Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2950-3752
  • E-ISSN: 2950-3760

Abstract

Soft robots can revolutionize tailored therapy. Personalized medicine tailors a patient's treatment to their genetics, lifestyle, and medical history. Soft robotics in personalized medicine gives a unique potential to build safe, efficient, and tailored medical treatments. Soft robots employ soft, flexible materials that fit the human body. They are ideal for surgery, rehabilitation, and medicine administration, where precision and safety are critical. Soft robots are safe and can interact with people, making them ideal for healthcare. Surgical soft robotics may be employed in personalized medicine. Soft robots can do less invasive surgeries with fewer incisions and tissue damage. This may help people heal faster and with fewer issues. Soft robots can also perform surgery in hard-to-reach areas without traditional surgical equipment. Rehabilitation institutions may use soft robots to help patients recover. Soft robots may help those with mobility issues. Soft robots may also provide patients feedback during rehabilitation, improving range of motion and functioning. Drug delivery, surgery, and rehabilitation may be conducted using soft robotics. Soft robots can administer drugs to tumors and other harmful regions. This may reduce drug side effects and boost efficacy. Soft robotics may be beneficial in personalized medicine, but several challenges must be overcome before this technology can be extensively employed in clinical settings. One of the biggest challenges is creating soft robots that can work reliably in the complex human body. Soft robots must do their duties precisely and correctly while enduring physiological stress. Soft robot control systems are also tricky. Conventional control methods struggle to govern soft robots due to their great flexibility and deformability. Soft robots need novel control techniques to move and behave in real-time. Finally, soft robotics in personalized medicine provides a unique opportunity to build highly tailored, least invasive, and secure medical interventions. Soft robots might revolutionize medication delivery, rehabilitation, and surgery. Before soft robots are extensively employed in healthcare, various challenges must be overcome. Soft robots need additional study and development to fully fulfill their promise in tailored medicine.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752340302250228103559
2025-01-01
2025-08-14
Loading full text...

Full text loading...

References

  1. RenL. LiB. WeiG. WangK. SongZ. WeiY. RenL. Qingping Liu Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration.iScience202124910307510.1016/j.isci.2021.10307534568796
    [Google Scholar]
  2. YasaO. ToshimitsuY. MichelisM.Y. JonesL.S. FilippiM. BuchnerT. KatzschmannR.K. An overview of soft robotics.Annu. Rev. Control. Robot. Auton. Syst.20236112910.1146/annurev‑control‑062322‑100607
    [Google Scholar]
  3. Albu-SchafferA. EibergerO. GrebensteinM. HaddadinS. OttC. WimbockT. WolfS. HirzingerG. Soft robotics.IEEE Robot. Autom. Mag.2008153203010.1109/MRA.2008.927979
    [Google Scholar]
  4. JohnsonK.B. WeiW.Q. WeeraratneD. FrisseM.E. MisulisK. RheeK. ZhaoJ. SnowdonJ.L. Precision medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.1288432961010
    [Google Scholar]
  5. MarquesL. CostaB. PereiraM. SilvaA. SantosJ. SaldanhaL. SilvaI. MagalhãesP. SchmidtS. ValeN. Advancing precision medicine: A review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare.Pharmaceutics202416333210.3390/pharmaceutics1603033238543226
