Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Valproic acid (VPA)-induced hepatotoxicity is among the most common and severe adverse drug reactions, limiting its clinical application. Recent studies have suggested that activating the farnesoid X receptor (FXR) could be a promising therapeutic approach to alleviate VPA-induced hepatotoxicity; however, related research remains limited.

Objectives

This study aims to comprehensively investigate the mechanisms underlying FXR activation by obeticholic acid (OCA) for the treatment of VPA-induced hepatotoxicity.

Methods

Network pharmacology was performed to identify potential targets and pathways underlying the amelioration of VPA-induced hepatotoxicity by OCA. The identified pathways were validated through GEO data analysis, and the affinities between OCA and potential key targets were predicted using molecular docking as well as molecular dynamics simulations.

Results

A total of 462 targets associated with VPA-induced hepatotoxicity and 288 targets of OCA were identified, with 81 shared targets. KEGG pathway and GO enrichment analysis indicated that the effect of OCA on VPA-induced hepatotoxicity primarily involved lipid metabolism, as well as oxidative stress and inflammation. The results from GEO data analysis, molecular docking, and molecular dynamics simulations revealed a close association between bile secretion, the PPAR signaling pathway, and the treatment of VPA-induced hepatotoxicity by OCA.

Conclusion

Our findings suggest that OCA exhibits potential therapeutic efficacy against VPA-induced hepatotoxicity through multiple targets and pathways, thereby highlighting the therapeutic potential of FXR as a target for treating VPA-induced hepatotoxicity.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099324138240823041016
2024-09-03
2025-12-09
Loading full text...

Full text loading...

