Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

Astrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.

Methods

In this study, we established a ceRNA network to screen out the potential regulatory pathways involved in the malignant transformation of IDH-mutant astrocytomas. Firstly, the Chinese Glioma Genome Atlas (CGGA) was employed to compare the expression levels of the differential expressed genes (DEGs) in astrocytomas. Then, the ceRNA-regulated network was constructed based on the interaction of lncRNA-miRNA-mRNA. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the main functions of the differentially expressed genes. COX regression analysis and log-rank test were combined to screen the ceRNA network further. In addition, quantitative real-time PCR (qRT-PCR) was conducted to identify the potential regulatory mechanisms of malignant transformation in IDH-mutant astrocytoma.

Results

A ceRNA network with 34 lncRNAs, 29 miRNAs, and 71 mRNAs. GO and KEGG analyses results suggested that DEGs were associated with tumor-associated molecular functions and pathways. In addition, we screened two ceRNA regulatory networks using Cox regression analysis and log-rank test. QRT-PCR assay identified the NAA11/hsa-miR-142-3p/GS1-39E22.2 regulatory axis of the ceRNA network to be associated with the malignant transformation of IDH-mutant astrocytoma.

Conclusion

The discovery of this mechanism deepens our understanding of the molecular mechanisms of malignant transformation in astrocytomas and provides new perspectives for exploring glioma progression and targeted therapies.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099293010240810181446
2025-01-06
2025-12-08
Loading full text...

Full text loading...

