WakchaureG.C. KhapteP. ChanganS. Plant bio-stimulants for mitigating abiotic stresses in agriculture.Indian J. Fert.2023198788800
    [Google Scholar]
  24. BhardwajN. KaurM. KaurJ. Role of biostimulants in agriculture.Plant Life and Environment Dynamic.Springer2022239262
    [Google Scholar]
  25. XuQ. DengH. LiX. QuanZ.S. Application of amino acid in the structural modification of natural products: A review.Front Chem.2021965056910.3389/fchem.2021.65056933996749
    [Google Scholar]
  26. YangQ. ZhaoD. LiuQ. Connections between amino acid metabolisms in plants: Lysine as an example.Front Plant Sci20201192810.3389/fpls.2020.0092832636870
    [Google Scholar]
  27. KawadeK. TabetaH. FerjaniA. HiraiM.Y. The role of functional amino acid in plant growth and development.Plant Cell Physiol.202364121482149310.1093/pcp/pcad07137489637
    [Google Scholar]
  28. YaoX. NieJ. BaiR. SuiX. Amino acid transporters in plants: Identification and function.Plants20209897210.3390/plants908097232751984
    [Google Scholar]
  29. AlmutairiK.F. SalehA.A. AliM.M. Sas-PasztL. AbadaH.S. MosaW.F.A. Growth performance of guava trees after the exogenous application of amino acids glutamic acid, arginine, and glycine.Horticulturae2022812111010.3390/horticulturae8121110
    [Google Scholar]
  30. BaqirH.A. ZeboonN.H. Al-behadiliA.A.J. The role and importance of amino acid whitin plants: A review.Plant Arch.201919214021410
    [Google Scholar]
  31. Chi-CaballeroJ.F. Perez-MatuR.R. GamboaC.J. Transitory rheological test as a tool to monitor nano-clay dispersion and distribution in polypropylene-palygorskite composites.Polym. Bull.20207773537356210.1007/s00289‑019‑02904‑x
    [Google Scholar]
  32. CohenS. YoshiokaT. LucarelliM. HwangL.H. LangerR. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres.Pharm. Res.19918671372010.1023/A:10158417153842062800
    [Google Scholar]
  33. YemmE.W. CockingE.C. RickettsR.E. The determination of amino-acids with ninhydrin.Analyst19558094820921310.1039/an9558000209
    [Google Scholar]
  34. ShenC.H. SpringerG.S. Moisture absorption and desorption of composite materials.J. Compos. Mater.197610122010.1177/002199837601000101
    [Google Scholar]
  35. Perez-MatuR.R. AvilésF. Gonzalez-ChiP.I. Water absorption kinetics of palygorskite nanoclay/polypropylene composite foams.Polym. Bull.20248154149417410.1007/s00289‑023‑04822‑5
    [Google Scholar]
  36. AvilésF. Aguilar-MonteroM. Moisture absorption in foam‐cored composite sandwich structures.Polym. Compos.201031471472210.1002/pc.20872
    [Google Scholar]
  37. Sanchez-SanchezA. BraghiroliF.L. IzquierdoM.T. ParmentierJ. CelzardA. FierroV. Synthesis and properties of carbon microspheres based on tannin–sucrose mixtures treated in hydrothermal conditions.Ind. Crops Prod.202015411256410.1016/j.indcrop.2020.112564
    [Google Scholar]
  38. AraújoCM dasVirgens Santana M do Nascimento Cavalcante A, et al Cashew-gum-based silver nanoparticles and palygorskite as green nanocomposites for antibacterial applications.Mater. Sci. Eng. C2020115211092710.1016/j.msec.2020.11092732600678
    [Google Scholar]
  39. LiuY. JiangS. YanW. Crystallization morphology regulation on enhancing heat resistance of polylactic acid.Polymers2020127156310.3390/polym1207156332679673
    [Google Scholar]
  40. LuoY. LinZ. GuoG. Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO2) under compost conditions.Nanoscale Res. Lett.20191415610.1186/s11671‑019‑2891‑430767099
    [Google Scholar]
  41. CâmaraA.B.F. SalesR.V. BertolinoL.C. Novel application for palygorskite clay mineral: A kinetic and thermodynamic assessment of diesel fuel desulfurization.Adsorption202026226728210.1007/s10450‑019‑00144‑z
    [Google Scholar]
  42. LiuM. PuM. MaH. Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers.Compos. Sci. Technol.20127231508151410.1016/j.compscitech.2012.05.017
    [Google Scholar]
  43. ZhangCh. WangX. WangX. Characterization of La-Mg-modified palygorskite and its adsorption of phosphate.J. Environ. Chem. Eng.202210310765810.1016/j.jece.2022.107658
    [Google Scholar]
  44. LiuX. ZhaoL. WuB. ChenF. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review.Int. J. Pharm.202363412270410.1016/j.ijpharm.2023.12270436758883
    [Google Scholar]
  45. YoucefL. BelarouiL. GalindoA. Adsorption of a cationic methylene blue dye on an Algerian palygorskite.Appl. Clay Sci.201917910514510.1016/j.clay.2019.105145
    [Google Scholar]
  46. Ramos-TorresW. Borges-ArgáesR. Gonzales-ChiP.I. Nanostructured chitosan-palygorskite hybrid microspheres for controlled delivery of thymol.Mater. Res. Express202181010501010.1088/2053‑1591/ac29f6
    [Google Scholar]
  47. MedinaL. RocheY. MaldonadoO. Hydrolytic degradation and biodegradation of binary mixes of polylactic acid (PLA)whit plastic residues.Rev Ing UC2018252248258
    [Google Scholar]
  48. Gonzalez-PujanaA. IgartuaM. HernandezR.M. Santos-VizcainoE. Laponite nanoclays for the sustained delivery of therapeutic proteins.Eur. J. Pharm. Sci.202420110685810.1016/j.ejps.2024.10685839033884
    [Google Scholar]
  49. LiaoK. LiP. ChenG. Preparation and release properties of flufiprole-loaded microcapsules with core status of solid particles, solution droplets and oil suspending agent.J Macromol Sci Part A20195617117810.1080/10601325.2018.1559700
    [Google Scholar]
  50. MeirellesL.M.A. de Melo BarbosaR. de Almeida JúniorR.F. Biocomposite for prolonged release of water-soluble drugs.Pharmaceutics2023156172210.3390/pharmaceutics1506172237376170
    [Google Scholar]
  51. CaiL.W. WeitsmanY. Non-Fickian moisture diffusion in polymeric composites.J. Compos. Mater.199828213015410.1177/002199839402800203
    [Google Scholar]
  52. GangulyS. MaityT. MondalS. DasP. DasN.C. Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine.J Biol Macromol20179518519810.1016/j.ijbiomac.2016.11.05527865957
    [Google Scholar]
  53. HopfenbergH.B. ApicellaA. SaleebyD.E. Factors affecting water sorption in and solute release from glassy ethylene-vinyl alcohol copolymers.J. Membr. Sci.19818327328210.1016/S0376‑7388(00)82315‑7
    [Google Scholar]
  54. WuL. ShresthaP. LapichinoM. Characterization method for calculating diffusion coefficient of drug from polylactic acid (PLA) microneedles into the skin.J. Drug Deliv. Sci. Technol.202161510219210.1016/j.jddst.2020.102192
    [Google Scholar]
/content/journals/caps/10.2174/0124522716378503250428045810
Loading
/content/journals/caps/10.2174/0124522716378503250428045810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test