References

  1. WongY.C.J. FanJ. WanA. MihicT. GnyraM. Valproic acid–associated hyperammonemia.J. Clin. Psychopharmacol.202343328329410.1097/JCP.000000000000168937126830
    [Google Scholar]
  2. GrosuC. HatoumW. PirasM. LaaboubN. RanjbarS. GammaF. PlessenK.J. GuntenA. PreisigM. ConusP. EapC.B. Associations of valproate doses with weight gain in adult psychiatric patients.J. Clin. Psychiatry202485223m1500810.4088/JCP.23m1500838535509
    [Google Scholar]
  3. EzhilarasanD. ManiU. Valproic acid induced liver injury: An insight into molecular toxicological mechanism.Environ. Toxicol. Pharmacol.20229510396710.1016/j.etap.2022.10396736058508
    [Google Scholar]
  4. WangM.L. ZhangY.J. HeD.L. LiT. ZhaoM.M. ZhaoL.M. Inhibition of PLA2G4A attenuated valproic acid- induced lysosomal membrane permeabilization and restored impaired autophagic flux: Implications for hepatotoxicity.Biochem. Pharmacol.202422711643810.1016/j.bcp.2024.11643839025409
    [Google Scholar]
  5. WangW.J. ZhaoY.T. DaiH.R. ZhangY.Y. WangJ. GuoH.L. DingX.S. ChenF. Successful LC-MS/MS assay development and validation for determination of valproic acid and its metabolites supporting proactive pharmacovigilance.J. Pharm. Biomed. Anal.202323411553810.1016/j.jpba.2023.11553837354631
    [Google Scholar]
  6. MaY. WangM. GuoS. LiT. LiuX. ZhaoL. The serum acylcarnitines profile in epileptic children treated with valproic acid and the protective roles of peroxisome proliferator-activated receptor a activation in valproic acid-induced liver injury.Front. Pharmacol.202213104872810.3389/fphar.2022.104872836425583
    [Google Scholar]
  7. ChangT.K.H. AbbottF.S. Oxidative stress as a mechanism of valproic acid-associated hepatotoxicity.Drug Metab. Rev.200638462763910.1080/0360253060095943317145692
    [Google Scholar]
  8. GrünigD. SzaboL. MarbetM. KrähenbühlS. Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms.Biochem. Pharmacol.202017711386010.1016/j.bcp.2020.11386032165129
    [Google Scholar]
  9. LuefG.J. WaldmannM. SturmW. NaserA. TrinkaE. UnterbergerI. BauerG. LechleitnerM. Valproate therapy and nonalcoholic fatty liver disease.Ann. Neurol.200455572973210.1002/ana.2007415122714
    [Google Scholar]
  10. LamponN. TutorJ.C. A preliminary investigation on the possible association between diminished copper availability and non-alcoholic fatty liver disease in epileptic patients treated with valproic acid.Ups. J. Med. Sci.2011116214815410.3109/03009734.2010.54589821190397
    [Google Scholar]
  11. XuS. ChenY. MaY. LiuT. ZhaoM. WangZ. ZhaoL. Lipidomic profiling reveals disruption of lipid metabolism in valproic acid-induced hepatotoxicity.Front. Pharmacol.20191081910.3389/fphar.2019.0081931379584
    [Google Scholar]
  12. LiR. QinX. LiangX. LiuM. ZhangX. Lipidomic characteristics and clinical findings of epileptic patients treated with valproic acid.J. Cell. Mol. Med.20192396017602310.1111/jcmm.1446431162795
    [Google Scholar]
  13. KitaharaG. HigashisakaK. NakamotoY. YamamotoR. OkunoW. SerizawaM. SakahashiY. TsujinoH. HagaY. TsutsumiY. Valproic acid elevates HIF-1α-mediated <i>CGB</i> expression and suppresses glucose uptake in BeWo cells.J. Toxicol. Sci.2024492697710.2131/jts.49.6938296531
    [Google Scholar]
  14. MaL. ZhuJ. KongX. ChenL. DuJ. YangL. WangD. WangZ. Influence of the glutamate-glutamine cycle on valproic acid-associated hepatotoxicity in pediatric patients with epilepsy.Clin. Toxicol. (Phila.)202462636437110.1080/15563650.2024.236692038913595
    [Google Scholar]
  15. ChenY. ZhouJ. XuS. LiuM. WangM. MaY. ZhaoM. WangZ. GuoY. ZhaoL. Association between the perturbation of bile acid homeostasis and valproic acid-induced hepatotoxicity.Biochem. Pharmacol.201917011366910.1016/j.bcp.2019.11366931628911