    [Google Scholar]
  6. MajidiC. Soft robotics: A perspective—current trends and prospects for the future.Soft Robot.20141151110.1089/soro.2013.0001
    [Google Scholar]
  7. SmoukovS.K. Sustainably grown: The underdog robots of the future.arXiv preprint2022220610306
    [Google Scholar]
  8. WalkerJ. ZidekT. HarbelC. YoonS. StricklandF.S. KumarS. Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators.2020913
    [Google Scholar]
  9. BerceaM. Bioinspired hydrogels as platforms for life-science applications: Challenges and opportunities.Polymers20221412236510.3390/polym1412236535745941
    [Google Scholar]
  10. WangY. WangY. MushtaqR.T. WeiQ. Advancements in soft robotics: A comprehensive review on actuation methods, materials, and applications.Polymers2024168108710.3390/polym1608108738675005
    [Google Scholar]
  11. RusuD.M. MândruS.D. BirișC.M. PetrașcuO.L. MorariuF. Ianosi-Andreeva-DimitrovaA. Soft robotics: A systematic review and bibliometric analysis.Micromachines202314235910.3390/mi1402035936838059
    [Google Scholar]
  12. ZhouX. CaoW. Flexible and stretchable carbon-based sensors and actuators for soft robots.Nanomaterials202313231610.3390/nano1302031636678069
    [Google Scholar]
  13. ValoriM. ScibiliaA. FassiI. SaenzJ. BehrensR. HerbsterS. BidardC. LucetE. MagissonA. SchaakeL. BesslerJ. Prange-LasonderG.B. KühnrichM. LassenA.B. NielsenK. Validating safety in human–robot collaboration: Standards and new perspectives.Robotics20211026510.3390/robotics10020065
    [Google Scholar]
  14. GarciaL. KernsG. O’ReilleyK. OkesanjoO. LozanoJ. NarendranJ. BroekingC. MaX. ThompsonH. Njapa NjeuhaP. SikligarD. BrocksteinR. GoleckiH.M. The role of soft robotic micromachines in the future of medical devices and personalized medicine.Micromachines20211312810.3390/mi1301002835056193
    [Google Scholar]
  15. HuangH. LyuY. NanK. Soft robot-enabled controlled release of oral drug formulations.Soft Matter20231971269128110.1039/D2SM01624A36723379
    [Google Scholar]
  16. FilippiM. BuchnerT. YasaO. WeirichS. KatzschmannR.K. Microfluidic tissue engineering and bio‐actuation.Adv. Mater.20223423210842710.1002/adma.20210842735194852
    [Google Scholar]
  17. AhmadM. MubinO. OrlandoJ. A systematic review of adaptivity in human-robot interaction.Multimodal Tech. & Interact.2017131410.3390/mti1030014
    [Google Scholar]
  18. TerrileS. ArgüellesM. BarrientosA. Comparison of different technologies for soft robotics grippers.Sensors2021219325310.3390/s2109325334066680
    [Google Scholar]
  19. JungS. WonE. Systematic review of research trends in robotics education for young children.Sustainability201810490510.3390/su10040905
    [Google Scholar]
  20. Stefanicka-WojtasD. KurpasD. Personalised medicine—implementation to the healthcare system in Europe (Focus Group Discussions).J. Pers. Med.202313338010.3390/jpm1303038036983562
    [Google Scholar]
  21. EsplinE.D. OeiL. SnyderM.P. Personalized sequencing and the future of medicine: discovery, diagnosis and defeat of disease.Pharmacogenomics201415141771179010.2217/pgs.14.11725493570
    [Google Scholar]
  22. JacksonK.D. AchourB. LeeJ. GeffertR.M. BeersJ.L. LathamB.D. Novel approaches to characterize individual drug metabolism and advance precision medicine.Drug Metab. Dispos.202351101238125310.1124/dmd.122.00106637419681
    [Google Scholar]
  23. OatesJ.T. LopezD. Pharmacogenetics: An important part of drug development with a focus on its application.Int. J. Biomed. Investig.20181211132467882
    [Google Scholar]