References

  1. SayeghE.T. OhT. FakurnejadS. OyonD.E. BlochO. ParsaA.T. Principles of surgery for malignant astrocytomas.Semin. Oncol.201441452353110.1053/j.seminoncol.2014.06.01125173144
    [Google Scholar]
  2. MillerJ.J. Targeting IDH-Mutant Glioma.Neurotherapeutics20221961724173210.1007/s13311‑022‑01238‑335476295
    [Google Scholar]
  3. LouisD.N. PerryA. WesselingP. BratD.J. CreeI.A. Figarella-BrangerD. HawkinsC. NgH.K. PfisterS.M. ReifenbergerG. SoffiettiR. von DeimlingA. EllisonD.W. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab10634185076
    [Google Scholar]
  4. PersicoP. LorenziE. LosurdoA. DipasqualeA. Di MuzioA. NavarriaP. PessinaF. PolitiL.S. LombardiG. SantoroA. SimonelliM. Precision oncology in lower-grade gliomas: Promises and pitfalls of therapeutic strategies targeting IDH-mutations.Cancers (Basel)2022145112510.3390/cancers1405112535267433
    [Google Scholar]
  5. KarrethF.A. PandolfiP.P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry.Cancer Discov.20133101113112110.1158/2159‑8290.CD‑13‑020224072616
    [Google Scholar]
  6. PerronG. JandaghiP. MoslemiE. NishimuraT. RajaeeM. AlkallasR. LuT. RiazalhosseiniY. NajafabadiH.S. Pan-cancer analysis of mRNA stability for decoding tumour post-transcriptional programs.Commun. Biol.20225185110.1038/s42003‑022‑03796‑w35987939
    [Google Scholar]
  7. SalmenaL PolisenoL TayY KatsL PandolfiPP A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?Cell20111463353810.1016/j.cell.2011.07.014
    [Google Scholar]
  8. SuX. XingJ. WangZ. ChenL. CuiM. JiangB. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer.Chin. J. Cancer Res.201325223523910.3978/j.issn.1000‑9604.2013.03.0823592905
    [Google Scholar]
  9. WangY. LiuX. GuanG. XiaoZ. ZhaoW. ZhuangM. Identification of a Five-Pseudogene Signature for Predicting Survival and Its ceRNA Network in Glioma.Front. Oncol.20199105910.3389/fonc.2019.0105931681595
    [Google Scholar]
  10. PengQ. LiR. LiY. XuX. NiW. LinH. NingL. Prediction of a competing endogenous RNA co-expression network as a prognostic marker in glioblastoma.J. Cell. Mol. Med.20202422133461335510.1111/jcmm.1595733047898
    [Google Scholar]
  11. HuangL. LiX. YeH. LiuY. LiangX. YangC. HuaL. YanZ. ZhangX. Long non-coding RNA NCK1-AS1 promotes the tumorigenesis of glioma through sponging microRNA-138-2-3p and activating the TRIM24/Wnt/β-catenin axis.J. Exp. Clin. Cancer Res.20203916310.1186/s13046‑020‑01567‑132293515
    [Google Scholar]
  12. LiY. PengL. CaoX. YangK. WangZ. XiaoY. XiaoH. QianC. LiuH. The Long Non-Coding RNA HOXC-AS3 Promotes Glioma Progression by Sponging miR-216 to Regulate F11R Expression.Front. Oncol.20221284500910.3389/fonc.2022.84500935402226
    [Google Scholar]
  13. ZhaoZ. ZhangK.N. WangQ. LiG. ZengF. ZhangY. WuF. ChaiR. WangZ. ZhangC. ZhangW. BaoZ. JiangT. Chinese Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma Patients.Genomics Proteomics Bioinformatics202119111210.1016/j.gpb.2020.10.00533662628
    [Google Scholar]
  14. OhgakiH. KleihuesP. The definition of primary and secondary glioblastoma.Clin. Cancer Res.201319476477210.1158/1078‑0432.CCR‑12‑300223209033
    [Google Scholar]
  15. FrankishA. Carbonell-SalaS. DiekhansM. JungreisI. LovelandJ.E. MudgeJ.M. SisuC. WrightJ.C. ArnanC. BarnesI. BanerjeeA. BennettR. BerryA. BignellA. BoixC. CalvetF. Cerdán-VélezD. CunninghamF. DavidsonC. DonaldsonS. DursunC. FatimaR. GiorgettiS. GironC.G. GonzalezJ.M. HardyM. HarrisonP.W. HourlierT. HollisZ. HuntT. JamesB. JiangY. JohnsonR. KayM. LagardeJ. MartinF.J. GómezL.M. NairS. NiP. PozoF. RamalingamV. RuffierM. SchmittB.M. SchreiberJ.M. SteedE. SunerM.M. SumathipalaD. SychevaI. Uszczynska-RatajczakB. WassE. YangY.T. YatesA. ZafrullaZ. ChoudharyJ.S. GersteinM. GuigoR. HubbardT.J.P. KellisM. KundajeA. PatenB. TressM.L. FlicekP. GENCODE: Reference annotation for the human and mouse genomes in 2023.Nucleic Acids Res.202351D1D942D94910.1093/nar/gkac107136420896
    [Google Scholar]
  16. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  17. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  18. KoldeR. Pretty Heatmaps.2018Available From: https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf 2022
  19. KaragkouniD. ParaskevopoulouM.D. TastsoglouS. SkoufosG. KaravangeliA. PierrosV. ZacharopoulouE. HatzigeorgiouA.G. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts.Nucleic Acids Res.201948D1gkz103610.1093/nar/gkz103631732741
    [Google Scholar]
  20. LiJ.H. LiuS. ZhouH. QuL.H. YangJ.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data.Nucleic Acids Res.201442D1D92D9710.1093/nar/gkt124824297251
    [Google Scholar]
  21. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  22. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  23. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  24. AlboukadelM.K. Drawing Survival Curves using 'ggplot2'.2021Available From: https://cloud.r-project.org/web/packages/survminer/survminer.pdf 2022
  25. TayY RinnJ PandolfiPP The multilayered complexity of ceRNA crosstalk and competition.Nature201450574833445210.1038/nature12986
    [Google Scholar]
  26. HirtzA. RechF. Dubois-Pot-SchneiderH. DumondH. Astrocytoma: A Hormone-Sensitive Tumor?Int. J. Mol. Sci.20202123911410.3390/ijms2123911433266110
    [Google Scholar]
  27. KristensenB.W. Priesterbach-AckleyL.P. PetersenJ.K. WesselingP. Molecular pathology of tumors of the central nervous system.Ann. Oncol.20193081265127810.1093/annonc/mdz16431124566
