Skip to content
2000
Volume 8, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Microspheres are tiny spherical particles with a diameter of 1 to 1000 μm that play a key role in several industries, most notably medicine delivery. This article provides an extensive overview of polymeric microspheres, including information on their uses, advantages, disadvantages, and various forms. We pay special attention to mucoadhesive microspheres and those containing herbal medicines. Improved bioavailability, regulated release patterns, and increased medicinal efficiency of plant extracts are among the important discoveries. Microspheres can be roughly categorized as either synthetic or natural. Synthetic microspheres provide targeted distribution and controlled medication release. One example of a synthetic microsphere is a biodegradable polymer called poly(lactic-co-glycolic acid) (PLGA). They might, however, run into restrictions like burst discharge and difficulties increasing production. On the other hand, natural microspheres made of substances like albumin or starch provide biocompatibility and easy disintegration, but they might not give you exact control over the kinetics of drug release. One subset of microspheres, known as mucoadhesive microspheres, has attracted a lot of attention due to its capacity to stick to mucosal surfaces, increasing bioavailability and extending the duration of drug residence. A variety of polymers, such as chitosan and alginate, which have strong adhesive qualities to mucosal tissues, can be used to create these microspheres. Moreover, the integration of herbal medicines into polymeric microspheres has several benefits, such as increased stability, regulated release, and better therapeutic effectiveness. To sum up, microspheres show great promise as a drug delivery platform. Particular benefits include increased bioavailability, controlled release, and targeted therapy for mucoadhesive microspheres and those containing herbal medicines. This article provides an in-depth review of polymeric microspheres, highlighting their various forms, benefits, drawbacks, and uses, with a particular focus on mucoadhesive microspheres and those encapsulating herbal medications. Key findings include enhanced bioavailability, controlled release profiles, and improved therapeutic efficacy of herbal extracts.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716338115241226033817
2025-01-30
2025-10-28
Loading full text...

Full text loading...

References

  1. PatilS. SawantK. Mucoadhesive microspheres: A promising tool in drug delivery.Curr. Drug Deliv.20085431231810.2174/15672010878591497018855602
    [Google Scholar]
  2. SmartJ.D. KellawayI.W. WorthingtonH.E.C. An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery.J. Pharm. Pharmacol.198436529529910.1111/j.2042‑7158.1984.tb04377.x6145763
    [Google Scholar]
  3. GuptaS. ParvezN. BhandariA. SharmaP. Microspheres based on herbal actives: The less-explored ways of disease treatment.Egyptian Pharmaceutical Journal201514314815710.4103/1687‑4315.172852
    [Google Scholar]
  4. BeyatricksK.J. KumarK.S. SuchitraD. JainabN.H. AnitaA. Recent microsphere formulations and its applications in herbal drugs–a review.Int J Pharm Dev Technol20144015862
    [Google Scholar]
  5. AhujaA. KharR.K. AliJ. Mucoadhesive drug delivery systems.Drug Dev. Ind. Pharm.199723548951510.3109/03639049709148498
    [Google Scholar]
  6. EdithM. MarkR.K. Encyclopedia of controlled release.London: John Wiley and Sons Inc. 19982493510
    [Google Scholar]
  7. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s22316239