    [Google Scholar]
  16. XiaoY. JiaY. LiuW. NiuC. MaiZ. DongJ. ZhangX. YuanZ. JiP. WeiY. HuaY. Pulsatilla decoction alleviates DSS-induced UC by activating FXR-ASBT pathways to ameliorate disordered bile acids homeostasis.Front. Pharmacol.202415139982910.3389/fphar.2024.139982938974033
    [Google Scholar]
  17. YeX. HuangD. DongZ. WangX. NingM. XiaJ. ShenS. WuS. ShiY. WangJ. WanX. FXR Signaling-Mediated Bile Acid Metabolism Is Critical for Alleviation of Cholesterol Gallstones by Lactobacillus Strains.Microbiol. Spectr.2022105e00518-2210.1128/spectrum.00518‑2236036629
    [Google Scholar]
  18. ZhengX. ChenT. JiangR. ZhaoA. WuQ. KuangJ. SunD. RenZ. LiM. ZhaoM. WangS. BaoY. LiH. HuC. DongB. LiD. WuJ. XiaJ. WangX. LanK. RajaniC. XieG. LuA. JiaW. JiangC. JiaW. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism.Cell Metab.2021334791803.e710.1016/j.cmet.2020.11.01733338411
    [Google Scholar]
  19. XuH. FangF. WuK. SongJ. LiY. LuX. LiuJ. ZhouL. YuW. YuF. GaoJ. Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia.Microbiome202311126210.1186/s40168‑023‑01709‑538001551
    [Google Scholar]
  20. AdoriniL. TraunerM. FXR agonists in NASH treatment.J. Hepatol.20237951317133110.1016/j.jhep.2023.07.03437562746
    [Google Scholar]
  21. AljarboaA.S. AlhusainiA.M. SarawiW.S. MohammedR. AliR.A. HasanI.H. The implication of LPS/TLR4 and FXR receptors in hepatoprotective efficacy of indole-3-acetic acid and chenodeoxycholic acid.Life Sci.202333412218210.1016/j.lfs.2023.12218237863258
    [Google Scholar]
  22. GaiZ. KrajncE. SamodelovS.L. VisentinM. Kullak-UblickG.A. Obeticholic acid ameliorates valproic acid–induced hepatic steatosis and oxidative stress.Mol. Pharmacol.202097531432310.1124/mol.119.11864632098797
    [Google Scholar]
  23. KremoserC. FXR agonists for NASH: How are they different and what difference do they make?J. Hepatol.2021751121510.1016/j.jhep.2021.03.02033985820
    [Google Scholar]
  24. NevensF. TraunerM. MannsM.P. Primary biliary cholangitis as a roadmap for the development of novel treatments for cholestatic liver diseases†.J. Hepatol.202378243044110.1016/j.jhep.2022.10.00736272496
    [Google Scholar]
  25. LazzaraF. ContiF. GiuffridaE. EandiC.M. DragoF. PlataniaC.B.M. BucoloC. Integrating network pharmacology: The next-generation approach in ocular drug discovery.Curr. Opin. Pharmacol.20247410242510.1016/j.coph.2023.10242538183849
    [Google Scholar]
  26. LathaS. Role of network pharmacology in prediction of mechanism of neuroprotective compounds.Methods Mol. Biol.2024276115917910.1007/978‑1‑0716‑3662‑6_1338427237
    [Google Scholar]
  27. HuangH. LiX. WuW. LiuC. ShaoY. WuX. FuJ. Cordycepin enhances the therapeutic efficacy of doxorubicin in treating triple-negative breast cancer.Int. J. Mol. Sci.20242513707710.3390/ijms2513707739000182
    [Google Scholar]
  28. LeiH. ZhangH. YuY. YuX. GuoM. YuanY. Exploring potential targets and pathways of toxicity attenuation through serum pharmacochemistry and network pharmacology in the processing of aconiti lateralis radix praeparata.Biomed. Chromatogr.2024388e589010.1002/bmc.589038800964
    [Google Scholar]
  29. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  30. WangY. YuanY. WangW. HeY. ZhongH. ZhouX. ChenY. CaiX.J. LiuL. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking.Comput. Biol. Med.202214510545410.1016/j.compbiomed.2022.10545435367781
    [Google Scholar]
  31. SunZ. WangY. PangX. WangX. ZengH. Mechanisms of polydatin against spinal cord ischemia–reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation.Bioorg. Chem.202314010684010.1016/j.bioorg.2023.10684037683540
    [Google Scholar]