    [Google Scholar]
  28. LouisD.N. PerryA. ReifenbergerG. von DeimlingA. Figarella-BrangerD. CaveneeW.K. OhgakiH. WiestlerO.D. KleihuesP. EllisonD.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary.Acta Neuropathol.2016131680382010.1007/s00401‑016‑1545‑127157931
    [Google Scholar]
  29. ChanJ.J. TayY. Noncoding RNA:RNA Regulatory Networks in Cancer.Int. J. Mol. Sci.2018195131010.3390/ijms1905131029702599
    [Google Scholar]
  30. ChenP.Y. LiX.D. MaW.N. LiH. LiM.M. YangX.Y. LiS.Y. Comprehensive Transcriptomic Analysis and Experimental Validation Identify lncRNA HOXA-AS2/miR-184/COL6A2 as the Critical ceRNA Regulation Involved in Low-Grade Glioma Recurrence.OncoTargets Ther.2020134999501610.2147/OTT.S24589632581558
    [Google Scholar]
  31. BratD.J. AldapeK. ColmanH. Figrarella-BrangerD. FullerG.N. GianniniC. HollandE.C. JenkinsR.B. Kleinschmidt-DeMastersB. KomoriT. KrosJ.M. LouisD.N. McLeanC. PerryA. ReifenbergerG. SarkarC. StuppR. van den BentM.J. von DeimlingA. WellerM. cIMPACT-NOW update 5: Recommended grading criteria and terminologies for IDH-mutant astrocytomas.Acta Neuropathol.2020139360360810.1007/s00401‑020‑02127‑931996992
    [Google Scholar]
  32. LiuY. TavanaO. GuW. p53 modifications: Exquisite decorations of the powerful guardian.J. Mol. Cell Biol.201911756457710.1093/jmcb/mjz06031282934
    [Google Scholar]
  33. ZhaoQ.S. YingJ.B. JingJ.J. WangS.S. LncRNA FOXD2-AS1 stimulates glioma progression through inhibiting P53.Eur. Rev. Med. Pharmacol. Sci.20202484382438810.26355/eurrev_202004_2101932373975
    [Google Scholar]
  34. YuB.X. ZouL. LiS. DuY.L. LncRNA SAMD12-AS1 down-regulates P53 to promote malignant progression of glioma.Eur. Rev. Med. Pharmacol. Sci.201923198456846710.26355/eurrev_201910_1915831646576
    [Google Scholar]
  35. SunX. KlingbeilO. LuB. WuC. BallonC. OuyangM. WuX.S. JinY. HwangboY. HuangY.H. SomervilleT.D.D. ChangK. ParkJ. ChungT. LyonsS.K. ShiJ. VogelH. SchulderM. VakocC.R. MillsA.A. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network.Nature2023613794219520210.1038/s41586‑022‑05551‑x36544023
    [Google Scholar]
  36. HuS. CaiJ. FangH. ChenZ. ZhangJ. CaiR. RPS14 promotes the development and progression of glioma via p53 signaling pathway.Exp. Cell Res.2023423111345110.1016/j.yexcr.2022.11345136535509
    [Google Scholar]
  37. AkhavanD. CloughesyT.F. MischelP.S. mTOR signaling in glioblastoma: Lessons learned from bench to bedside.Neuro-oncol.201012888288910.1093/neuonc/noq05220472883
    [Google Scholar]
  38. ChaiC. SongL.J. HanS.Y. LiX.Q. LiM. Retracted: Micro RNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY 1 via the PTEN / PI 3K/ AKT signaling pathway.CNS Neurosci. Ther.201824536938010.1111/cns.1278529316313
    [Google Scholar]
  39. NiW. XiaY. BiY. WenF. HuD. LuoL. FoxD2-AS1 promotes glioma progression by regulating miR-185-5P/HMGA2 axis and PI3K/AKT signaling pathway.Aging (Albany NY)20191151427143910.18632/aging.10184330860979
    [Google Scholar]
  40. LiH. LiuJ. QinX. SunJ. LiuY. JinF. Function of Long Noncoding RNAs in Glioma Progression and Treatment Based on the Wnt/β-Catenin and PI3K/AKT Signaling Pathways.Cell. Mol. Neurobiol.20234383929394210.1007/s10571‑023‑01414‑937747595
    [Google Scholar]
  41. WangJ. ZhuS. MengN. HeY. LuR. YanG.R. ncRNA-encoded peptides or proteins and cancer.Mol. Ther.201927101718172510.1016/j.ymthe.2019.09.00131526596
    [Google Scholar]
  42. LiH. WangM. ZhouH. LuS. ZhangB. Long noncoding RNA EBLN3P promotes the progression of liver cancer via alteration of microRNA-144-3p/DOCK4 signal.Cancer Manag. Res.2020129339934910.2147/CMAR.S26197633061623
    [Google Scholar]
  43. StackhouseCT GillespieGY WilleyCD Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential.Cells2020911236910.3390/cells9112369
    [Google Scholar]
  44. WeiB. WangL. ZhaoJ. Circular RNA hsa_circ_0005114-miR-142-3p/miR-590-5p-adenomatous polyposis coli protein axis as a potential target for treatment of glioma.Oncol. Lett.20202115810.3892/ol.2020.1232033281969
    [Google Scholar]
  45. ZhangS. YueW. XieY. LiuL. LiS. DangW. XinS. YangL. ZhaiX. CaoP. LuJ. The four-microRNA signature identified by bioinformatics analysis predicts the prognosis of nasopharyngeal carcinoma patients.Oncol. Rep.20194251767178010.3892/or.2019.731631545473
    [Google Scholar]
  46. BazrgarM. MirmotalebisohiS.A. AhmadiM. AzimiP. DargahiL. ZaliH. AhmadianiA. Comprehensive analysis of l nc RNA-associated ce RNA network reveals novel potential prognostic regulatory axes in glioblastoma multiforme.J. Cell. Mol. Med.20242811e1839210.1111/jcmm.1839238864705
    [Google Scholar]
  47. ZhangG. TaoX. JiB. GongJ. Long non-coding RNA COX10-AS1 promotes glioma progression by competitively binding miR-1-3p to regulate ORC6 expression.Neuroscience2024540687610.1016/j.neuroscience.2023.09.02038244670
    [Google Scholar]
  48. HuangX. WangZ. SongM. HuanH. CaiZ. WuB. ShenJ. ZhouY.L. ShiJ. CircIQGAP1 regulates RCAN1 and RCAN2 through the mechanism of ceRNA and promotes the growth of malignant glioma.Pharmacol. Res.202319710697910.1016/j.phrs.2023.10697937918583
    [Google Scholar]
/content/journals/cad/10.2174/0115734099293010240810181446
Loading
/content/journals/cad/10.2174/0115734099293010240810181446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test