    [Google Scholar]
  8. VermaH. PrasadS.B. YashwantS.H. Herbal drug delivery system: A modern era prospective.Int J Current Pharma Rev Res2013488101
    [Google Scholar]
  9. ChaturvediM. SinhalA. KumarM. SaifiA. Recent development in novel drug delivery systems of herbal drugs.Int J Green Pharm2011528710.4103/0973‑8258.85155
    [Google Scholar]
  10. ChaoP. DeshmukhM. KutscherH.L. Pulmonary targeting microparticulate camptothecin delivery system: Anticancer evaluation in a rat orthotopic lung cancer model.Anticancer Drugs2010211657610.1097/CAD.0b013e328332a32219966540
    [Google Scholar]
  11. ParmarH. BakliwalS. GujarathiN. RaneB. PawarS. Different method of formulation and evaluation of mucoadhesive microsphere.Int. J. Appl. Biol. Pharm. Technol.20101311571167
    [Google Scholar]
  12. DonnellyR.F. ShaikhR. Raj SinghT.R. GarlandM.J. WoolfsonA.D. Mucoadhesive drug delivery systems.J. Pharm. Bioallied Sci.2011318910010.4103/0975‑7406.7647821430958
    [Google Scholar]
  13. AlexanderA. TripathiD.K. VermaT. PatelS. Mechanism responsible for mucoadhesion of mucoadhesive drug delivery system.Int. J. Appl. Biol. Pharm. Technol.201121434445
    [Google Scholar]
  14. LeeJ.W. ParkJ.H. RobinsonJ.R. Bioadhesive-based dosage forms: The next generation.J. Pharm. Sci.200089785086610.1002/1520‑6017(200007)89:7<850:AID‑JPS2>3.0.CO;2‑G10861586
    [Google Scholar]
  15. NagaiT. MachidaY. Advances in drug delivery-mucosal adhesive dosage forms.Pharmacy International198568196200
    [Google Scholar]
  16. KamathK.R. ParkK. Encyclopedia of pharmaceutical technology.New York: Marcel Dekker 19881013364
    [Google Scholar]
  17. Jiménez-castellanosM.R. ZiaH. RhodesC.T. Mucoadhesive drug delivery systems.Drug Dev. Ind. Pharm.1993191-214319410.3109/03639049309038765
    [Google Scholar]
  18. MathiowitzE. ChickeringD. JacobJ.S. SantosC. Encyclopedia of controlled drug delivery.New YorkJohn Wiley and Sons1999Vol. 1945
    [Google Scholar]
  19. ChowdaryK.P.R. Srinivasa RaoY. Mucoadhesive microspheres for controlled drug delivery.Biol. Pharm. Bull.200427111717172410.1248/bpb.27.171715516712
    [Google Scholar]
  20. SmartJ. The basics and underlying mechanisms of mucoadhesion.Adv. Drug Deliv. Rev.200557111556156810.1016/j.addr.2005.07.00116198441
    [Google Scholar]
  21. ChowdaryK.P. SrinivasL. Mucoadhesive drug delivery systems: A review of current status.Ind Drug Bombay2000379400406
    [Google Scholar]
  22. PunithaS. GirishY. Polymers in mucoadhesive buccal drug delivery system.Int J Res Pharm Sci201012170186
    [Google Scholar]
  23. AndrewsG.P. LavertyT.P. JonesD.S. Mucoadhesive polymeric platforms for controlled drug delivery.Eur. J. Pharm. Biopharm.200971350551810.1016/j.ejpb.2008.09.02818984051
    [Google Scholar]
  24. Hemlata KauravS.L. Mucoadhesive microspheres as carriers in drug delivery: A review.Int J Drug Dev & Res2012422134
    [Google Scholar]
  25. KatariaS. MiddhaA. SandhuP. BilandiA. KapoorB. Microsphere: A review.Int. J. Res. Pharm. Chem.20111411851198
    [Google Scholar]
  26. SarafS. KaurC.D. Phytoconstituents as photoprotective novel cosmetic formulations.Pharmacogn. Rev.20104711110.4103/0973‑7847.6531922228936
    [Google Scholar]
  27. FormicaJ.V. RegelsonW. Review of the biology of quercetin and related bioflavonoids.Food Chem. Toxicol.199533121061108010.1016/0278‑6915(95)00077‑18847003
    [Google Scholar]
  28. MikailiP. MaadiradS. MoloudizargariM. AghajanshakeriS. SarahroodiS. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds.Iran. J. Basic Med. Sci.2013161010311048[PMID: 24379960
    [Google Scholar]