  32. XuY. ZouY. ZhouS. NiuM.M. ZhangY. LiJ. XuZ. YangL. Discovery of potent heat shock protein 90 (Hsp90) inhibitors: Structure-based virtual screening, molecular dynamics simulation, and biological evaluation.J. Enzyme Inhib. Med. Chem.2023381222055810.1080/14756366.2023.222055837357755
    [Google Scholar]
  33. YuY. ZhouM. LongX. YinS. HuG. YangX. JianW. YuR. Study on the mechanism of action of colchicine in the treatment of coronary artery disease based on network pharmacology and molecular docking technology.Front. Pharmacol.202314114736010.3389/fphar.2023.114736037405052
    [Google Scholar]
  34. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  35. XiongA. LuL. JiangK. WangX. ChenY. WangX. ZhangW. ZhugeY. HuangW. LiL. LiaoQ. YangF. LiuP. DingL. WangZ. YangL. Functional metabolomics characterizes the contribution of farnesoid X receptor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome.Arch. Toxicol.20249882557257610.1007/s00204‑024‑03762‑x38703205
    [Google Scholar]
  36. AzizsoltaniA. HatamiB. ZaliM.R. MahdaviV. BaghaeiK. AlizadehE. Obeticholic acid-loaded exosomes attenuate liver fibrosis through dual targeting of the FXR signaling pathway and ECM remodeling.Biomed. Pharmacother.202316811577710.1016/j.biopha.2023.11577737913732
    [Google Scholar]
  37. Di PasquaL.G. CagnaM. PalladiniG. CroceA.C. CadamuroM. FabrisL. PerliniS. AdoriniL. FerrignoA. VairettiM. FXR agonists INT-787 and OCA increase RECK and inhibit liver steatosis and inflammation in diet-induced ob/ob mouse model of NASH.Liver Int.202444121422710.1111/liv.1576737904642
    [Google Scholar]
  38. LefebvreP. BenomarY. StaelsB. Retinoid X receptors: Common heterodimerization partners with distinct functions.Trends Endocrinol. Metab.2010211167668310.1016/j.tem.2010.06.00920674387
    [Google Scholar]
  39. WawruszakA. HalasaM. OkonE. Kukula-KochW. StepulakA. Valproic acid and breast cancer: State of the art in 2021.Cancers (Basel)20211314340910.3390/cancers1314340934298623
    [Google Scholar]
  40. DuS. WangX. HuY. ZhangS. WangD. ZhangQ. LiuS. Valproic acid regulates MIEF1 through MST2-HIPPO to suppress breast cancer growth.Life Sci.202230912097610.1016/j.lfs.2022.12097636126724
    [Google Scholar]
  41. LinT. RenQ. ZuoW. JiaR. XieL. LinR. ZhaoH. ChenJ. LeiY. WangP. DongH. HuangL. CaiJ. PengY. YuZ. TanJ. WangS. Valproic acid exhibits anti-tumor activity selectively against EGFR/ErbB2/ErbB3-coexpressing pancreatic cancer via induction of ErbB family members-targeting microRNAs.J. Exp. Clin. Cancer Res.201938115010.1186/s13046‑019‑1160‑930961642
    [Google Scholar]
  42. ChenZ. WuF. LiJ. DongJ. HeH. LiX. LuQ. ZhangW. ShaoC. YaoZ. LinN. YeZ. XuJ. LiH. Investigating the synergy of Shikonin and Valproic acid in inducing apoptosis of osteosarcoma cells via ROS-mediated EGR1 expression.Phytomedicine202412615545910.1016/j.phymed.2024.15545938417243
    [Google Scholar]
  43. EmadD. BayoumiA.M.A. GebrilS.M. AliD.M.E. WazS. Modulation of keap-1/Nrf2/HO-1 and NF-ĸb/caspase-3 signaling pathways by dihydromyricetin ameliorates sodium valproate-induced liver injury.Arch. Biochem. Biophys.202475811008410.1016/j.abb.2024.11008438971420
    [Google Scholar]
  44. KawaiY. ArinzeI.J. Valproic acid-induced gene expression through production of reactive oxygen species.Cancer Res.200666136563656910.1158/0008‑5472.CAN‑06‑081416818628
    [Google Scholar]
  45. ArslanM.A. TunçelÖ.K. BilgiciB. KaraustaoğluA. GümrükçüoğluT.İ. Increased levels of lipid and protein oxidation in rat prefrontal cortex after treatment by lithium, valproic acid, and olanzapine.Naunyn Schmiedebergs Arch. Pharmacol.2023396102721272810.1007/s00210‑023‑02494‑637093250
    [Google Scholar]
  46. KawadaK. MimoriS. Implication of endoplasmic reticulum stress in autism spectrum disorder.Neurochem. Res.201843114715210.1007/s11064‑017‑2370‑128770435
    [Google Scholar]
