Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2950-3752
  • E-ISSN: 2950-3760

Abstract

The revolution of Artificial Intelligence has created a greater change with accelerated change in Pharmaceutical product development. Artificial intelligence reduces the workload of humans, improves the target and thereby increases the productivity of pharmaceutical products. The large volume of data can be integration with automation. Artificial intelligence-based drugs have entered clinical trials and, in a few instances, came to market recently. AI utilizes systems and software that can interpret and learn from the input data to make independent decisions for accomplishing specific objectives. Artificial intelligence assists in rational drug design, decision-making, right therapy, personalized medicine, clinical data management, . In pharmaceutical formulation development artificial intelligence supports in deciding a suitable excipient for the pharmaceutical formulation development, closely monitoring and modifying a pharmaceutical development process, and ensures in-process specification compliances. Artificial intelligence predicts the development process, toxicity, and biological activity of a desired compound. Overall, the hit and lead drug molecules can be identified by artificial intelligence. This study highlights the impactful use of artificial intelligence in diverse areas of the pharmaceutical sectors ., drug discovery and development, drug repurposing, improving pharmaceutical productivity, clinical trials, . The ongoing challenge, and ways to overcome them, along with the future of AI in the pharmaceutical industry, is also discussed.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752359512250325061847
2025-01-01
2025-08-18
Loading full text...

Full text loading...

References

  1. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑9431363513
    [Google Scholar]
  2. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z31015651
    [Google Scholar]
  3. PandeyM. FernandezM. GentileF. IsayevO. TropshaA. SternA.C. CherkasovA. The transformational role of GPU computing and deep learning in drug discovery.Nat. Mach. Intell.20224321122110.1038/s42256‑022‑00463‑x
    [Google Scholar]
  4. Sierra-SosaD. Garcia-ZapirainB. CastilloC. OleagordiaI. Nuño-SolinisR. Urtaran-LaresgoitiM. ElmaghrabyA. Scalable healthcare assessment for diabetic patients using deep learning on multiple gpus.IEEE Trans. Industr. Inform.201915105682568910.1109/TII.2019.2919168
    [Google Scholar]
  5. PowlesJ. HodsonH. Google DeepMind and healthcare in an age of algorithms.Health Technol. (Berl.)20177435136710.1007/s12553‑017‑0179‑129308344
    [Google Scholar]
  6. ChenH. KogejT. EngkvistO. Cheminformatics in drug discovery, an industrial perspective.Mol. Inform.2018379-10180004110.1002/minf.20180004129774657
    [Google Scholar]
  7. ChenH. EngkvistO. WangY. OlivecronaM. BlaschkeT. The rise of deep learning in drug discovery.Drug Discov. Today20182361241125010.1016/j.drudis.2018.01.03929366762
    [Google Scholar]
  8. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  9. RameshA.N. KambhampatiC. MonsonJ.R.T. DrewP.J. Artificial intelligence in medicine.Ann. R. Coll. Surg. Engl.200486533433810.1308/14787080429015333167
    [Google Scholar]
  10. BlasiakA. KhongJ. KeeT. CURATE. AI, optimizing personalized medicine with artificial intelligence.SLAS Technol.20202529510510.1177/247263031989031631771394
    [Google Scholar]
  11. MinhD. WangH.X. LiY.F. NguyenT.N. Explainable artificial intelligence: A comprehensive review.Artif. Intell. Rev.20225553503356810.1007/s10462‑021‑10088‑y
    [Google Scholar]
  12. MilesJ. WalkerA. The potential application of artificial intelligence in transport.IEEE Proc. Intell. Transport Syst.2006153183198
    [Google Scholar]
  13. DuchW. SwaminathanK. MellerJ. Artificial intelligence approaches for rational drug design and discovery.Curr. Pharm. Des.200713141497150810.2174/13816120778076595417504169
    [Google Scholar]
  14. Barredo ArrietaA. Díaz-RodríguezN. Del SerJ. BennetotA. TabikS. BarbadoA. GarciaS. Gil-LopezS. MolinaD. BenjaminsR. ChatilaR. HerreraF. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.Inf. Fusion2020588211510.1016/j.inffus.2019.12.012
    [Google Scholar]
  15. GrebnerC. MatterH. KofinkD. WenzelJ. SchmidtF. HesslerG. Application of deep neural network models in drug discovery programs.ChemMedChem202116243772378610.1002/cmdc.20210041834596968
    [Google Scholar]
  16. SchraagenJ.M. Van DiggelenJ. A brief history of the relationship between expertise and artificial intelligence.Expertise at Work202114917510.1007/978‑3‑030‑64371‑3_8
    [Google Scholar]
  17. XuY. LiuX. CaoX. HuangC. LiuE. QianS. LiuX. WuY. DongF. QiuC.W. QiuJ. HuaK. SuW. WuJ. XuH. HanY. FuC. YinZ. LiuM. RoepmanR. DietmannS. VirtaM. KengaraF. ZhangZ. ZhangL. ZhaoT. DaiJ. YangJ. LanL. LuoM. LiuZ. AnT. ZhangB. HeX. CongS. LiuX. ZhangW. LewisJ.P. TiedjeJ.M. WangQ. AnZ. WangF. ZhangL. HuangT. LuC. CaiZ. WangF. ZhangJ. Artificial intelligence: A powerful paradigm for scientific research.Innovation20212410017910.1016/j.xinn.2021.10017934877560
    [Google Scholar]
  18. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  19. SardarP. AbbottJ.D. KunduA. AronowH.D. GranadaJ.F. GiriJ. Impact of artificial intelligence on interventional cardiology.JACC Cardiovasc. Interv.201912141293130310.1016/j.jcin.2019.04.04831320024
    [Google Scholar]
  20. LavecchiaA. Machine-learning approaches in drug discovery: Methods and applications.Drug Discov. Today201520331833110.1016/j.drudis.2014.10.01225448759
    [Google Scholar]
  21. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  22. LiebmanM. The role of artificial intelligence in drug discovery and development.Chem. Int.2022441161910.1515/ci‑2022‑0105
    [Google Scholar]
  23. NajafabadiM.M. VillanustreF. KhoshgoftaarT.M. SeliyaN. WaldR. MuharemagicE. Deep learning applications and challenges in big data analytics.J. Big Data20152112110.1186/s40537‑014‑0007‑7
    [Google Scholar]
  24. MaJ. SheridanR.P. LiawA. DahlG.E. SvetnikV. Deep neural nets as a method for quantitative structure-activity relationships.J. Chem. Inf. Model.201555226327410.1021/ci500747n25635324