  29. TringaliC. Bioactive compounds from natural sources: Isolation, characterization and biological properties 200069310.1201/9781482289268
  30. AbdulM. NaseerA.G. Phytochemical study of Cynara scolymus L. (Artichoke) (Asteraceae) cultivated in Iraq, detection and identification of phenolic acid compounds cynarin and chlorogenic acid.Iraqi J. Pharm Sci.201221613
    [Google Scholar]
  31. KunnumakkaraA.B. AnandP. AggarwalB.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins.Cancer Lett.2008269219922510.1016/j.canlet.2008.03.00918479807
    [Google Scholar]
  32. KumarK. RaiA.K. Development and evaluation of floating microspheres of curcumin.Trop. J. Pharm. Res.201211713719
    [Google Scholar]
  33. KwonS.H. KimS.Y. HaK.W. Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery.Arch. Pharm. Res.20073091138114310.1007/BF0298024917958332
    [Google Scholar]
  34. AfaqF. AdhamiV.M. AhmadN. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice Part of this work was conducted at the department of dermatology, case western reserve university and the research institute of university hospitals of cleveland, 11100 euclid avenue, cleveland, ohio 44106.Toxicol. Appl. Pharmacol.20031861283710.1016/S0041‑008X(02)00014‑512583990
    [Google Scholar]
  35. ŞanlıO. Karacaİ. IşıklanN. Preparation, characterization, and salicylic acid release behavior of chitosan/poly(vinyl alcohol) blend microspheres.J. Appl. Polym. Sci.200911162731274010.1002/app.29319
    [Google Scholar]
  36. SujithaB. KrishnamoorthyB. MuthukumaranM. A role of natural polymers used in formulation of pharmaceutical dosage form.Int J Pharm Technol2012423472362
    [Google Scholar]
  37. ChanchalD. SwarnlataS. Novel approaches in herbal cosmetics.J. Cosmet. Dermatol.200872899510.1111/j.1473‑2165.2008.00369.x18482010
    [Google Scholar]
  38. AtmakuriL.R. DathiS. Current trends in herbal medicines.J. Pharm. Res.201031109113
    [Google Scholar]
  39. KulkarniG.T. Herbal drug delivery systems: An emerging area in herbal drug research.J Chronother Drug Deliv201123113119
    [Google Scholar]
  40. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: Food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.72715113710
    [Google Scholar]
  41. GoyalA. KumarS. NagpalM. SinghI. AroraS. Potential of novel drug delivery systems for herbal drugs.Indian J Pharma Educ Res201145225235
    [Google Scholar]
  42. GuJ.M. RobinsonJ.R. LeungS.H. Binding of acrylic polymers to mucin/epithelial surfaces: Structure-property relationships.Crit. Rev. Ther. Drug Carrier Syst.1988512167[PMID: 3293807
    [Google Scholar]
  43. LangerR. PeppasN. Present and future applications of biomaterials in controlled drug delivery systems.Biomaterials19812420121410.1016/0142‑9612(81)90059‑47034798
    [Google Scholar]
  44. GargA. UpadhyayP. Mucoadhesive microspheres: A short review.Asian J. Pharm. Clin. Res.2012532427
    [Google Scholar]
  45. IngleT.G. PandeS.D. SawarkarR. PadoleD. The current trends in microspheres: A review.JDDT202313118319410.22270/jddt.v13i1.5915
    [Google Scholar]
  46. KumarL. VermaS. VaidyaB. GuptaV. Bioadhesive polymers for targeted drug delivery.InNanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes.Academic Press201732236210.1016/B978‑0‑12‑809717‑5.00012‑9
    [Google Scholar]
  47. NajmuddinM. AhmedA. ShelarS. PatelV. KhanT. Floating microspheres of ketoprofen: Formulation and evaluation.Int. J. Pharm. Pharm. Sci.2010228387
    [Google Scholar]
  48. LiS.P. KowarskiC.R. FeldK.M. GrimW.M. Recent advances in microencapsulation technology and equipment.Drug Dev. Ind. Pharm.1988142-335337610.3109/03639048809151975