  47. MaL. WangY. ChenX. ZhaoL. GuoY. Involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vivo and in vitro .Toxicology202044515258510.1016/j.tox.2020.15258533007364
    [Google Scholar]
  48. TorresS. BauliesA. Insausti-UrkiaN. Alarcón-VilaC. FuchoR. Solsona-VilarrasaE. NúñezS. RoblesD. RibasV. WakefieldL. GrompeM. LucenaM.I. AndradeR.J. WinS. AungT.A. KaplowitzN. García-RuizC. Fernández-ChecaJ.C. Endoplasmic Reticulum Stress-Induced Upregulation of STARD1 Promotes Acetaminophen-Induced Acute Liver Failure.Gastroenterology2019157255256810.1053/j.gastro.2019.04.02331029706
    [Google Scholar]
  49. SchiavoA. MaldonadoC. VázquezM. FagiolinoP. TrocónizI.F. IbarraM. Quantitative systems pharmacology Model to characterize valproic acid-induced hyperammonemia and the effect of L-carnitine supplementation.Eur. J. Pharm. Sci.202318310639910.1016/j.ejps.2023.10639936740101
    [Google Scholar]
  50. CelikE. TunaliS. Gezginci-OktayogluS. BolkentS. CanA. YanardagR. Vitamin U prevents valproic acid-induced liver injury through supporting enzymatic antioxidant system and increasing hepatocyte proliferation triggered by inflammation and apoptosis.Toxicol. Mech. Methods202131860060810.1080/15376516.2021.194308934420476
    [Google Scholar]
  51. KhodayarM.J. KalantariH. KhorsandiL. AhangarN. SamimiA. AlidadiH. Taurine attenuates valproic acid-induced hepatotoxicity via modulation of RIPK1/RIPK3/MLKL-mediated necroptosis signaling in mice.Mol. Biol. Rep.20214854153416210.1007/s11033‑021‑06428‑434032977
    [Google Scholar]
  52. XuJ. YaoX. LiX. XieS. ChiS. ZhangS. CaoJ. TanB. Farnesoid X receptor regulates PI3K/AKT/mTOR signaling pathway, lipid metabolism, and immune response in hybrid grouper.Fish Physiol. Biochem.20224861521153810.1007/s10695‑022‑01130‑z36210393
    [Google Scholar]
  53. LiuY. SongA. YangX. ZhenY. ChenW. YangL. WangC. MaH. Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice.Int. J. Mol. Med.20184231723173110.3892/ijmm.2018.371529901078
    [Google Scholar]
  54. LiuS. KangW. MaoX. GeL. DuH. LiJ. HouL. LiuD. YinY. LiuY. HuangK. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice.J. Pineal Res.2022732e1281210.1111/jpi.1281235652241
    [Google Scholar]
  55. SavovaM.S. MihaylovaL.V. TewsD. WabitschM. GeorgievM.I. Targeting PI3K/AKT signaling pathway in obesity.Biomed. Pharmacother.202315911424410.1016/j.biopha.2023.11424436638594
    [Google Scholar]
  56. WuY. YanQ. YueS. PanL. YangD. TaoL. WeiZ. RongF. QianC. HanM. ZuoF. YangJ. XuJ. ShiZ. DuJ. ChenZ. XuT. NUP85 alleviates lipid metabolism and inflammation by regulating PI3K/AKT signaling pathway in nonalcoholic fatty liver disease.Int. J. Biol. Sci.20242062219223510.7150/ijbs.9233738617542
    [Google Scholar]
  57. FangZ. YushanjiangF. WangG. ZhengX. JiangX. Germacrone mitigates cardiac remodeling by regulating PI3K/AKT-mediated oxidative stress, inflammation, and apoptosis.Int Immunopharmacol. 2023124Pt A11087610.1016/j.intimp.2023.110876
    [Google Scholar]
  58. SteinbergG.R. HardieD.G. New insights into activation and function of the AMPK.Nat. Rev. Mol. Cell Biol.202324425527210.1038/s41580‑022‑00547‑x36316383
    [Google Scholar]
  59. ChoiY.J. LeeK.Y. JungS.H. KimH.S. ShimG. KimM.G. OhY.K. OhS.H. JunD.W. LeeB.H. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice.Toxicol. Appl. Pharmacol.2017316748210.1016/j.taap.2016.12.01928038998
    [Google Scholar]
  60. AveryL.B. BumpusN.N. Valproic acid is a novel activator of AMP-activated protein kinase and decreases liver mass, hepatic fat accumulation, and serum glucose in obese mice.Mol. Pharmacol.201485111010.1124/mol.113.08975524105977
    [Google Scholar]
  61. LeeH.C. LiaoC.C. DayY.J. LiouJ.T. LiA.H. LiuF.C. IL-17 deficiency attenuates acetaminophen-induced hepatotoxicity in mice.Toxicol. Lett.2018292203010.1016/j.toxlet.2018.04.02129689376