  24. KaszturaM. RichardA. BempongN.E. LoncarD. FlahaultA. Cost-effectiveness of precision medicine: A scoping review.Int. J. Public Health20196491261127110.1007/s00038‑019‑01298‑x31650223
    [Google Scholar]
  25. HassanM. AwanF.M. NazA. deAndrés-GalianaE.J. AlvarezO. CerneaA. Fernández-BrilletL. Fernández-MartínezJ.L. KloczkowskiA. Innovations in genomics and big data analytics for personalized medicine and health care: A review.Int. J. Mol. Sci.2022239464510.3390/ijms2309464535563034
    [Google Scholar]
  26. Torab-MiandoabA. Samad-SoltaniT. JodatiA. Rezaei-HachesuP. Interoperability of heterogeneous health information systems: A systematic literature review.BMC Med. Inform. Decis. Mak.20232311810.1186/s12911‑023‑02115‑536694161
    [Google Scholar]
  27. BrothersK.B. RothsteinM.A. Ethical, legal and social implications of incorporating personalized medicine into healthcare.Per. Med.2015121435110.2217/pme.14.6525601880
    [Google Scholar]
  28. LamichhaneP. AgrawalA. Precision medicine and implications in medical education.Ann. Med. Surg.20238541342134510.1097/MS9.000000000000029837113952
    [Google Scholar]
  29. GoetzL.H. SchorkN.J. Personalized medicine: Motivation, challenges, and progress.Fertil. Steril.2018109695296310.1016/j.fertnstert.2018.05.00629935653
    [Google Scholar]
  30. BatkoK. ŚlęzakA. The use of big data analytics in healthcare.J. Big Data202291310.1186/s40537‑021‑00553‑435013701
    [Google Scholar]
  31. AlemuB.S. FeissoS. MohammedE.A. SalauA.O. Magnetic resonance imaging-based brain tumor image classification performance enhancement.Sci. Am.202322e01963
    [Google Scholar]
  32. DuggerS.A. PlattA. GoldsteinD.B. Drug development in the era of precision medicine.Nat. Rev. Drug Discov.201817318319610.1038/nrd.2017.22629217837
    [Google Scholar]
  33. MorrisL. DiteesawatR.S. RahmanN. TurtonA. CrampM. RossiterJ. The-state-of-the-art of soft robotics to assist mobility: A review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.J. Neuroeng. Rehabil.20232011810.1186/s12984‑022‑01122‑336717869
    [Google Scholar]
  34. PengZ. HuangJ. Soft rehabilitation and nursing-care robots: A review and future outlook.Appl. Sci.2019915310210.3390/app9153102
    [Google Scholar]
  35. AkbariA. HaghverdF. BehbahaniS. Robotic home-based rehabilitation systems design: from a literature review to a conceptual framework for community-based remote therapy during COVID-19 pandemic.Front. Robot. AI2021861233110.3389/frobt.2021.61233134239898
    [Google Scholar]
  36. AshuriT. ArmaniA. Jalilzadeh HamidiR. ReasnorT. AhmadiS. IqbalK. Biomedical soft robots: Current status and perspective.Biomed. Eng. Lett.202010336938510.1007/s13534‑020‑00157‑632864173
    [Google Scholar]
  37. PaternòL. LorenzonL. Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks.Front. Robot. AI202310107563410.3389/frobt.2023.107563436845334
    [Google Scholar]
  38. López-GonzálezA. TejadaJ. López-RomeroJ. Review and proposal for a classification system of soft robots inspired by animal morphology.Biomimetics20238219210.3390/biomimetics802019237218778
    [Google Scholar]
  39. DengZ. GuoL. ChenX. WuW. Smart wearable systems for health monitoring.Sensors2023235247910.3390/s2305247936904682
    [Google Scholar]
  40. HabuzaT. NavazA.N. HashimF. AlnajjarF. ZakiN. SerhaniM.A. StatsenkoY. AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine.Informatics in Medicine Unlocked20212410059610.1016/j.imu.2021.100596
    [Google Scholar]
  41. GifariM.W. NaghibiH. StramigioliS. AbayazidM. A review on recent advances in soft surgical robots for endoscopic applications.Int. J. Med. Robot.2019155e201010.1002/rcs.201031069938