    [Google Scholar]
  49. ChopraM. AsijaR. SharmaD. AsijaS. GuptaA. A brief review about microspheres.Int J Pharm Erud201443921
    [Google Scholar]
  50. ChandrawanshiP. PatidarH. Magnetic microsphere: As targeted drug delivery.J. Pharm. Res.2009
    [Google Scholar]
  51. YadavA.V. MoteH.H. Development of biodegradable starch microspheres for intranasal delivery.Indian J. Pharm. Sci.200870217017410.4103/0250‑474X.4145020046707
    [Google Scholar]
  52. SaralidzeK. LeoH. Polymeric microspheres for medical applications.Materials 201033357336410.3390/ma3063537
    [Google Scholar]
  53. TrivediP. VermaA.M.L. GarudN. Preparation and characterization of aceclofenac microspheres.Asian J. Pharm.20082211011510.4103/0973‑8398.42498
    [Google Scholar]
  54. AlagusundaramM. ChettyM.S. UmashankariK. BadarinathA.V. LavanyaC. RamkanthS. Microspheres as a novel drug delivery system: A review.Int. J. Chemtech Res.200913526534
    [Google Scholar]
  55. BogatajM. MrharA. KorošecL. Influence of physicochemical and biological parameters on drug release from microspheres adhered on vesical and intestinal mucosa.Int. J. Pharm.1999177221122010.1016/S0378‑5173(98)00341‑X10205615
    [Google Scholar]
  56. OkadaH. YamamotoM. HeyaT. Drug delivery using biodegradable microspheres.In: Advances in Drug Delivery Systems. Elsevier 199461219
    [Google Scholar]
  57. JalilR. NixonJ.R. Microencapsulation using poly(l-lactic Acid) iv: Release properties of microcapsules containing phenobarbitone.J. Microencapsul.199071536610.3109/026520490090284232308054
    [Google Scholar]
  58. HuangY.Y. ChungT.W. TzengT. Drug release from PLA/PEG microparticulates.Int. J. Pharm.1997156191510.1016/S0378‑5173(97)00154‑3
    [Google Scholar]
  59. AtkinsT.W. PeacockS.J. YatesD.J. Incorporation and release of vancomycin from Poly(D, L-lactide-co-glycolide) microspheres.J. Microencapsul.1998151314410.3109/026520498090068339463805
    [Google Scholar]
  60. EdlundU AlbertssonAC Novel drug delivery microspheres from poly(1,5-dioxepan-2-one-co-L-lactide).J Polym Sci A Polym Chem 199937(12)18778410.1002/(SICI)1099‑0518(19990615)37:12<1877::AID‑POLA17>3.0.CO;2‑4
    [Google Scholar]
  61. OhJ. NamY.S. LeeK.H. ParkT.G. Conjugation of drug to poly(lactic-co-glycolic acid) for controlled release from biodegradable microspheres.J. Control. Release199957326928010.1016/S0168‑3659(98)00123‑09895414
    [Google Scholar]
  62. BaiX.L. YangY.Y. ChungT.S. NgS. HellerJ. Effect of polymer compositions on the fabrication of poly(ortho ‐ester) microspheres for controlled release of protein.J. Appl. Polym. Sci.200180101630164210.1002/app.1257
    [Google Scholar]
  63. LiW.I. AndersonK.W. DelucaP.P. Kinetic and thermodynamic modeling of the formation of polymeric microspheres using solvent extraction/evaporation method.J. Control. Release199537318719810.1016/0168‑3659(95)00077‑1
    [Google Scholar]
  64. GhaderiR. SturessonC. CarlforsJ. Effect of preparative parameters on the characteristics of poly d,l-lactide-co-glycolide)microspheres made by the double emulsion method.Int. J. Pharm.19961411-220521610.1016/0378‑5173(96)04639‑X
    [Google Scholar]
  65. BillonA. BatailleB. CassanasG. JacobM. Development of spray-dried acetaminophen microparticles using experimental designs.Int. J. Pharm.20002031-215916810.1016/S0378‑5173(00)00448‑810967438
    [Google Scholar]
  66. EspositoE. RoncaratiR. CortesiR. CervellatiF. NastruzziC. Production of Eudragit microparticles by spray-drying technique: Influence of experimental parameters on morphological and dimensional characteristics.Pharm. Dev. Technol.20005226727810.1081/PDT‑10010054110810756