    [Google Scholar]
  62. WangX. JiangZ. XingM. FuJ. SuY. SunL. ZhangL. Interleukin-17 mediates triptolide-induced liver injury in mice.Food Chem. Toxicol.201471334110.1016/j.fct.2014.06.00424949944
    [Google Scholar]
  63. BarzegariA. Amouzad MahdirejeiH. HananiM. EsmaeiliM.H. SalariA.A. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines.Physiol. Behav.202326911426410.1016/j.physbeh.2023.11426437295664
    [Google Scholar]
  64. A-GN. amE. EhR. AhmedR.G. Maternal Sodium Valproate Exposure Alters Neuroendocrine-Cytokines and Oxido-inflammatory Axes in Neonatal Albino Rats.Endocr. Metab. Immune Disord. Drug Targets20212181491150310.2174/187153032099920091812061732957897
    [Google Scholar]
  65. VarfolomeevE. VucicD. Intracellular regulation of TNF activity in health and disease.Cytokine2018101263210.1016/j.cyto.2016.08.03527623350
    [Google Scholar]
  66. Almeida-Junior  L.A. de Carvalho  M.S. AlmeidaL.K.Y. Silva-SousaA.C. Sousa-NetoM.D. SilvaR.A.B. SilvaL.A.B. Paula-SilvaF.W.G. TNF-α–TNFR1 signaling mediates inflammation and bone resorption in apical periodontitis.J. Endod.2023491013191328.e210.1016/j.joen.2023.07.01337499863
    [Google Scholar]
  67. WuL. JinY. ZhaoX. TangK. ZhaoY. TongL. YuX. XiongK. LuoC. ZhuJ. WangF. ZengZ. PanD. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α.Cell Metab.202335915801596.e910.1016/j.cmet.2023.07.00137506695
    [Google Scholar]
  68. HaritK. BhattacharjeeR. MatuschewskiK. BeckerJ. KalinkeU. SchlüterD. NishanthG. The deubiquitinating enzyme OTUD7b protects dendritic cells from TNF-induced apoptosis by stabilizing the E3 ligase TRAF2.Cell Death Dis.202314748010.1038/s41419‑023‑06014‑537516734
    [Google Scholar]
  69. CaiJ. RimalB. JiangC. ChiangJ.Y.L. PattersonA.D. Bile acid metabolism and signaling, the microbiota, and metabolic disease.Pharmacol. Ther.202223710823810.1016/j.pharmthera.2022.10823835792223
    [Google Scholar]
  70. JiaW. LiY. CheungK.C.P. ZhengX. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis.Sci. China Life Sci.202467586587810.1007/s11427‑023‑2353‑037515688
    [Google Scholar]
  71. Di CiaulaA. BonfrateL. KhalilM. PortincasaP. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease.Intern. Emerg. Med.20231882181219710.1007/s11739‑023‑03343‑337515676
    [Google Scholar]
  72. JoseS. DeviS.S. SajeevA. GirisaS. AlqahtaniM.S. AbbasM. AlshammariA. SethiG. KunnumakkaraA.B. Repurposing FDA-approved drugs as FXR agonists: A structure based in silico pharmacological study.Biosci. Rep.2023433BSR2021279110.1042/BSR2021279135348180
    [Google Scholar]
  73. ZhangC. GanY. LvJ.W. QinM.Q. HuW.R. LiuZ.B. MaL. SongB.D. LiJ. JiangW.Y. WangJ.Q. WangH. XuD.X. The protective effect of obeticholic acid on lipopolysaccharide-induced disorder of maternal bile acid metabolism in pregnant mice.Int. Immunopharmacol.20208310644210.1016/j.intimp.2020.10644232248018
    [Google Scholar]
  74. WangY. NakajimaT. GonzalezF.J. TanakaN. PPARs as metabolic regulators in the liver: Lessons from Liver-Specific PPAR-Null Mice.Int. J. Mol. Sci.2020216206110.3390/ijms2106206132192216
    [Google Scholar]
  75. TitusC. HoqueM.T. BendayanR. PPAR agonists for the treatment of neuroinflammatory diseases.Trends Pharmacol. Sci.202445192310.1016/j.tips.2023.11.00438065777
    [Google Scholar]
  76. Pineda TorraI. ClaudelT. DuvalC. KosykhV. FruchartJ.C. StaelsB. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor.Mol. Endocrinol.200317225927210.1210/me.2002‑012012554753
    [Google Scholar]
/content/journals/cad/10.2174/0115734099324138240823041016
Loading
/content/journals/cad/10.2174/0115734099324138240823041016
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test