    [Google Scholar]
  42. NeidhardtM. GerlachS. MielingR. LavesM.H. WeibT. GromniakM. FitzekA. MobiusD. KniepI. RonA. SchadlerJ. HeinemannA. PuschelK. OndruschkaB. SchlaeferA. Robotic tissue sampling for safe post-mortem biopsy in infectious corpses.IEEE Trans. Med. Robot. Bionics2022419410510.1109/TMRB.2022.314644035582701
    [Google Scholar]
  43. MajumderS. MondalT. DeenM. Wearable sensors for remote health monitoring.Sensors201717113010.3390/s1701013028085085
    [Google Scholar]
  44. GopeshT. WenJ.H. Santiago-DieppaD. YanB. PannellJ.S. KhalessiA. NorbashA. FriendJ. Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders.Sci. Robot.2021657eabf060110.1126/scirobotics.abf060134408094
    [Google Scholar]
  45. Cortegoso ValdiviaP. RobertsonA.R. De BoerN.K.H. MarliczW. KoulaouzidisA. An overview of robotic capsules for drug delivery to the gastrointestinal tract.J. Clin. Med.20211024579110.3390/jcm1024579134945087
    [Google Scholar]
  46. AliciG. Towards soft robotic devices for site-specific drug delivery.Expert Rev. Med. Devices201512670371510.1586/17434440.2015.109172226415110
    [Google Scholar]
  47. HuM. GeX. ChenX. MaoW. QianX. YuanW.E. Micro/nanorobot: A promising targeted drug delivery system.Pharmaceutics202012766510.3390/pharmaceutics1207066532679772
    [Google Scholar]
  48. WangY. HuangW. WangY. MuX. LingS. YuH. ChenW. GuoC. WatsonM.C. YuY. BlackL.D.III LiM. OmenettoF.G. LiC. KaplanD.L. Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior.Proc. Natl. Acad. Sci. USA202011725146021460810.1073/pnas.200299611732522869
    [Google Scholar]
  49. KarA. AhamadN. DewaniM. AwasthiL. PatilR. BanerjeeR. Wearable and implantable devices for drug delivery: Applications and challenges.Biomaterials202228312143510.1016/j.biomaterials.2022.12143535227964
    [Google Scholar]
  50. Nazary AbrbekohF. SalimiL. SaghatiS. AminiH. Fathi KarkanS. MoharamzadehK. SokulluE. RahbarghaziR. Application of microneedle patches for drug delivery; Doorstep to novel therapies.J. Tissue Eng.2022132041731422108539010.1177/2041731422108539035516591
    [Google Scholar]
  51. VenterM.P. JoubertI.J. Generative design of soft robot actuators using ESP.Math. & Comput. Appl.20232825310.3390/mca28020053
    [Google Scholar]
  52. YanB. Actuators for implantable devices: A broad view.Micromachines20221310175610.3390/mi1310175636296109
    [Google Scholar]
  53. AfloriM. Smart nanomaterials for biomedical applications—a review.Nanomaterials202111239610.3390/nano1102039633557177
    [Google Scholar]
  54. GovindanB. SabriM.A. HaiA. BanatF. HaijaM.A. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach.Pharmaceutics202315386810.3390/pharmaceutics1503086836986729
    [Google Scholar]
  55. JonesS.J. TaylorA.F. BealesP.A. Towards feedback-controlled nanomedicines for smart, adaptive delivery.Exp. Biol. Med.2019244428329310.1177/153537021880045630205721
    [Google Scholar]
  56. GurunathanS. KangM.H. QasimM. KimJ.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer.Int. J. Mol. Sci.20181910326410.3390/ijms1910326430347840
    [Google Scholar]
  57. BardiE. GandollaM. BraghinF. RestaF. PedrocchiA.L.G. AmbrosiniE. Upper limb soft robotic wearable devices: A systematic review.J. Neuroeng. Rehabil.20221918710.1186/s12984‑022‑01065‑935948915
    [Google Scholar]
  58. QuQ. LinY. HeZ. FuJ. ZouF. JiangZ. GuoF. JiaJ. The effect of applying robot-assisted task-oriented training using human-robot collaborative interaction force control technology on upper limb function in stroke patients: Preliminary findings.BioMed Res. Int.2021202111810.1155/2021/991649234368358