    [Google Scholar]
  67. BurkeP.A. KlumbL.A. HerbergerJ.D. NguyenX.C. HarrellR.A. ZordichM. Poly(lactide-co-glycolide) microsphere formulations of darbepoetin alfa: Spray drying is an alternative to encapsulation by spray-freeze drying.Pharm. Res.200421350050610.1023/B:PHAM.0000019305.79599.a515070102
    [Google Scholar]
  68. BodmeierR. ChenH. Preparation of biodegradable poly(+/-)lactide microparticles using a spray-drying technique.J. Pharm. Pharmacol.1988401175475710.1111/j.2042‑7158.1988.tb05166.x2907552
    [Google Scholar]
  69. CarinoPG JacobJS ChenCJ SantosCA HertzogBA MathiowitzE Bioadhesive Drug Delivery Systems - Fundamentals, Novel Approaches and DevelopmentNew York: Marcel Dekker 1999984597610.1201/b14099‑18
    [Google Scholar]
  70. ViswanathanN.B. ThomasP.A. PanditJ.K. KulkarniM.G. MashelkarR.A. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique.J. Control. Release199958192010.1016/S0168‑3659(98)00140‑010021485
    [Google Scholar]
  71. MathiowitzE. LangerR. Polyanhydride microspheres as drug carriers I. Hot-melt microencapsulation.J. Control. Release198751132210.1016/0168‑3659(87)90033‑2
    [Google Scholar]
  72. ChickeringD JacobJ MathiowitzE. Poly(fumaric-co-sebacic) microspheres as oral drug delivery systemsBiotechnol Bioeng 199652(1)96101 Available from: http://dx.doi.org/10.1002/(SICI)1097-0290(19961005)52:1%3C96::AID-BIT9%3E3.0.CO;2-U 18629855
    [Google Scholar]
  73. KawashimaY. NiwaT. TakeuchiH. HinoT. ItoY. Preparation] of multiple unit hollow microspheres (microballoons) with acrylic resin containing tranilast and their drug release characteristics] (in vitro) and floating behavior (in vivo).J. Control. Release199116327928910.1016/0168‑3659(91)90004‑W
    [Google Scholar]
  74. YadavR. BhowmickM. RathiV. RathiJ. Design and characterization of floating microspheres for rheumatoid arthritis.J. Drug Deliv. Ther.201992-s768110.22270/jddt.v9i2‑s.2463
    [Google Scholar]
  75. BodmeierR. ChenH. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen.J. Control. Release198910216717510.1016/0168‑3659(89)90059‑X
    [Google Scholar]
  76. MahaleM.M. SaudagarR.B. Microsphere: A review.J. Drug Deliv. Ther.201993-s85485610.22270/jddt.v9i3‑s.2826
    [Google Scholar]
  77. MoreS. GavaliK. DokeO. KasgawadeP. Gastroretentive drug delivery system.J. Drug Deliv. Ther.201884243510.22270/jddt.v8i4.1788
    [Google Scholar]
  78. SinhaV.R. AgrawalM.K. KumriaR. Influence of formulation and excipient variables on the pellet properties prepared by extrusion spheronization.Curr. Drug Deliv.20052118
    [Google Scholar]
  79. MeenaK.P. DangiJ.S. SamalP.K. NamedoK.P. Recent advances in microsphere manufacturing technology.Int J Pharm Technol201131854855
    [Google Scholar]
  80. MoyA.C. MathewS.T. MathapanR. PrasanthV.V. Microsphere-an overview.Int. J. Pharma Bio Sci.201122332338
    [Google Scholar]
  81. KushwahaN. JainA. JainP.K. KhareB. JatY.S. An overview on formulation and evaluation aspects of tablets.Asian J Dent Health Sci202224353910.22270/ajdhs.v2i4.23
    [Google Scholar]
  82. VidgrenP. VidgrenM. VainioP. NuutinenJ. ParonenP. Double-labelling technique in the evaluation of nasal mucoadhesion of disodium cromoglycate microspheres.Int. J. Pharm.199173213113610.1016/0378‑5173(91)90036‑N
    [Google Scholar]
  83. MathiowtzE ChickeringD JacobJS Bioadhesive microspheres and their use as drug delivery and imaging systems.Patent U.S. 6197346B12001
    [Google Scholar]
  84. McDonoughJ.A. PersynJ.T. NinoJ.A. Microcapsule-gel formulation of promethazine HCl for controlled nasal delivery: A motion sickness medication.J. Microencapsul.200724210911610.1080/0968786060094562817454422