    [Google Scholar]
  25. JingY. BianY. HuZ. WangL. XieX.Q.S. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era.AAPS J.20182035810.1208/s12248‑018‑0210‑029603063
    [Google Scholar]
  26. KrizhevskyA. SutskeverI. HintonG.E. Imagenet classification with deep convolutional neural networks.Adv. Neural Inf. Process.20122510971105
    [Google Scholar]
  27. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  28. McCloskeyK. SigelE.A. KearnesS. XueL. TianX. MocciaD. GikunjuD. BazzazS. ChanB. ClarkM.A. CuozzoJ.W. GuiéM.A. GuilingerJ.P. HuguetC. HuppC.D. KeefeA.D. MulhernC.J. ZhangY. RileyP. Machine learning on DNA-encoded libraries, a new paradigm for hit finding.J. Med. Chem.202063168857886610.1021/acs.jmedchem.0c0045232525674
    [Google Scholar]
  29. DuvenaudD. MaclaurinD. Aguilera-IparraguirreJ. Gomez-BombarelliR. HirzelT. Aspuru-GuzikA. AdamsR.P. Convolutional networks on graphs for learning molecular fingerprints.arXiv20152015
    [Google Scholar]
  30. HeS. ZhangX. LuS. ZhuT. SunG. SunX. A computational toxicology approach to screen the hepatotoxic ingredients in Traditional Chinese Medicines: Polygonum multiflorum thunb as a case study.Biomolecules201991057710.3390/biom910057731591318
    [Google Scholar]
  31. Carreras-PuigvertJ. SpjuthO. Artificial intelligence for high content imaging in drug discovery.Curr. Opin. Struct. Biol.20248710284210.1016/j.sbi.2024.10284238797109
    [Google Scholar]
  32. RehmanA.U. LiM. WuB. AliY. RasheedS. ShaheenS. LiuX. LuoR. ZhangJ. Role of artificial intelligence in revolutionizing drug discovery.Fundamental Research202410.1016/j.fmre.2024.04.021
    [Google Scholar]
  33. AbbasM.K.G. RassamA. KaramshahiF. AbunoraR. AbouseadaM. The Role of AI in Drug Discovery.ChemBioChem20242514e20230081610.1002/cbic.20230081638735845
    [Google Scholar]
  34. GilpinL.H. BauD. YuanB.Z. BajwaA. SpecterM. Data Science and Advanced Analytics: Explaining explanations, An overview of interpretability of machine learning.Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics20198089
    [Google Scholar]
  35. SeniorA.W. EvansR. JumperJ. KirkpatrickJ. SifreL. GreenT. QinC. ŽídekA. NelsonA.W.R. BridglandA. PenedonesH. PetersenS. SimonyanK. CrossanS. KohliP. JonesD.T. SilverD. KavukcuogluK. HassabisD. Improved protein structure prediction using potentials from deep learning.Nature2020577779270671010.1038/s41586‑019‑1923‑731942072
    [Google Scholar]
  36. SteinerS. WolfJ. GlatzelS. AndreouA. GrandaJ.M. KeenanG. HinkleyT. Aragon-CamarasaG. KitsonP.J. AngeloneD. CroninL. Organic synthesis in a modular robotic system driven by a chemical programming language.Science20193636423eaav221110.1126/science.aav221130498165
    [Google Scholar]
  37. Gómez-BombarelliR. WeiJ.N. DuvenaudD. Hernández-LobatoJ.M. Sánchez-LengelingB. SheberlaD. Aguilera-IparraguirreJ. HirzelT.D. AdamsR.P. Aspuru-GuzikA. Automatic chemical design using a data-driven continuous representation of molecules.ACS Cent. Sci.20184226827610.1021/acscentsci.7b0057229532027
    [Google Scholar]
  38. ColeyC.W. BarzilayR. GreenW.H. JaakkolaT.S. JensenK.F. Convolutional embedding of attributed molecular graphs for physical property prediction.J. Chem. Inf. Model.20175781757177210.1021/acs.jcim.6b0060128696688
    [Google Scholar]
  39. KarimiM. WuD. WangZ. ShenY. DeepAffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks.Bioinformatics201935183329333810.1093/bioinformatics/btz11130768156
    [Google Scholar]
  40. ÖztürkH. ÖzgürA. OzkirimliE. DeepDTA: deep drug–target binding affinity prediction.Bioinformatics20183417i821i82910.1093/bioinformatics/bty59330423097
    [Google Scholar]
  41. DingX. ZhangB. Deepbar, a fast and exact method for binding free energy computation.J. Phys. Chem. Lett.202112102509251510.1021/acs.jpclett.1c0018933719449
    [Google Scholar]
  42. GhasemiF. MehridehnaviA. FassihiA. Pérez-SánchezH. Deep neural network in QSAR studies using deep belief network.Appl. Soft Comput.20186225125810.1016/j.asoc.2017.09.040
    [Google Scholar]
  43. ZhuH. Big Data and artificial intelligence modeling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑02332431518513
    [Google Scholar]
  44. LiuZ. DuJ. FangJ. YinY. XuG. XieL. DeepScreening: a deep learning-based screening web server for accelerating drug discovery.Database (Oxford)20192019baz10410.1093/database/baz10431608949
    [Google Scholar]
  45. RifaiogluA.S. NalbatE. AtalayV. MartinM.J. Cetin-AtalayR. DoğanT. DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations.Chem. Sci. (Camb.)20201192531255710.1039/C9SC03414E33209251
    [Google Scholar]
  46. LeeI. KeumJ. NamH. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences.PLOS Comput. Biol.2019156e100712910.1371/journal.pcbi.100712931199797
    [Google Scholar]
  47. HuangK. FuT. GlassL.M. ZitnikM. XiaoC. SunJ. DeepPurpose: A deep learning library for drug–target interaction prediction.Bioinformatics20213622-235545554710.1093/bioinformatics/btaa100533275143
    [Google Scholar]
  48. MayrA. KlambauerG. UnterthinerT. HochreiterS. DeepTox, toxicity prediction using deep learning.Front. Environ. Sci.2016311510.3389/fenvs.2015.00080
    [Google Scholar]
  49. WangC. ZhangY. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest.J. Comput. Chem.201738316917710.1002/jcc.2466727859414
    [Google Scholar]
  50. PuL. NaderiM. LiuT. WuH.C. MukhopadhyayS. BrylinskiM. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates.BMC Pharmacol. Toxicol.2019201210.1186/s40360‑018‑0282‑630621790
    [Google Scholar]
  51. NguyenT. LeH. QuinnT.P. NguyenT. LeT.D. VenkateshS. GraphDTA: Predicting drug–target binding affinity with graph neural networks.Bioinformatics20213781140114710.1093/bioinformatics/btaa92133119053
    [Google Scholar]
  52. JunyingL. Learning graph-level representation for drug discovery.arXiv20172017
    [Google Scholar]
  53. StorkC. ChenY. ŠíchoM. KirchmairJ. Kirchmair. J. Hit dexter 2.0, machine-learning models for the prediction of frequent hitters.J. Chem. Inf. Model.20195931030104310.1021/acs.jcim.8b0067730624935
    [Google Scholar]