    [Google Scholar]
  59. OzgurA.G. WesselM.J. OlsenJ.K. Cadic-MelchiorA.G. ZuffereyV. JohalW. DominijanniG. TurlanJ.L. MühlA. BrunoB. VuadensP. DillenbourgP. HummelF.C. The effect of gamified robot-enhanced training on motor performance in chronic stroke survivors.Heliyon2022811e1176410.1016/j.heliyon.2022.e1176436468121
    [Google Scholar]
  60. PramukaM. Van RoosmalenL. Telerehabilitation technologies: Accessibility and usability.Int. J. Telerehabil.200911859810.5195/ijt.2009.601625945165
    [Google Scholar]
  61. XiongJ. ChenJ. LeeP.S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface.Adv. Mater.20213319200264010.1002/adma.20200264033025662
    [Google Scholar]
  62. Piña-MartínezE. RobertsR. Leal-MerloS. Rodriguez-LealE. Vision system-based design and assessment of a novel shoulder joint mechanism for an enhanced workspace upper limb exoskeleton.Appl. Bionics Biomech.20182018111410.1155/2018/601938129967655
    [Google Scholar]
  63. TiboniM. BorboniA. VéritéF. BregoliC. AmiciC. Sensors and actuation technologies in exoskeletons: A review.Sensors202222388410.3390/s2203088435161629
    [Google Scholar]
  64. XuK. QinS. An Interdisciplinary approach and advanced techniques for enhanced 3D-printed upper limb prosthetic socket design: A literature review. Actuators.202312622310.3390/act12060223
    [Google Scholar]
  65. MeyerJ.T. SchradeS.O. LambercyO. GassertR. User-centered design and evaluation of physical interfaces for an exoskeleton for paraplegic users.IEEE Int Conf Rehabil Robot. 2019201911591166
    [Google Scholar]
  66. Martinez-HernandezU. MetcalfeB. AssafT. JabbanL. MaleJ. ZhangD. Wearable assistive robotics: A perspective on current challenges and future trends.Sensors20212120675110.3390/s2120675134695964
    [Google Scholar]
  67. Perez VidalA.F. Rumbo MoralesJ.Y. Ortiz TorresG. Soft exoskeletons: Development, requirements, and challenges of the last decade. Actuators202110166
    [Google Scholar]
  68. ZariffaJ. KapadiaN. KramerJ.L.K. TaylorP. Alizadeh-MeghraziM. ZivanovicV. WillmsR. TownsonA. CurtA. PopovicM.R. SteevesJ.D. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population.Spinal Cord201250322022610.1038/sc.2011.10421912402
    [Google Scholar]
  69. NgK.H. NazariV. AlamM. Can prosthetic hands mimic a Healthy human hand?Prosthesis202131112310.3390/prosthesis3010003
    [Google Scholar]
  70. SeccianiN. BrogiC. PagliaiM. BuonamiciF. GerliF. VannettiF. BianchiniM. VolpeY. RidolfiA. Wearable robots: An original mechatronic design of a hand exoskeleton for assistive and rehabilitative purposes.Front. Neurorobot.20211575038510.3389/fnbot.2021.75038534744679
    [Google Scholar]
  71. BonannoM. MilitiA. La Fauci BelponerF. De LucaR. LeonettiD. QuartaroneA. CiancarelliI. MoroneG. CalabròR.S. Rehabilitation of gait and balance in cerebral palsy: A scoping review on the use of robotics with biomechanical implications.J. Clin. Med.2023129327810.3390/jcm1209327837176718
    [Google Scholar]
  72. AngB.W.K. YeowC.H. LimJ.H. A critical review on factors affecting the user adoption of wearable and soft robotics.Sensors2023236326310.3390/s2306326336991974
    [Google Scholar]
  73. KernF. WinterC. GallD. KäthnerI. PauliP. LatoschikM.E. Immersive virtual reality and gamification within procedurally generated environments to increase motivation during gait rehabilitation.2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)Osaka, Japan, 23-27 March 2019, pp. 500-509.
