Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Berberine (BBR), also known as berberine hydrochloride, was isolated from the rhizomes of the Coptis chinensis. Studies have reported that BBR plays an important role in glycolipid metabolism, including insulin resistance (IR). The targets, and molecular mechanisms of BBR against hyperlipid-induced IR is worthy to be further studied.

Materials and Methods

The related targets of BBR were identified Pharmmapper database and relevant targets of diabetes were obtained through GeneCards and Online Mendelian Inheritance in Man (OMIM) database. The common targets were employed with the STRING database and visualized with the protein-protein interactions (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to explore the biological progress and pathways. , human hepatocellular carcinomas (HepG2) cell was used as experimental cell line, and an insulin resistant HepG2 cell model (IR-HepG2) was constructed using free fatty acid induction. After intervention with BBR, glucose consumption and uptake in HepG2 cells were observed. Molecular docking was used to test the interaction between BBR and key targets, and real-time fluorescence quantitative PCR was used to detect the regulatory effect of BBR on related targets.

Results

262 overlapped targets were extracted from BBR and diabetes. In the KEGG enrichment analysis, the peroxisome proliferator activated receptor (PPAR) signaling pathway was included. experiments, BBR can significantly increase sugar consumption and uptake in IR HepG2 cells, while PPAR inhibitors can weaken the effect of BBR on IR-HepG2.

Conclusion

The PPAR signaling pathway is one of the important pathways for BBR to improve high-fat-induced insulin resistance in HepG2 cells.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099330183241008071642
2024-10-17
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cad/21/8/CCADD-21-8-03.html?itemId=/content/journals/cad/10.2174/0115734099330183241008071642&mimeType=html&fmt=ahah