  54. UrbanG. SubrahmanyaN. BaldiP. Inner and outer recursive neural networks for chemoinformatics applications.J. Chem. Inf. Model.201858220721110.1021/acs.jcim.7b0038429320180
    [Google Scholar]
  55. JinW. BarzilayR. JaakkolaT. Junction tree variational autoencoder for molecular graph generation.Proceedings of the 35th International conference on machine learning, PMLR, Stockholmsmassan, Stockholm Sweden2018
    [Google Scholar]
  56. WójcikowskiM. ZielenkiewiczP. SiedleckiP. Open Drug Discovery Toolkit (ODDT): A new open-source player in the drug discovery field.J. Cheminform.2015712610.1186/s13321‑015‑0078‑226101548
    [Google Scholar]
  57. Sanchez-LengelingB. OuteiralC. GuimaraesG.L. Aspuru-GuzikA. Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC).ChemRxiv2017
    [Google Scholar]
  58. FeinbergE.N. SurD. WuZ. HusicB.E. MaiH. LiY. SunS. YangJ. RamsundarB. PandeV.S. PotentialNet for Molecular Property Prediction.ACS Cent. Sci.20184111520153010.1021/acscentsci.8b0050730555904
    [Google Scholar]
  59. BlaschkeT. Arús-PousJ. ChenH. MargreitterC. TyrchanC. EngkvistO. PapadopoulosK. PatronovA. REINVENT 2.0: An AI Tool for De Novo Drug Design.J. Chem. Inf. Model.202060125918592210.1021/acs.jcim.0c0091533118816
    [Google Scholar]
  60. ZhuZ. ShiC. ZhangZ. LiuS. XuM. YuanX. ZhangY. ChenJ. CaiH. LuJ. MaC. LiuR. XhonneuxL.P. QuM. TangJ. Torchdrug, a powerful and flexible machine learning platform for drug discovery.arXiv20222022
    [Google Scholar]
  61. Alliance for Artificial Intelligence in Healthcare (AAIH) Convenes in Boston and Basel to Announce Mission and Launch Activities.Available from: www.swissbiotech.org/listing/alliance-for-artificial-intelligence-in-healthcare-aaih-convenes-in-boston-and-basel-to-announce-mission-and-launch-activities/
  62. ZhavoronkovA. IvanenkovY.A. AliperA. VeselovM.S. AladinskiyV.A. AladinskayaA.V. TerentievV.A. PolykovskiyD.A. KuznetsovM.D. AsadulaevA. VolkovY. ZholusA. ShayakhmetovR.R. ZhebrakA. MinaevaL.I. ZagribelnyyB.A. LeeL.H. SollR. MadgeD. XingL. GuoT. Aspuru-GuzikA. Deep learning enables rapid identification of potent DDR1 kinase inhibitors.Nat. Biotechnol.20193791038104010.1038/s41587‑019‑0224‑x31477924
    [Google Scholar]
  63. StokesJ.M. YangK. SwansonK. JinW. Cubillos-RuizA. DonghiaN.M. MacNairC.R. FrenchS. CarfraeL.A. Bloom-AckermannZ. TranV.M. Chiappino-PepeA. BadranA.H. AndrewsI.W. ChoryE.J. ChurchG.M. BrownE.D. JaakkolaT.S. BarzilayR. CollinsJ.J. A deep learning approach to antibiotic discovery.Cell20201804688702.e1310.1016/j.cell.2020.01.02132084340
    [Google Scholar]
  64. MarconiV.C. RamananA.V. de BonoS. KartmanC.E. KrishnanV. LiaoR. PiruzeliM.L.B. GoldmanJ.D. Alatorre-AlexanderJ. de Cassia PellegriniR. EstradaV. SomM. CardosoA. ChakladarS. CroweB. ReisP. ZhangX. AdamsD.H. ElyE.W. AhnM-Y. AkasbiM. Alatorre-AlexanderJ. AltclasJ.D. ArielF. ArizaH.A. AtkarC. BertettiA. BhattacharyaM. BrionesM.L. BudhrajaA. BurzaA. Camacho OrtizA. CaricchioR. CasasM. Cevoli RecioV. ChoiW.S. CohenE. Comulada-RiveraA. CookP. Cornejo JuarezD.P. DanielC. Degrecci RelvasL.F. Dominguez CheritJ.G. EllerinT. EnikeevD. Erico Tanni MinamotoS. EstradaV. FissE. FuruichiM. Giovanni LuzK. GoldmanJ.D. GonzalezO. GordeevI. GruenewaldT. Hamamoto SatoV.A. HeoE.Y. HeoJ.Y. HermidaM. HiraiY. HutchinsonD. IastrebnerC. IoachimescuO. JainM. Juliani Souza LimaM.P. KhanA. KremerA.E. LawrieT. MacElweeM. Madhani-LovelyF. MalhotraV. Martínez ResendezM.F. McKinnellJ. MilliganP. MinelliC. Moran RodriguezM.A. ParodyM.L. PaulinP. PellegriniR.C. PemuP. Procopio CarvalhoA.C. PuotiM. PurowJ. RameshM. Rea NetoA. Rea NetoA. RobinsonP. RodriguesC. Rojas VelascoG. SaraivaJ.F.K. ScheinbergM. SchreiberS. ScublinskyD. Sevciovic GrumachA. ShawaI. Simon CamposJ. SofatN. SomM. SpinnerC.D. SprinzE. StieneckerR. SuarezJ. TachikawaN. TahirH. TiffanyB. VishnevskyA. Westheimer CavalcanteA. ZirpeK. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial.Lancet Respir. Med.20219121407141810.1016/S2213‑2600(21)00331‑334480861
    [Google Scholar]
  65. BenderA. Cortés-CirianoI. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet.Drug Discov. Today202126251152410.1016/j.drudis.2020.12.00933346134
    [Google Scholar]
  66. DuX. SunS. HuC. YaoY. YanY. ZhangY. DeepPPI: Boosting prediction of protein–protein interactions with deep neural networks.J. Chem. Inf. Model.20175761499151010.1021/acs.jcim.7b0002828514151
    [Google Scholar]
  67. MouchlisV.D. AfantitisA. SerraA. FratelloM. PapadiamantisA.G. AidinisV. LynchI. GrecoD. MelagrakiG. Advances in de Novo drug design, from conventional to machine learning methods.Int. J. Mol. Sci.2021224167610.3390/ijms2204167633562347
    [Google Scholar]
  68. BaiQ. LiuS. TianY. XuT. Banegas-LunaA.J. Pérez-SánchezH. HuangJ. LiuH. YaoX. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022123e158110.1002/wcms.1581
    [Google Scholar]
  69. WildenhainJ. SpitzerM. DolmaS. JarvikN. WhiteR. RoyM. GriffithsE. BellowsD.S. WrightG.D. TyersM. Prediction of synergism from chemical-genetic interactions by machine learning.Cell Syst.20151638339510.1016/j.cels.2015.12.00327136353
    [Google Scholar]
  70. PreuerK. LewisR.P.I. HochreiterS. BenderA. BulusuK.C. KlambauerG. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.Bioinformatics20183491538154610.1093/bioinformatics/btx80629253077
    [Google Scholar]
  71. LakeF. Artifcial intelligence in drug discovery, what is new and what is next?Future Drug Discov.201912FDD1910.4155/fdd‑2019‑0025
    [Google Scholar]
  72. The High Price of Failed Clinical Trials, Time to rethink the model.Available from: www.clinicalleader.com/doc/the-high-price-of-failed-clinical-trials-time-to-rethink-the-model-0001
  73. Deloitte. Using AI to accelerate clinical trials.Available from: www2.deloitte.com/us/en/blog/health-care-blog/2022/using-ai-to-accelerate-clinical-trials.html
  74. The Use Cases of Artificial Intelligence to Streamline the Clinical Trials Process for Patients.Available from: www.linkedin.com/pulse/use-cases-artificial-intelligence-streamline-clinical-trials-process-conqc
  75. Clinical Trials arena. Transforming clinical trials through AI.Available from: www.clinicaltrialsarena.com/comment/transforming-clinical-trials-ai/?cf-view