    [Google Scholar]
  85. AkiyamaY. NagaharaN. NaraE. Evaluation of oral mucoadhesive microspheres in man on the basis of the pharmacokinetics of furosemide and riboflavin, compounds with limited gastrointestinal absorption sites.J. Pharm. Pharmacol.199850215916610.1111/j.2042‑7158.1998.tb06171.x9530983
    [Google Scholar]
  86. Fernández-UrrusunoR. CalvoP. Remuñán-LópezC. Vila-JatoJ.L. José AlonsoM. Enhancement of nasal absorption of insulin using chitosan nanoparticles.Pharm. Res.199916101576158110.1023/A:101890870544610554100
    [Google Scholar]
  87. FarrajN.F. JohansenB.R. DavisS.S. IllumL. Nasal administration of insulin using bioadhesive microspheres as a delivery system.J. Control. Release1990132-325326110.1016/0168‑3659(90)90016‑M
    [Google Scholar]
  88. WoodleyJ Bioadhesion Clin. Pharmacokinet.2001402778410.2165/00003088‑200140020‑0000111286325
    [Google Scholar]
  89. GentaI. ContiB. PeruginiP. PavanettoF. SpadaroA. PuglisiG. Bioadhesive microspheres for ophthalmic administration of acyclovir.J. Pharm. Pharmacol.199749873774210.1111/j.2042‑7158.1997.tb06103.x9379347
    [Google Scholar]
  90. KyyrönenK. HumeL. BenedettiL. UrttiA. ToppE. StellaV. Methylprednisolone esters of hyaluronic acid in ophthalmic drug delivery: In vitro and in vivo release studies.Int. J. Pharm.1992801-316116910.1016/0378‑5173(92)90274‑6
    [Google Scholar]
  91. GhezzoE. BenedettiL. RochiraM. BivianoF. CallegaroL. Hyaluronane derivative microspheres as NGF delivery devices: Preparation methods and in vitro release characterization.Int. J. Pharm.1992871-3212910.1016/0378‑5173(92)90223‑O
    [Google Scholar]
  92. OfokansiK.C. AdikwuM.U. OkoreV.C. Preparation and evaluation of mucin-gelatin mucoadhesive microspheres for rectal delivery of ceftriaxone sodium.Drug Dev. Ind. Pharm.200733669170010.1080/0363904070136087617613033
    [Google Scholar]
  93. AsacolAvailable from:https://www.rxlist.com/asacol-drug.htm#description
  94. MidhaK. NagpalM. AroraS. Microspheres: a recent update.Int. J. Recent Sci. Res.201550858595867
    [Google Scholar]
  95. JhaS. SinghP. RaiA. Development and components of chitosan primarily based microspheres of glibenclamide.Res Squ2024
    [Google Scholar]
  96. SaezV. HernándezJ.R. PenicheC. Microspheres as delivery systems for the controlled release of peptides and proteins.Biotecnología Aplicada2007242108116
    [Google Scholar]
  97. SinghA. Kumar SharmaP. MalviyaR. Sustained drug delivery using mucoadhesive microspheres: the basic concept, preparation methods and recent patents.Recent Patents on Nanomedicine2012216277
    [Google Scholar]
  98. IngleT.G. PandeS.D. SawarkarR. PadoleD. The current trends in microspheres: A Review.Journal of Drug Delivery and Therapeutics2023131183194
    [Google Scholar]
  99. Arestin minocycline HCI 1mg microspheresAvailable from: https://www.arestin.com
  100. D’SouzaS. FarajA.J. DeLucaP.P. A model-dependent approach to correlate accelerated with real-time release from biodegradable microspheres.AAPS PharmSciTech200564E553E564 Available from doi: 10.1208/pt060470
    [Google Scholar]
  101. PatraC.N. DuttaP. SrutiJ. RaoM.B. Floating microspheres: recent trends in the development of gastroretentive floating drug delivery system.International Journal of Pharmaceutical Sciences and Nanotechnology20114112961306
    [Google Scholar]
/content/journals/caps/10.2174/0124522716338115241226033817
Loading
/content/journals/caps/10.2174/0124522716338115241226033817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test