    [Google Scholar]
  74. ShahS.H.H. KarlsenA.S.T. SolbergM. HameedI.A. A social VR-based collaborative exergame for rehabilitation: codesign, development and user study.Virtual Real.20232743403342010.1007/s10055‑022‑00721‑8
    [Google Scholar]
  75. SchorkNJ Artificial intelligence and personalized medicine.Cancer Treat Res.201917826528310.1007/978‑3‑030‑16391‑4_11
    [Google Scholar]
  76. LautJ. PorfiriM. RaghavanP. The present and future of robotic technology in rehabilitation.Curr. Phys. Med. Rehabil. Rep.20164431231910.1007/s40141‑016‑0139‑028603663
    [Google Scholar]
  77. RantanenP. ParkkariT. LeikolaS. AiraksinenM. LylesA. An in-home advanced robotic system to manage elderly home-care patients’ medications: A pilot safety and usability study.Clin. Ther.20173951054106110.1016/j.clinthera.2017.03.02028433400
    [Google Scholar]
  78. LimaM.R. WairagkarM. NatarajanN. VaitheswaranS. VaidyanathanR. Robotic telemedicine for mental health: A multimodal approach to improve human-robot engagement.Front. Robot. AI2021861886610.3389/frobt.2021.61886633816568
    [Google Scholar]
  79. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑9431363513
    [Google Scholar]
  80. du PlessisT. DjouaniK. OosthuizenC. A review of active hand exoskeletons for rehabilitation and assistance.Robotics20211014010.3390/robotics10010040
    [Google Scholar]
  81. KřesťanováA ČernýM AugustynekM Development and technical design of tangible user interfaces in wide-field areas of application.Sensors 20212113425810.3390/s21134258
    [Google Scholar]
  82. Mayoral BañosJ.C. FromP.J. CielniakG. Towards safe robotic agricultural applications: Safe navigation system design for a robotic grass-mowing application through the risk management method.Robotics20231236310.3390/robotics12030063
    [Google Scholar]
  83. CepolinaF. RazzoliR.P. An introductory review of robotically assisted surgical systems.Int. J. Med. Robot.2022184e240910.1002/rcs.240935476899
    [Google Scholar]
  84. HollandJ. KingstonL. McCarthyC. ArmstrongE. O’DwyerP. MerzF. McConnellM. Service robots in the healthcare sector.Robotics20211014710.3390/robotics10010047
    [Google Scholar]
  85. DonnellyC. BrenchleyC. CrawfordC. LettsL. The integration of occupational therapy into primary care: A multiple case study design.BMC Fam. Pract.20131416010.1186/1471‑2296‑14‑6023679667
    [Google Scholar]
  86. ButphengC. YehK.H. XiongH. Security and privacy in IoT-cloud-based e-health systems—A comprehensive review.Symmetry2020127119110.3390/sym12071191
    [Google Scholar]
  87. FarhudD.D. ZokaeiS. Ethical issues of artificial intelligence in medicine and healthcare.Iran. J. Public Health20215011iv10.18502/ijph.v50i11.760035223619
    [Google Scholar]
  88. WangmoT. LippsM. KressigR.W. IencaM. Ethical concerns with the use of intelligent assistive technology: findings from a qualitative study with professional stakeholders.BMC Med. Ethics20192019810.1186/s12910‑019‑0437‑z31856798
    [Google Scholar]
  89. AmjadA. KordelP. FernandesG. A review on innovation in healthcare sector (telehealth) through artificial intelligence.Sustainability2023158665510.3390/su15086655
    [Google Scholar]
  90. MalihaG. GerkeS. CohenG. ParikhR.B. Artificial intelligence and liability in medicine: Balancing safety and innovation.Milbank Q.202199362964710.1111/1468‑0009.1250433822422