  76. HarrerS. ShahP. AntonyB. HuJ. Artificial intelligence for clinical trial design.Trends Pharmacol. Sci.201940857759110.1016/j.tips.2019.05.00531326235
    [Google Scholar]
  77. AskinS. BurkhalterD. CaladoG. El DakrouniS. Artificial Intelligence Applied to clinical trials: Opportunities and challenges.Health Technol. (Berl.)202313220321310.1007/s12553‑023‑00738‑236923325
    [Google Scholar]
  78. GilvaryC. MadhukarN. ElkhaderJ. ElementoO. The missing pieces of artificial intelligence in medicine.Trends Pharmacol. Sci.201940855556410.1016/j.tips.2019.06.00131277839
    [Google Scholar]
  79. ZhavoronkovA. VanhaelenQ. OpreaT.I. Will artificial intelligence for drug discovery impact clinical pharmacology?Clin. Pharmacol. Ther.2020107478078510.1002/cpt.179531957003
    [Google Scholar]
  80. SchperbergA.V. BoichardA. TsigelnyI.F. RichardS.B. KurzrockR. Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials.Int. J. Cancer202014792537254910.1002/ijc.3324032745254
    [Google Scholar]
  81. US FDA Food and Drug Administration. Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD).Available from: www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
  82. Arisglobal. Blog, Automation in ICSR Processing – Is Artificial Intelligence the Paradigm Shift in Pharmacovigilance?Available from: www.arisglobal.com/blogs/automation-icsr-processing-artificial-intelligence-paradigm-shift/
  83. BateA. HobbigerS.F. Artificial intelligence, real-world automation and the safety of medicines.Drug Saf.202144212513210.1007/s40264‑020‑01001‑733026641
    [Google Scholar]
  84. BallR. Dal PanG. “Artificial Intelligence” for pharmacovigilance: Ready for prime time?Drug Saf.202245542943810.1007/s40264‑022‑01157‑435579808
    [Google Scholar]
  85. ZameW.R. BicaI. ShenC. CurthA. LeeH.S. BaileyS. WeatherallJ. WrightD. BretzF. van der SchaarM. Machine learning for clinical trials in the era of COVID-19.Stat. Biopharm. Res.202012450651710.1080/19466315.2020.179786734191983
    [Google Scholar]
  86. Cision PR Newswire. Analysis of the Global AI in Clinical Trials Industry 2023 to 2035 - Product/Technology Utilization and Integration Agreements Lead the Way in Partnerships.2023Available from: www.prnewswire.com/news-releases/analysis-of-the-global-ai-in-clinical-trials-industry-2023-to-2035---producttechnology-utilization-and-integration-agreements-lead-the-way-in-partnerships-301909941.html#,~,text=The%20global%20AI%20in%20clinical%20trials%20market%20is%20estimated%20toboth%20time%20and%20cost%20intensive
  87. Root Analysis. AI in Clinical Trials Market.Available from: www.rootsanalysis.com/reports/ai-based-clinical-trial-solutions.html
  88. TomaševN. GlorotX. RaeJ.W. ZielinskiM. AskhamH. SaraivaA. MottramA. MeyerC. RavuriS. ProtsyukI. ConnellA. HughesC.O. KarthikesalingamA. CornebiseJ. MontgomeryH. ReesG. LaingC. BakerC.R. PetersonK. ReevesR. HassabisD. KingD. SuleymanM. BackT. NielsonC. LedsamJ.R. MohamedS. A clinically applicable approach to continuous prediction of future acute kidney injury.Nature2019572776711611910.1038/s41586‑019‑1390‑131367026
    [Google Scholar]
  89. FDA Releases Two Discussion Papers to Spur Conversation about Artificial Intelligence and Machine Learning in Drug Development and Manufacturing.Available from: https://www.fda.gov/news-events/fda-voices/fda-releases-two-discussion-papers-spur-conversation-about-artificial-intelligence-and-machine
  90. LiuX. Cruz RiveraS. MoherD. CalvertM.J. DennistonA.K. ChanA-W. DarziA. HolmesC. YauC. AshrafianH. DeeksJ.J. Ferrante di RuffanoL. FaesL. KeaneP.A. VollmerS.J. LeeA.Y. JonasA. EstevaA. BeamA.L. ChanA-W. PanicoM.B. LeeC.S. HaugC. KellyC.J. YauC. MulrowC. EspinozaC. FletcherJ. PaltooD. MannaE. PriceG. CollinsG.S. HarveyH. MatchamJ. MonteiroJ. ElZarradM.K. Ferrante di RuffanoL. Oakden-RaynerL. McCraddenM. KeaneP.A. SavageR. GolubR. SarkarR. RowleyS. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension.Nat. Med.20202691364137410.1038/s41591‑020‑1034‑x32908283
    [Google Scholar]
  91. IencaM. VayenaE. On the responsible use of digital data to tackle the COVID-19 pandemic.Nat. Med.202026446346410.1038/s41591‑020‑0832‑532284619
    [Google Scholar]
  92. SalemM. TaheriS. YuanJ.S. Utilizing transfer learning and homomorphic encryption in a privacy preserving and secure biometric recognition system.Computers201881310.3390/computers8010003
    [Google Scholar]
  93. RudinC. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.Nat. Mach. Intell.20191520621510.1038/s42256‑019‑0048‑x35603010
    [Google Scholar]
  94. Can federated learning unlock AI in clinical trials without breaching privacy?Available from: https://www.clinicaltrialsarena.com/features/federated-learning/
  95. NarmadhaK. VaralakshmiP. Federated Learning in Healthcare: A Privacy Preserving Approach.Stud. Health Technol. Inform.202229419419810.3233/SHTI22043635612055
    [Google Scholar]
  96. AksuB. ParadkarA. de MatasM. ÖzerÖ. GüneriT. YorkP. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation.Pharm. Dev. Technol.201318123624510.3109/10837450.2012.70529422881350
    [Google Scholar]
  97. RantanenJ. KhinastJ. The future of pharmaceutical manufacturing sciences.J. Pharm. Sci.2015104113612363810.1002/jps.2459426280993
    [Google Scholar]
  98. Quokka Labs. Advancements in Artificial Intelligence for Quality Assurance.Available from: quokkalabs.com/blog/ai-in-quality-assurance/#,~,text=AI%2Dpowered%20tools%20can%20analyzecauses%20outages%20or%20customer%20dissatisfaction.&text=Quality%20assurance%20encompasses%20activities%20andproducts%2C%20services%2C%20or%20processes
  99. Katalon. AI in Quality Assurance, Shifting From Manual to Autonomous Testing.Available from: katalon.com/resources-center/blog/ai-in-quality-assurance
  100. AI Multiple. Quality Assurance, Guide to automating QA with AI in 2023.2023Available from: research.aimultiple.com/qa/
  101. ZhaoC. JainA. HailemariamL. SureshP. AkkisettyP. JoglekarG. VenkatasubramanianV. ReklaitisG.V. MorrisK. BasuP. Toward intelligent decision support for pharmaceutical product development.J. Pharm. Innov.200611233510.1007/BF02784878