References

  1. CheungN. MitchellP. WongT.Y. Diabetic retinopathy.Lancet2010376973512413610.1016/S0140‑6736(09)62124‑320580421
    [Google Scholar]
  2. AhmedB. SultanaR. GreeneM. W. Adipose tissue and insulin resistance in obeseBiomed Pharmacother.2021137111315
    [Google Scholar]
  3. da SilvaA.A. do CarmoJ.M. LiX. WangZ. MoutonA.J. HallJ.E. Role of hyperinsulinemia and insulin resistance in hypertension: Metabolic syndrome revisited.Can. J. Cardiol.202036567168210.1016/j.cjca.2020.02.06632389340
    [Google Scholar]
  4. HillM.A. YangY. ZhangL. SunZ. JiaG. ParrishA.R. SowersJ.R. Insulin resistance, cardiovascular stiffening and cardiovascular disease.Metabolism202111915476610.1016/j.metabol.2021.15476633766485
    [Google Scholar]
  5. TanaseD.M. GosavE.M. CosteaC.F. CiocoiuM. LacatusuC.M. MaranducaM.A. OuatuA. FloriaM. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD).J. Diabetes Res.2020202011610.1155/2020/392019632832560
    [Google Scholar]
  6. NortonL. ShannonC. GastaldelliA. DeFronzoR.A. Insulin: The master regulator of glucose metabolism.Metabolism202212915514210.1016/j.metabol.2022.15514235066003
    [Google Scholar]
  7. ZhaoK. WuX. HanG. SunL. ZhengC. HouH. XuB.B. El-BahyZ.M. QianC. KallelM. AlgadiH. GuoZ. ShiZ. Phyllostachys nigra (Lodd. ex Lindl.) derived polysaccharide with enhanced glycolipid metabolism regulation and mice gut microbiome.Int. J. Biol. Macromol.2024257Pt 112858810.1016/j.ijbiomac.2023.12858838048922
    [Google Scholar]
  8. ZhouX. GuoY. YangK. LiuP. WangJ. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing.J. Ethnopharmacol.202228211466210.1016/j.jep.2021.11466234555452
    [Google Scholar]
  9. LiL. ZhangY. LuoY. MengX. PanG. ZhangH. LiY. ZhangB. The molecular basis of the anti-inflammatory property of astragaloside IV for the treatment of diabetes and its complications.Drug Des. Devel. Ther.20231777179010.2147/DDDT.S39942336925998
    [Google Scholar]
  10. FengQ. YangY. QiaoY. ZhengY. YuX. LiuF. WangH. ZhengB. PanS. RenK. LiuD. LiuZ. Quercetin ameliorates diabetic kidney injury by inhibiting ferroptosis via activating Nrf2/HO-1 signaling pathway.Am. J. Chin. Med.2023514997101810.1142/S0192415X2350046537046368
    [Google Scholar]
  11. ZhouM. DengY. LiuM. LiaoL. DaiX. GuoC. ZhaoX. HeL. PengC. LiY. The pharmacological activity of berberine, a review for liver protection.Eur. J. Pharmacol.202189017365510.1016/j.ejphar.2020.17365533068590
    [Google Scholar]
  12. GaoY. WangF. SongY. LiuH. The status of and trends in the pharmacology of berberine: A bibliometric review [1985–2018].Chin. Med.2020151710.1186/s13020‑020‑0288‑z31988653
    [Google Scholar]
  13. SongD. HaoJ. FanD. Biological properties and clinical applications of berberine.Front. Med.202014556458210.1007/s11684‑019‑0724‑632335802
    [Google Scholar]
  14. WangK. FengX. ChaiL. CaoS. QiuF. The metabolism of berberine and its contribution to the pharmacological effects.Drug Metab. Rev.201749213915710.1080/03602532.2017.130654428290706
    [Google Scholar]
  15. BaskaA. LeisK. GałązkaP. Berberine in the treatment of diabetes mellitus: a review.Endocr. Metab. Immune Disord. Drug Targets20212181379138610.2174/156802662066620102214440533092516
    [Google Scholar]
  16. BergerJ. MollerD.E. The mechanisms of action of PPARs.Annu. Rev. Med.200253140943510.1146/annurev.med.53.082901.10401811818483
    [Google Scholar]
  17. MontaigneD. ButruilleL. StaelsB. PPAR control of metabolism and cardiovascular functions.Nat. Rev. Cardiol.2021181280982310.1038/s41569‑021‑00569‑634127848
    [Google Scholar]
  18. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.11818936753
    [Google Scholar]
  19. LiuJ. WeiB. MaQ. ShiD. PanX. LiuZ. LiJ. ZhaoP. Network pharmacology and experimental validation on yangjing zhongyu decoction against diminished ovarian reserve.J Ethnopharmacol.2024318Pt B11702310.1016/j.jep.2023.117023
    [Google Scholar]
  20. GuoY. WangJ. HuaY. JiangM. XuW. ShiY. YangJ. WanH. YangR. Network pharmacology and in vitro experimental verification to reveal the mechanism of Astragaloside IV against kidney ischemia-reperfusion injury.Heliyon2023911e2171110.1016/j.heliyon.2023.e2171138027853
    [Google Scholar]
  21. ZengB. QiL. WuS. LiuN. WangJ. NieK. XiaL. YuS. Network pharmacology prediction and metabolomics validation of the mechanism of fructus phyllanthi against hyperlipidemia.J Vis Exp.202319410.3791/65071
    [Google Scholar]
  22. PanL. PengC. WangL. LiL. HuangS. FeiC. WangN. ChuF. PengD. DuanX. Network pharmacology and experimental validation-based approach to understand the effect and mechanism of taohong siwu decoction against ischemic stroke.J. Ethnopharmacol.202229411533910.1016/j.jep.2022.11533935525530
    [Google Scholar]
  23. KuangY. ChaiY. SuH. LoJ.Y. QiaoX. YeM. A network pharmacology-based strategy to explore the pharmacological mechanisms of antrodia camphorata and antcin K for treating type II diabetes mellitus.Phytomedicine20229615385110.1016/j.phymed.2021.15385134823968