    [Google Scholar]
  91. SarkerS. JamalL. AhmedS.F. IrtisamN. Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review.Robot. Auton. Syst.202114610390210.1016/j.robot.2021.10390234629751
    [Google Scholar]
  92. PflanzerM. TraylorZ. LyonsJ.B. DubljevićV. NamC.S. Ethics in human–AI teaming: Principles and perspectives.AI and Ethics20233391793510.1007/s43681‑022‑00214‑z
    [Google Scholar]
  93. NocentiniO. FioriniL. AcerbiG. SorrentinoA. MancioppiG. CavalloF. A survey of behavioral models for social robots.Robotics2019835410.3390/robotics8030054
    [Google Scholar]
  94. Etemad-SajadiR. SoussanA. SchöpferT. How ethical issues raised by human–robot interaction can impact the intention to use the robot?Int. J. Soc. Robot.20221441103111510.1007/s12369‑021‑00857‑835043067
    [Google Scholar]
  95. BhagatS. BanerjeeH. Ho TseZ.T. RenH. Deep reinforcement learning for soft, flexible robots: Brief review with impending challenges.Robotics201981410.3390/robotics8010004
    [Google Scholar]
  96. TownsendA. JiyaI.N. MartinsonC. BessarabovD. GouwsR. A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements.Heliyon2020611e0528510.1016/j.heliyon.2020.e0528533235928
    [Google Scholar]
  97. BenMessaoudC. KharraziH. MacDormanK.F. Facilitators and barriers to adopting robotic-assisted surgery: Contextualizing the unified theory of acceptance and use of technology.PLoS One201161e1639510.1371/journal.pone.001639521283719
    [Google Scholar]
  98. LiM. PalA. AghakhaniA. Pena-FranceschA. SittiM. Soft actuators for real-world applications.Nat. Rev. Mater.20217323524910.1038/s41578‑021‑00389‑735474944
    [Google Scholar]
  99. GaoR.Z. RenC.L. Synergizing microfluidics with soft robotics: A perspective on miniaturization and future directions.Biomicrofluidics202115101130210.1063/5.003699133564346
    [Google Scholar]
  100. VignaliE. GasparottiE. CapelliniK. FanniB.M. LandiniL. PositanoV. CeliS. Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations.Int. J. Robot. Res.202140122423510.1177/0278364920927476
    [Google Scholar]
  101. PinneyJ. CarrollF. NewburyP. Human-robot interaction: The impact of robotic aesthetics on anticipated human trust.PeerJ Comput. Sci.20228e83710.7717/peerj‑cs.83735111922
    [Google Scholar]
  102. CioffiR. TravaglioniM. PiscitelliG. PetrilloA. De FeliceF. Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions.Sustainability202012249210.3390/su12020492
    [Google Scholar]
  103. VolterraniM. SposatoB. Remote monitoring and telemedicine.Eur. Heart J. Suppl.201921Suppl. MM54M5610.1093/eurheartj/suz26631908618
    [Google Scholar]
  104. O’SullivanS. NevejansN. AllenC. BlythA. LeonardS. PagalloU. HolzingerK. HolzingerA. SajidM.I. AshrafianH. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery.Int. J. Med. Robot.2019151e196810.1002/rcs.196830397993
    [Google Scholar]
  105. NaikN. HameedB.M.Z. ShettyD.K. SwainD. ShahM. PaulR. AggarwalK. IbrahimS. PatilV. SmritiK. ShettyS. RaiB.P. ChlostaP. SomaniB.K. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility?Front. Surg.2022986232210.3389/fsurg.2022.86232235360424
    [Google Scholar]
/content/journals/cai/10.2174/0129503752340302250228103559
Loading
/content/journals/cai/10.2174/0129503752340302250228103559
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test