    [Google Scholar]
  102. WangX. Intelligent Quality Management Using Knowledge Discovery in Databases.International Conference on Computational Intelligence and Software Engineering20091410.1109/CISE.2009.5364999
    [Google Scholar]
  103. Hexaware. Artificial Intelligence in Quality Assurance, From Manual to Autonomous Testing Using AI.Available from: hexaware.com/blogs/ai-in-quality-assurance/
  104. MagrabiF. AmmenwerthE. McNairJ.B. De KeizerN.F. HyppönenH. NykänenP. RigbyM. ScottP.J. VehkoT. WongZ.S.Y. GeorgiouA. Artificial intelligence in clinical decision support: Challenges for evaluating ai and practical implications.Yearb. Med. Inform.201928112813410.1055/s‑0039‑167790331022752
    [Google Scholar]
  105. WiensJ. SariaS. SendakM. GhassemiM. LiuV.X. Doshi-VelezF. JungK. HellerK. KaleD. SaeedM. OssorioP.N. Thadaney-IsraniS. GoldenbergA. Do no harm: a roadmap for responsible machine learning for health care.Nat. Med.20192591337134010.1038/s41591‑019‑0548‑631427808
    [Google Scholar]
  106. ApolleR. AppoldS. BijlH.P. BlanchardP. BussinkJ. Faivre-FinnC. KhalifaJ. LaprieA. LievensY. MadaniI. RuffierA. de RuysscherD. van ElmptW. TroostE.G.C. Inter-observer variability in target delineation increases during adaptive treatment of head-and-neck and lung cancer.Acta Oncol.201958101378138510.1080/0284186X.2019.162901731271079
    [Google Scholar]
  107. VandewinckeleL. ClaessensM. DinklaA. BrouwerC. CrijnsW. VerellenD. van ElmptW. Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance.Radiother. Oncol.2020153556610.1016/j.radonc.2020.09.00832920005
    [Google Scholar]
  108. NguyenD. LinM.H. SherD. LuW. JiaX. JiangS. Advances in automated treatment planning.Semin. Radiat. Oncol.202232434335010.1016/j.semradonc.2022.06.00436202437
    [Google Scholar]
  109. van der VeenJ. WillemsS. DeschuymerS. RobbenD. CrijnsW. MaesF. NuytsS. Benefits of deep learning for delineation of organs at risk in head and neck cancer.Radiother. Oncol.2019138687410.1016/j.radonc.2019.05.01031146073
    [Google Scholar]
  110. BrouwerC.L. SteenbakkersR.J.H.M. van den HeuvelE. DuppenJ.C. NavranA. BijlH.P. ChouvalovaO. BurlageF.R. MeertensH. LangendijkJ.A. van ’t VeldA.A.III 3D Variation in delineation of head and neck organs at risk.Radiat. Oncol.2012713210.1186/1748‑717X‑7‑3222414264
    [Google Scholar]
  111. ChenX. MenK. ChenB. TangY. ZhangT. WangS. LiY. DaiJ. CNN-based quality assurance for automatic segmentation of breast cancer in radiotherapy.Front. Oncol.20201052410.3389/fonc.2020.0052432426272
    [Google Scholar]
  112. PharmaTech.com. The Future is the Present, Artificial Intelligence in Pharmaceutical Manufacturing.2023Available from: www.pharmtech.com/view/the-future-is-the-present-artificial-intelligence-in-pharmaceutical-manufacturing
  113. Ethical Considerations for AI in Software Quality Assurance.Available from: https://www.kualitatem.com/blog/software-testing/ethical-considerations-for-ai-in-software-quality-assurance/#:~:text=Bias%20in%20AI&text=The%20objectivity%20of%20AI%20systems,as%20hiring%20and%20promotion%20decisions
  114. FerraraE. Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies.Sci202361310.3390/sci6010003
    [Google Scholar]
  115. QuanH.T. HuyD.D. HoanN.T. DucN.T. Deep Learning-Based Automatic Detection of Defective Tablets in Pharmaceutical Manufacturing.8th International Conference on the Development of Biomedical Engineering in Vietnam202278980110.1007/978‑3‑030‑75506‑5_64
    [Google Scholar]
  116. FiczereM. PéterfiO. FarkasA. NagyZ.K. GalataD.L. Image-based simultaneous particle size distribution and concentration measurement of powder blend components with deep learning and machine vision.Eur. J. Pharm. Sci.202319110661110.1016/j.ejps.2023.10661137844806
    [Google Scholar]
  117. HenryK.E. KornfieldR. SridharanA. LintonR.C. GrohC. WangT. WuA. MutluB. SariaS. Human–machine teaming is key to AI adoption: clinicians’ experiences with a deployed machine learning system.NPJ Digit. Med.2022519710.1038/s41746‑022‑00597‑735864312
    [Google Scholar]
  118. DamacharlaP. DhakalP. BandreddiJ.P. JavaidA.Y. GallimoreJ.J. ElkinC. DevabhaktuniV.K. Novel Human-in-the-Loop (HIL) Simulation Method to Study Synthetic Agents and Standardize Human–Machine Teams (HMT).Appl. Sci. (Basel)20201023839010.3390/app10238390
    [Google Scholar]
  119. MadniA. MadniC. Architectural framework for exploring adaptive human-machine teaming options in simulated dynamic environments.Systems2018644410.3390/systems6040044
    [Google Scholar]
  120. SchirnerG. ErdogmusD. ChowdhuryK. PadirT. The future of human-in-the-loop cyber-physical systems.Computer2013461364510.1109/MC.2013.31
    [Google Scholar]
  121. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  122. KouL. BhutiaY.D. YaoQ. HeZ. SunJ. GanapathyV. Transporter-Guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types.Front. Pharmacol.201892710.3389/fphar.2018.0002729434548
    [Google Scholar]
  123. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines, pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  124. ZylberbergC. MatosevicS. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape.Drug Deliv.20162393319332910.1080/10717544.2016.117713627145899
    [Google Scholar]
  125. LeongH.S. ButlerK.S. BrinkerC.J. AzzawiM. ConlanS. DufésC. OwenA. RannardS. ScottC. ChenC. DobrovolskaiaM.A. KozlovS.V. Prina-MelloA. SchmidR. WickP. CaputoF. BoisseauP. CristR.M. McNeilS.E. FadeelB. TranL. HansenS.F. HartmannN.B. ClausenL.P.W. SkjoldingL.M. BaunA. ÅgerstrandM. GuZ. LamprouD.A. HoskinsC. HuangL. SongW. CaoH. LiuX. JandtK.D. JiangW. KimB.Y.S. WheelerK.E. ChetwyndA.J. LynchI. MoghimiS.M. NelA. XiaT. WeissP.S. SarmentoB. das NevesJ. SantosH.A. SantosL. MitragotriS. LittleS. PeerD. AmijiM.M. AlonsoM.J. Petri-FinkA. BalogS. LeeA. DraslerB. Rothen-RutishauserB. WilhelmS. AcarH. HarrisonR.G. MaoC. MukherjeeP. RameshR. McNallyL.R. BusattoS. WolframJ. BergeseP. FerrariM. FangR.H. ZhangL. ZhengJ. PengC. DuB. YuM. CharronD.M. ZhengG. PastoreC. On the issue of transparency and reproducibility in nanomedicine.Nat. Nanotechnol.201914762963510.1038/s41565‑019‑0496‑931270452