    [Google Scholar]
  24. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  25. ShangL. WangY. LiJ. ZhouF. XiaoK. LiuY. ZhangM. WangS. YangS. Mechanism of sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation.J Ethnopharmacol.2023302Pt A11587610.1016/j.jep.2022.115876
    [Google Scholar]
  26. LiX. WeiS. NiuS. MaX. LiH. JingM. ZhaoY. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of huanglian jiedu decoction against sepsis.Comput. Biol. Med.202214410538910.1016/j.compbiomed.2022.10538935303581
    [Google Scholar]
  27. SimayiJ. NuermaimaitiM. WumaierA. KhanN. YusufuM. NuerM. MaihemutiN. Bayinsang AdurusulK. ZhouW. Analysis of the active components and mechanism of Shufeng Jiedu capsule against COVID-19 based on network pharmacology and molecular docking.Medicine (Baltimore)20221011e2828610.1097/MD.000000000002828635029877
    [Google Scholar]
  28. WuC. ZhengW. ZhangJ. HeX. Exploring the mechanism of curcumin on retinoblastoma based on network pharmacology and molecular dockingEvid Based Complement Alternat Med.202220222407462
    [Google Scholar]
  29. LiM. HanZ. BeiW. RongX. GuoJ. HuX. Oleanolic acid attenuates insulin resistance via NF-κB to regulate the IRS1-GLUT4 pathway in HepG2 cells.Evid Based Complement Alternat Med.20152015643102
    [Google Scholar]
  30. KumarS. KumarV. PrakashO. Enzymes inhibition and antidiabetic effect of isolated constituents from dillenia indica.BioMed Res. Int.201320131710.1155/2013/38206324307994
    [Google Scholar]
  31. WangX. WangS. SunL. QinG. Prevalence of diabetes mellitus in 2019 novel coronavirus: A meta-analysis.Diabetes Res. Clin. Pract.202016410820010.1016/j.diabres.2020.10820032407746
    [Google Scholar]
  32. ZhengY. BaiL. ZhouY. TongR. ZengM. LiX. ShiJ. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances.Int. J. Biol. Macromol.20191211240125310.1016/j.ijbiomac.2018.10.07230342938
    [Google Scholar]
  33. XuY.X.Z. XiS. QianX. Evaluating traditional chinese medicine and herbal products for the treatment of gestational diabetes mellitus.J. Diabetes Res.201920191610.1155/2019/918259531886289
    [Google Scholar]
  34. PangB. ZhaoL.H. ZhouQ. ZhaoT.Y. WangH. GuC.J. TongX.L. Application of berberine on treating type 2 diabetes mellitus.Int. J. Endocrinol.2015201511210.1155/2015/90574925861268
    [Google Scholar]
  35. LvX. ZhaoY. YangX. HanH. GeY. ZhangM. ZhangH. ZhangM. ChenL. Berberine potentiates insulin secretion and prevents β-cell dysfunction through the miR-204/SIRT1 signaling pathway.Front. Pharmacol.20211272086610.3389/fphar.2021.72086634630099
    [Google Scholar]
  36. KimS.H. ShinE.J. KimE.D. BayaraaT. FrostS.C. HyunC.K. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes.Biol. Pharm. Bull.200730112120212510.1248/bpb.30.212017978486
    [Google Scholar]
  37. SuX. YangD. HuY. YuanY. SongL. Berberine suppressed sarcopenia insulin resistance through SIRT1-mediated mitophagy.Open Life Sci.20231812022064810.1515/biol‑2022‑064837483428
    [Google Scholar]
  38. LiY. ChenX. ChenY. YuD. JiangR. KouX. ShengL. LiuY. SongY. Berberine improves TNF-α-induced hepatic insulin resistance by targeting MEKK1/MEK pathway.Inflammation20224552016202610.1007/s10753‑022‑01671‑835460012
    [Google Scholar]
  39. LiuD. ZhangY. LiuY. HouL. LiS. TianH. ZhaoT. Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology.German Diabetes Association20181268513520
    [Google Scholar]
  40. GongM. DuanH. WuF. RenY. GongJ. XuL. LuF. WangD. Berberine alleviates insulin resistance and inflammation via inhibiting the LTB4–BLT1 axis.Front. Pharmacol.20211272236010.3389/fphar.2021.72236034803675
    [Google Scholar]
  41. YueS.J. LiuJ. WangA.T. MengX.T. YangZ.R. PengC. GuanH.S. WangC.Y. YanD. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids.Am. J. Physiol. Endocrinol. Metab.20193161E73E8510.1152/ajpendo.00256.201830422704
    [Google Scholar]
  42. TangG. LiS. ZhangC. ChenH. WangN. FengY. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management.Acta Pharm. Sin. B20211192749276710.1016/j.apsb.2020.12.02034589395
    [Google Scholar]
  43. HuangT.H.W. KotaB.P. RazmovskiV. RoufogalisB.D. Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome.Basic Clin. Pharmacol. Toxicol.200596131410.1111/j.1742‑7843.2005.pto960102.x15667590
    [Google Scholar]
  44. ZhangY. LiM. TangZ. WangC. Wogonin suppresses osteopontin expression in adipocytes by activating PPARα.Acta Pharmacol. Sin.201536898799710.1038/aps.2015.3726073326
    [Google Scholar]
  45. JiaR. HouY. ZhangL. LiB. ZhuJ. Antioxidant status, and immune response in liver of tilapia (oreochromis niloticus) under a high-fat diet feedingAntioxidants (Basel)2024135548
    [Google Scholar]
/content/journals/cad/10.2174/0115734099330183241008071642
Loading
/content/journals/cad/10.2174/0115734099330183241008071642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test