    [Google Scholar]
  126. NieC. ParshadB. BhatiaS. ChengC. StadtmüllerM. OehrlA. KerkhoffY. WolffT. HaagR. Topology-matching design of an infuenza-neutralizing spiky nanoparticle-based inhibitor with a dual mode of action.Angew. Chem. Int. Ed.20205936155321553610.1002/anie.20200483232421225
    [Google Scholar]
  127. DahlmanJ.E. BarnesC. KhanO.F. ThiriotA. JhunjunwalaS. ShawT.E. XingY. SagerH.B. SahayG. SpecinerL. BaderA. BogoradR.L. YinH. RacieT. DongY. JiangS. SeedorfD. DaveA. Singh SandhuK. WebberM.J. NovobrantsevaT. RudaV.M. Lytton-JeanA.K.R. LevinsC.G. KalishB. MudgeD.K. PerezM. AbezgauzL. DuttaP. SmithL. CharisseK. KieranM.W. FitzgeraldK. NahrendorfM. DaninoD. TuderR.M. von AndrianU.H. AkincA. PanigrahyD. SchroederA. KotelianskyV. LangerR. AndersonD.G. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight.Nat. Nanotechnol.20149864865510.1038/nnano.2014.8424813696
    [Google Scholar]
  128. RocesC.B. LouG. JainN. AbrahamS. ThomasA. HalbertG.W. PerrieY. Manufacturing considerations for the development of lipid nanoparticles using microfuidics.Pharmaceutics20201211109510.3390/pharmaceutics1211109533203082
    [Google Scholar]
  129. SahayG. QuerbesW. AlabiC. EltoukhyA. SarkarS. ZurenkoC. KaragiannisE. LoveK. ChenD. ZoncuR. BuganimY. SchroederA. LangerR. AndersonD.G. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling.Nat. Biotechnol.201331765365810.1038/nbt.261423792629
    [Google Scholar]
  130. ChenD. LoveK.T. ChenY. EltoukhyA.A. KastrupC. SahayG. JeonA. DongY. WhiteheadK.A. AndersonD.G. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation.J. Am. Chem. Soc.2012134166948695110.1021/ja301621z22475086
    [Google Scholar]
  131. AdirO. PoleyM. ChenG. FroimS. KrinskyN. ShkloverJ. Shainsky-RoitmanJ. LammersT. SchroederA. Integrating artificial intelligence and nanotechnology for precision cancer medicine.Adv. Mater.20203213190198910.1002/adma.20190198931286573
    [Google Scholar]
  132. LaboutaH.I. AsgarianN. RinkerK. CrambD.T. Meta-analysis of nanoparticle cytotoxicity via data-mining the literature.ACS Nano2019132acsnano.8b0756210.1021/acsnano.8b0756230689359
    [Google Scholar]
  133. LuddenT.M. Nonlinear Pharmacokinetics.Clin. Pharmacokinet.199120642944610.2165/00003088‑199120060‑000012044328
    [Google Scholar]
  134. Priyom Bose. Optimizing Drug Delivery Using AI.Available from: www. azolifesciences.com/article/Optimizing-Drug-Delivery-Using-AI.aspx
  135. ChughV. BasuA. KaushikA. Manshu BhansaliS. BasuA.K. Employing nano-enabled artificial intelligence (AI)-based smart technologies for prediction, screening, and detection of cancer.Nanoscale202416115458548610.1039/D3NR05648A38391246
    [Google Scholar]
  136. NandipatiM. FatokiO. DesaiS. Bridging nanomanufacturing and artificial intelligence—A comprehensive review.Materials (Basel)2024177162110.3390/ma1707162138612135
    [Google Scholar]
  137. BadiniS. RegondiS. PuglieseR. Unleashing the power of artificial intelligence in materials design.Materials (Basel)20231617592710.3390/ma1617592737687620
    [Google Scholar]
  138. LiC. BaoL. JiY. TianZ. CuiM. ShiY. ZhaoZ. WangX. Combining machine learning and metal–organic frameworks research: Novel modeling, performance prediction, and materials discovery.Coord. Chem. Rev.202451421588810.1016/j.ccr.2024.215888
    [Google Scholar]
  139. RajithaA. KansalL. RajG. KalraR. DhamijaK. Abdul-ZahraD.S. Biomaterials and artificial intelligence: Predictive modeling and design.E3S Web of Conferences202450501003
    [Google Scholar]
  140. KumarA. PandaD. GangawaneK. Computational modeling on the design of the morphology of aerogels.Hybrid Aerogels: Energy and Environmental Applications.Berlin, Boston: De Gruyte20241326929010.1515/9783111252001‑013
    [Google Scholar]
  141. HoD. WangP. KeeT. Artificial intelligence in nanomedicine.Nanoscale Horiz.20194236537710.1039/C8NH00233A32254089
    [Google Scholar]
  142. WangH. LeeD.K. ChenK.Y. ChenJ.Y. ZhangK. SilvaA. HoC.M. HoD. Mechanism-independent optimization of combinatorial nanodiamond and unmodified drug delivery using a phenotypically driven platform technology.ACS Nano2015933332334410.1021/acsnano.5b0063825689511
    [Google Scholar]
  143. dos SantosA.M. CarvalhoF.C. TeixeiraD.A. AzevedoD.L. de BarrosW.M. GremiãoM.P.D. Computational and experimental approaches for development of methotrexate nanosuspensions by bottom-up nanoprecipitation.Int. J. Pharm.20175241-233033810.1016/j.ijpharm.2017.03.06828359822
    [Google Scholar]
  144. MehtaC.H. NarayanR. NayakU.Y. Computational modeling for formulation design.Drug Discov. Today201924378178810.1016/j.drudis.2018.11.01830502513
    [Google Scholar]
  145. LeT.C. MuletX. BurdenF.R. WinklerD.A. Predicting the complex phase behavior of self-assembling drug delivery nanoparticles.Mol. Pharm.20131041368137710.1021/mp300640223464802
    [Google Scholar]
  146. YoushiaJ. AliM.E. LamprechtA. Artificial neural network based particle size prediction of polymeric nanoparticles.Eur. J. Pharm. Biopharm.201711933334210.1016/j.ejpb.2017.06.03028694160
    [Google Scholar]
  147. ShalabyK.S. SolimanM.E. CasettariL. BonacucinaG. CespiM. PalmieriG.F. SammourO.A. El ShamyA.A. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks.Int. J. Nanomedicine201494953496425364252
    [Google Scholar]
  148. AsadiH. RostamizadehK. SalariD. HamidiM. Preparation of biodegradable nanoparticles of tri-block PLA–PEG–PLA copolymer and determination of factors controlling the particle size using artificial neural network.J. Microencapsul.201128540641610.3109/02652048.2011.57678421736525
    [Google Scholar]
  149. ArulsudarN. SubramanianN. MuthyR.S. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes.J. Pharm. Pharm. Sci.20058224325816124936
    [Google Scholar]
  150. MoussaH.G. HusseiniG.A. Abel-JabbarN. AhmadS.E. Use of model predictive control and artificial neural networks to optimize the ultrasonic release of a model drug from liposomes.IEEE Trans. Nanobiosci.201716314915610.1109/TNB.2017.266132228166502
    [Google Scholar]
  151. LiY. AbbaspourM.R. GrootendorstP.V. RauthA.M. WuX.Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.Eur. J. Pharm. Biopharm.20159417017910.1016/j.ejpb.2015.04.02825986587
    [Google Scholar]
  152. HashadR.A. IshakR.A.H. FahmyS. MansourS. GeneidiA.S. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks.Int. J. Biol. Macromol.201686505810.1016/j.ijbiomac.2016.01.04226783636
    [Google Scholar]
  153. LaddT.D. JelezkoF. LaflammeR. NakamuraY. MonroeC. O’BrienJ.L. Quantum computers.Nature20104647285455310.1038/nature0881220203602
    [Google Scholar]
  154. SeyedhassantehraniN. KarimiR. TavoosidanaG. AmaniA. Concurrent study of stability and cytotoxicity of a novel nanoemulsion system – an artificial neural networks approach.Pharm. Dev. Technol.201722338338910.1080/10837450.2016.121287827780386
    [Google Scholar]
  155. AmaniA. YorkP. ChrystynH. ClarkB.J. DoD.Q. Determination of factors controlling the particle size in nanoemulsions using Artificial Neural Networks.Eur. J. Pharm. Sci.2008351-2425110.1016/j.ejps.2008.06.00218617002
    [Google Scholar]
  156. PuzynT. RasulevB. GajewiczA. HuX. DasariT.P. MichalkovaA. HwangH.M. ToropovA. LeszczynskaD. LeszczynskiJ. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.Nat. Nanotechnol.20116317517810.1038/nnano.2011.1021317892
    [Google Scholar]
  157. BaghaeiB. SaebM.R. JafariS.H. KhonakdarH.A. RezaeeB. GoodarziV. MohammadiY. Modeling and closed‐loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery.J. Appl. Polym. Sci.2017134334514510.1002/app.45145
    [Google Scholar]
  158. BaharifarH. AmaniA. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: An artificial neural networks study.J. Pharm. Sci.2017106141141710.1016/j.xphs.2016.10.01327866686
    [Google Scholar]
  159. HassanzadehP. AtyabiF. DinarvandR. Linkers: The key elements for the creation of efficient nanotherapeutics.J. Control. Release201827026026710.1016/j.jconrel.2017.12.00729246786
    [Google Scholar]
  160. ShahsavariS. Rezaie ShirmardL. AminiM. Abedin DokooshF. Application of artificial neural networks in the design and optimization of a nanoparticulate fingolimod delivery system based on biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).J. Pharm. Sci.2017106117618210.1016/j.xphs.2016.07.02627666377
    [Google Scholar]
  161. CavalcantiA. ShirinzadehB. FreitasR.A.Jr HoggT. Nanorobot architecture for medical target identification.Nanotechnology200819101510310.1088/0957‑4484/19/01/015103
    [Google Scholar]
  162. LiH. TanJ. ZhangM. Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery.IEEE Trans. Autom. Sci.20086220227
    [Google Scholar]
  163. TorelliE. MariniM. PalmanoS. PiantanidaL. PolanoC. ScarpelliniA. LazzarinoM. FirraoG. A DNA origami nanorobot controlled by nucleic acid hybridization.Small201410142918292610.1002/smll.20140024524648163
    [Google Scholar]
  164. RashidM.B.M.A. ChowE.K.H. Artificial intelligence-driven designer drug combinations: From drug development to personalized medicine.SLAS Technol.201924112412510.1177/247263031880077430249153
    [Google Scholar]
  165. PantuckA.J. LeeD.K. KeeT. WangP. LakhotiaS. SilvermanM.H. MathisC. DrakakiA. BelldegrunA.S. HoC.M. HoD. Modulating BET Bromodomain Inhibitor ZEN‐3694 and Enzalutamide Combination Dosing in a Metastatic Prostate Cancer Patient Using CURATE.AI, an Artificial Intelligence Platform.Adv. Ther. (Weinh.)201816180010410.1002/adtp.201800104
    [Google Scholar]
  166. Fierce Pharma. MIT team uses machine learning to find nanoparticles with high drug-loading capacities.Available from: www.fiercepharma.com/drug-delivery/mit-team-uses-machine-learning-to-find-nanoparticles-high-drug-loading-capacities#.;~.;text=Pharma-MIT%20team%20uses%20machine%20learning%20towith%20high%20drug%2Dloading%20capacities&text=Massachusetts%20Institute%20of%20Technology%20
  167. BanniganP. AldeghiM. BaoZ. HäseF. Aspuru-GuzikA. AllenC. Machine learning directed drug formulation development.Adv. Drug Deliv. Rev.202117511380610.1016/j.addr.2021.05.01634019959
    [Google Scholar]
  168. De VivoM. MasettiM. BottegoniG. CavalliA. Role of molecular dynamics and related methods in drug discovery.J. Med. Chem.20165994035406110.1021/acs.jmedchem.5b0168426807648
    [Google Scholar]
  169. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  170. Pfizer Inc. Artificial Intelligence.; On a mission to Make Clinical Drug Development Faster and Smarter.Available from: www.pfizer.com/news/articles/artificial_intelligence_on_a_mission_to_make_clinical_drug_development_faster_and_smarter
  171. National Academies of Sciences Engineering and MedicineDivision on Earth and Life StudiesBoard on Chemical Sciences and Technology; Committee to Identify Innovative Technologies to Advance Pharmaceutical Manufacturing. Innovations in Pharmaceutical Manufacturing on the Horizon.; Technical Challenges Regulatory Issues and Recommendations.USNational Academies Press2021
    [Google Scholar]
  172. KopchaM. Beyond ‘good’ practices Pharma quality regulation has evolved beyond routine CGMP compliance toward a more holistic proactive approach2022Available from: www.pharmamanufacturing.com/compliance/article/21436587/beyond-good-practices
    [Google Scholar]
  173. ArdenN.S. FisherA.C. TynerK. YuL.X. LeeS.L. KopchaM. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future.Int. J. Pharm.202160212055410.1016/j.ijpharm.2021.12055433794326
    [Google Scholar]
  174. GamsM. HorvatM. OžekM. LuštrekM. GradišekA. Integrating artificial and human intelligence into tablet production process.AAPS PharmSciTech20141561447145310.1208/s12249‑014‑0174‑z24970587
    [Google Scholar]
  175. AksuB. YegenG. PurisaS. CevherE. OzsoyY. Optimization of ondansetron orally disintegrating tablets using artificial neural networks.Trop. J. Pharm. Res.20141391374138310.4314/tjpr.v13i9.1
    [Google Scholar]
  176. KinnunenH. HebbinkG. PetersH. ShurJ. PriceR. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks.AAPS PharmSciTech20141541009102010.1208/s12249‑014‑0108‑924831088
    [Google Scholar]
  177. BeličA. ŠkrjancI. BožičD.Z. KarbaR. VrečerF. Minimisation of the capping tendency by tableting process optimisation with the application of artificial neural networks and fuzzy models.Eur. J. Pharm. Biopharm.200973117217810.1016/j.ejpb.2009.05.00519465122
    [Google Scholar]
  178. BourquinJ. SchmidliH. van HoogevestP. LeuenbergerH. Application of artificial neural networks (ANN) in the development of solid dosage forms.Pharm. Dev. Technol.19972211112110.3109/108374597090226169552437
    [Google Scholar]
  179. BourquinJ. SchmidliH. van HoogevestP. LeuenbergerH. Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental designs and data from a galenical study on a solid dosage form.Eur. J. Pharm. Sci.19986428730010.1016/S0928‑0987(97)10025‑29795084
    [Google Scholar]
  180. KesavanJ.G. PeckG.E. Pharmaceutical granulation and tablet formulation using neural networks.Pharm. Dev. Technol.19961439140410.3109/108374596090314349552323
    [Google Scholar]
  181. AksuB. ParadkarA. de MatasM. ÖzerÖ. GüneriT. YorkP. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression.AAPS PharmSciTech20121341138114610.1208/s12249‑012‑9836‑x22956056
    [Google Scholar]
  182. TakagakiK. AraiH. TakayamaK. Creation of a tablet database containing several active ingredients and prediction of their pharmaceutical characteristics based on ensemble artificial neural networks.J. Pharm. Sci.201099104201421410.1002/jps.2213520310024
    [Google Scholar]
  183. WilsonW.I. PengY. AugsburgerL.L. Generalization of a prototype intelligent hybrid system for hard gelatin capsule formulation development.AAPS PharmSciTech200563E449E45710.1208/pt06035616354004
    [Google Scholar]
  184. HanR. YangY. LiX. OuyangD. Predicting oral disintegrating tablet formulations by neural network techniques.Asian J. Pharm. Sci.201813433634210.1016/j.ajps.2018.01.00332104407
    [Google Scholar]
  185. MendykA. JachowiczR. Neural network as a decision support system in the development of pharmaceutical formulation—focus on solid dispersions.Expert Syst. Appl.200528228529410.1016/j.eswa.2004.10.007
    [Google Scholar]
  186. SonY.J. HorngM. CopleyM. McConvilleJ.T. Optimization of an in vitro dissolution test method for inhalation formulations.Dissolut. Technol.201017261310.14227/DT170210P6
    [Google Scholar]
  187. GohW.Y. LimC.P. PehK.K. SubariK. Application of a recurrent neural network to prediction of drug dissolution profiles.Neural Comput. Appl.200210431131710.1007/s005210200003
    [Google Scholar]
  188. IbrićS. JovanovićM. DjurićZ. ParojčićJ. PetrovićS.D. SolomunL. StuparB. Artificial neural networks in the modeling and optimization of aspirin extended release tablets with eudragit L 100 as matrix substance.AAPS PharmSciTech200341627010.1208/pt04010912916918
    [Google Scholar]
  189. LeaneM.M. CummingI. CorriganO.I. The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets.AAPS PharmSciTech20034212914010.1208/pt04022612916908
    [Google Scholar]
  190. Zupančič BozičD. VrečerF. KozjekF. Optimization of diclofenac sodium dissolution from sustained release formulations using an artificial neural network.Eur. J. Pharm. Sci.19975316316910.1016/S0928‑0987(97)00273‑X
    [Google Scholar]
  191. HanR. XiongH. YeZ. YangY. HuangT. JingQ. LuJ. PanH. RenF. OuyangD. Predicting physical stability of solid dispersions by machine learning techniques.J. Control. Release2019311-312162510.1016/j.jconrel.2019.08.03031465824
    [Google Scholar]
  192. DamiatiS.A. MartiniL.G. SmithN.W. LawrenceM.J. BarlowD.J. Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin.Int. J. Pharm.20175301-29910610.1016/j.ijpharm.2017.07.04828733243
    [Google Scholar]
  193. HussainA.S. Artificial neural network based in vitro-in vivo correlations.Adv. Exp. Med. Biol.199742314915810.1007/978‑1‑4684‑6036‑0_129269490
    [Google Scholar]
  194. GülerG.K. EroğluH. ÖnerL. Development and formulation of floating tablet formulation containing rosiglitazone maleate using Artificial Neural Network.J. Drug Deliv. Sci. Technol.20173938539710.1016/j.jddst.2017.04.029
    [Google Scholar]
  195. VaithiyalingamS. ZaghloulA.A. ReddesI.K. KhanM.A. Artificial neural network and simplex optimization for mixing of aqueous coated beads to obtain controlled release formulations.Pharm. Technol.2000246072
    [Google Scholar]
  196. ChalorthamN. RuangrajitpakornT. SupnithiT. OXPIRT: Ontology-based expert system for production of a generic immediate release tablet.2013203228
    [Google Scholar]
  197. SinghI. ThakurA.K. BalaR. MadanR. SeDeM expert system, an innovative tool for developing directly compressible tablets: A review.Curr. Drug Res. Rev.2021131162410.2174/258997751266620092811371632988362
    [Google Scholar]
  198. MendykA. SzlękJ. JachowiczR. ME_expert 2.0: A heuristic decision support system for microemulsions formulation development.Formulation Tools for Pharmaceutical DevelopmentWoodhead Publishing20133971
    [Google Scholar]
  199. PatelT.B. PatelL. PatelT.R. SuhagiaB. Artificial neural network as tool for quality by design in formulation development of solid dispersion of fenofibrate.Bull. Pharm. Res.201552027
    [Google Scholar]
  200. PatelA.D. AgrawalA. DaveR.H. Investigation of the effects of process variables on derived properties of spray dried solid-dispersions using polymer based response surface model and ensemble artificial neural network models.Eur. J. Pharm. Biopharm.201486340441710.1016/j.ejpb.2013.10.01424211662
    [Google Scholar]
  201. KumarK. PanpaliaG. PriyadarshiniS. Application of artificial neural networks in optimizing the fatty alcohol concentration in the formulation of an O/W emulsion.Acta Pharm.201161224925610.2478/v10007‑011‑0013‑721684851
    [Google Scholar]
  202. GermainM. CaputoF. MetcalfeS. TosiG. SpringK. ÅslundA.K.O. PottierA. SchiffelersR. CeccaldiA. SchmidR. Delivering the power of nanomedicine to patients today.J. Control. Release202032616417110.1016/j.jconrel.2020.07.00732681950
    [Google Scholar]
  203. HeY. YeZ. LiuX. WeiZ. QiuF. LiH.F. ZhengY. OuyangD. Can machine learning predict drug nanocrystals?J. Control. Release202032227428510.1016/j.jconrel.2020.03.04332234511
    [Google Scholar]
/content/journals/cai/10.2174/0129503752359512250325061847
Loading
/content/journals/cai/10.2174/0129503752359512250325061847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test